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Lecture #10: Transitions II 
Last Time 

oscillating
electric field 

2 

P
Intensity

if ∝ε2	∑ vi vf Ωf JfMfM

i er f r

b, if ΩiJiMi	 αSb θ,φ

S,b unique radial universal angular factor


all electric factor * polarization: S, ∆M


R 

* band type: b, ∆Ω
dipole * branch type ∆J
transition

probabilities


pure rotation	 i = f → b = z for diatomic (µ along z) 
⇓


vi = vf σ(xz) and σ(yz) symmetry

b = z → ∆Ω = 0


= Mz,ii (Re ) + 
dM	 1 d2Mv Mz,ii (R) v 

 R  dQ Q=0 

Qvv + 
2 dQ2 

Q=0 

Qvv
2 

if homonuclear → =0 
nQvv matrix elements in Harmonic Oscillator Basis Set (Q = R – Re) 

2
Pif ∝ [const. + small v2  term ] ΩJfMΩJiM αZz


µ2 (dµ/dR)2


Today:	 finish pure rotation spectrum
Hönl-London Factors 
rotation-vibration spectrum ∆v = ±1 propensity rule dM/dR ≠ 0 

anharmonic and centrifugal correction terms 
[PERTURBATION THEORY]

rotation-vibration-electric spectrum all ∆v → Franck Condon factors 
R-centroid approximation
stationary phase approximation 

2
ΩJfMΩJiM αZz Final factor is 

Each J consists of 2J + 1 degenerate M-components. 
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 direction cosine matrix elements → sum over M → Hönl-London 
rotational linestrength

[can't do this sum so simply for OODR because initial M’s are not equally populated] factors 

see Hougen page 39, Table 7 

2 ΩΩ 3Ω
Herzberg Diatomics, page 208 

JfM∑ ≡S Ji Jf
ΩJiM αZz θφ 

M 

sum rule 

2Jf +1 el 

3 
gf 

useful for checking
calculations 

(Jf + Ω +1)(Jf −Ω +1) Jf= ~ 
3 J( f +1) 3 

Ω2 (2Jf +1) 2Ω2 

= ~ 
3Jf 3Jf 

(Jf + Ω)(Jf −Ω ) Jf= ~ 
3Jf 3 

common final state 
Ji = Jf + 1 
(R or P) 

Ji = Jf

(Q branch weak at


high J)


Ji = Jf –1 
(P or R) 

The increase with J is due to 2J + 1 degeneracy factor being included. These formulas for a common 
final state do not depend on whether Ji or Jf is upper or lower state. Similar set of formulas for 
transitions out of common initial state. 

These formulas cannot depend on our choice of quantization axis. If we sum over equal X, Y, Z
polarized absorption or emission, the factor of 3 must go away because of the isotropy of space and the
equivalence of X, Y, Z. 

Next case: Rotation-Vibration Spectra (Diatomic or Linear Molecule)
i = f - still have Ωi = Ωf ⇒ αZz 

vi ≠ vf 
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Pif ∝ I vi Mz,ii (R) vf R 

2 
S Ji Jf 

ΩΩ 

exactly the same as for
pure rotation spectra 

Here the absolute intensity factor is slightly different from that for pure rotation — do the same power
series expansion in Q about Re (i.e. Q = 0). 

vi Mz,ii (R) vf = Mz,ii (Re ) vi vf + 
dMz,ii 

dQ Q=0 

vi Q vf + 
1 
2 

d2Mz,ii 

dQ2 
Q=0 

vi Q
2 vf 

vi vf = 0 when vi ≠ vf  by orthogonality 

for harmonic oscillator1/2 

amplitude increases ∝ v1/2 

requires dM ≠ 0 Pif ∝ v 
dQ Q=0 

⎞⎧

⎪
⎪
⎨

⎪ 
⎪⎩


⎛
 
 v1/2 v Q v −1 ∆v = ±1 propensity rule=
⎜
⎝


⎟
⎠
µωe 

Other contributors to vibrational intensities: 

* vibrational anharmonicity: 	perturbation theory mixes harmonic

vf = vi ± 1 character into real vf ≠ vi ±1 levels


* electrical anharmonicity: next term d
2Mz,ii ≠ 0 ⇒ ∆ v = ±2

dQ2 

Q=0


* rotational effects. 	|vi〉 for J is not orthogonal to |vf ≠ vi〉 for J ± 1! Then permanent dipole
moment, Mz,ii(Re), can contribute to Pif for ∆v = ±1 transition. 
vi B(R) v ±1 J(J +1) 

∆ G 
v ° + v ±1 °v ±1 =


vJ = v0 °+ ∑ 
v′ 

v0 B(R)J(J +1) ′v 0 ′v 0 ° 
Ev 
o − E ′v

o 

⎡ Q ⎤−2 

B(R) = B(Re ) 1+⎢⎣ Re ⎦
⎥


= B Re )⎡⎣1− 2 Q Re ) +… ⎤⎦
( ( 

v ±1,0 ° +… 
⎤ 

⎦
⎥

⎛
 2
 ⎞
vJ ≈ v0 ° −
 B Re(⎜
⎝
Re 

⎟
⎠


⎡ 
⎢
⎣

) J(J +1) v,0 Q v ±1,0 

ω 

∂Mv ±1J M(R) vJ = 
∂Q

v + M Re )BeJ(J +1) etc. ( 
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Herman-Wallis effect. See 3 elegant papers (especially the first one) from David Nesbitt’s group: 

D. Nelson, Jr., A. Schiffman, D. Yaron, and D. Nesbitt, “Absolute Infrared Transition Moments
for Open Shell Diatomics from J Dependence of Transition Intensities: Application to OH”, J. 
Chem. Phys. 90, 5443 (1989); 

D. Nelson, Jr., A. Schiffman, and D. Nesbitt, “The Dipole Moment Function and Vibrational
Transition Intensities of OH”, J. Chem. Phys. 90, 5455 (1989); 

D. Nelson, Jr., A. Schiffman, J. Orlando, J. Burkholder, and D. Nesbitt, “H + O3 Fourier-
Transform Infrared Emission and Laser Absorption Studies of OH (X2∏) Radical: An
Experimental Dipole Moment Function and State-To-State Einstein A Coefficients”, J. Chem. 
Phys. 93, 7003 (1990).

cross terms give sign of dM/dR with respect to M(Re).

Add transition amplitudes before taking | |2.

Non-Lecture: Anharmonic Correction to vibrational wavefunction.


‘v’ = 

v ±1 
= aω−5 /2 µ−3/2


1/2 f(v)

v ±1 

ω–3/2 from Q3 

v °+ cv,v±1 

V(R) = kQ2 / 2 + aQ3 

 
H′ 

v aQ3 

≈ v3/2 =cv,v±1 ±ω  
see perturbation theory
for formulas. 

Pure rotation requires Mz(Re) ≠ 0 

Vibration-Rotation mostly due to dMz ≠ 0
dQ Q=0 

∆v = ±1 propensity, Pif ∝ v

but also vibrational and electronic anharmonicities and centrifugal distortion


nearly perfect J-independence (except centrifugal effects - hydrides) 
⎧Mz ≠ 0 rotation Mx = My = 0 “parallel type” 

always ⎨
⎪

⎪
dMz ≠ 0 rotation − vibration (weak Q branches) 

⎩ dQ 
(no such restriction to only Mz ≠ 0 in polyatomic molecules) 

recall Hönl-London factor 

can have strong Q branches 
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Big differences when we consider electronic transitions i ≠ f 

* not restricted to only Mz(R) (x,y components also)
* no simple vibrational selection or propensity rules as for the harmonic limit of

vibration-rotation because {|vi〉} is not orthogonal to {|vf〉}
* awkwardness about Mb,if(R). We would like to express vibrational matrix 

elements of Mb,if as function of Rvivf
 rather than [Mb,if (R) ] . 

vivf 

⎧R − centroid approximation 
⎨ 
⎩stationary phase, semi-classical Franck-Condon principle 

vibrational intensity distribution
provides information about
difference in structure 

Ωf JfM vi M(R)b,if vfPif ∝ IZ ∑ ΩiJiM αZb 
b	 electronic 

transition moment 
expand M(R) about R′ — some arbitrary value since Rei ≠ Ref 

expand, take ME and divide through by vi vf 

vi M(R)b,if vf dM 
′R

= M( R )′ b,if + 
dR R=

− R′⎤⎦+… 
vi vf 

Rvi vf 
⎡⎣ 

This looks exactly like (R – R′)n 

need to look atexpansion if R is replaced
everywhere by the “R-centroid” higher terms in

expansion to see
vi R the necessity forvf=Rvivf R-centroidsvi vf 

provided that the R-centroid approximation is valid. 

2 
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vi	 R
n vfRv

n
ivf 

≡ ≅ (Rvivf )
n 

vi vf 
always true	 approximation 

(justification for typical type of spectroscopic simplification) 

Semi-classical Franck-Condon principle 

See: 
*	 J. Tellinghuisen, “Reflection and Interference Structure in Diatomic Franck-Condon

Distributions,” J. Mol. Spectrosc. 103, 455 (1984) 

*	 C. Noda and R. N. Zare, “ Relation Between Classical and Quantum Formulations of the Franck-
Condon Principle: The Generalized r-centroid Approximation,” J. Mol. Spectrosc. 95, 254 (1982) 

This R-centroid approximation is convenient because we can think of M(R) as a simple function of a
single variable Rvivf  (which usually turns out to be a monotonic function of the wavelength of the 
transition, λ) 

In the R-centroid approximation 

2(	 ΩiΩfPij ∝ Iqvivf
S JiJf

M Rvivf )b,if 
  

Franck-Condon factor

(overlap squared)


Now what is “stationary phase” approximation?

How is it related to semi-classical F-C principle?

vertical * ∆R = 0

no impulse * ∆P = 0
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p-mismatched p-matched 

vf 

Transition is vertical (∆R = 0) and “occurs” at that R where pupper = plower. This means that wavefunctions 
are oscillating at the same spatial frequency. 

′ R′I(R) = ∫ R 
χ*vi (R′) χvf (R )d

r< (vf ) 
This shows how F–C overlap integral accumulates. 

hSpatial oscillations of χ given by de Broglie λ = 
p 

. 

I(R) 

Rstationary phase 
R 

All Rn integrals accumulate near stationary phase point. 


