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Lecture #14: Definition of Angular Momenta and |A α MA〉.


Evaluation of H ROT


We want to be able to set up effective Hamiltonian models for rotation-vibration-electronic structure of
diatomic molecules with non-zero electronic angular momenta. 

The important terms in H  are 
H
ROT 

= B(R)R
2 

H
SO 

= ∑ ( ) sia ri	 ̂ i ·̂
i 

electrons 


 

*	 a convenient basis set for evaluating matrix elements of H ROT and H SO — HUND’S CASE A 

 

*	 A 
z, A 

±, and A 
Z, A ± and A 2 operators and |A α MA〉 basis functions 

*	 Heff and van Vleck Corrections to Heff 

*	 Limiting cases where Heff is approximately diagonal and energy levels are expressed in terms of
a pattern-forming rotational quantum number like J(J + 1), N(N + 1), R(R + 1). (Example in
next lecture for 2∏ and 2∑+ states.) 

* effects of accidental degeneracies — perturbations.
Angular Momenta 

R nuclear rotation

L e– orbital angular momentum

S e– spin


R + L + S 

 

J
 total angular momentum 
N angular momentum. exclusive of spin J − S = R + L 

J total electron angular momentum = L  + S a 
See H. Lefebvre-Brion/R. W. Field, pages 72-81.


All angular momenta can be defined by their commutation rules.
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⎡⎣A i , A 
j 
⎤⎦ = +i∑ εijk A k


k 
εijk	 +1 for x, y, z in cyclic order


–1 for non-cyclic


0 repeated coordinator


Above is a “normal” Commutation Rule which is applicable for all SPACE components of J , L , S , R , 
N , J a  and all body components of L , S (but not J, R, N ) .


involve rotation 

of body 

Trivial matter to derive properties of eigenbasis |A α MA〉 under operation by A 2, A 
i, A 

± from 
commutation rule. 

A
2

AαMA = 2A(A + 1) AαMA 

= α AαMA


A Z AαMA


A z AαMA 

= MA AαMA 

A 
± ≡ A x ± iA y  and A ± 

≡ A X ± iA Y  (up for upper case) 

=  [A(A +1) −α(α ±1) ]1/2 Aα ±1MAA± AαMA 

A
± 

A 
+ “raises” α	 A “lowers” α– 

=  [A(A +1) − MA (MA ±1) ]1/2 AαMA ±1AαMA 

A + “raises” ΜΑ 



5.80 Lecture #14 Fall, 2008 Page 3 of 7 pages 

This is all you need to know for rotation of diatomic molecules 

EXCEPT 

Anomalous commutation rule ⎡⎣A i ,A j ⎤⎦ = −i∑ εijk A k  applies only to BODY components of J , R , N . 
k 

The only difference is 

= + [A(A +1) −α(α  1) ]1/2 A α  1 MAA± AαMA 

A 
+ acts as a “lowering” operator rather than as raising operator. 

Now, suppose we want to evaluate what other angular momenta than A  do to |A α MA〉 basis functions. 

We classify these other operators as vectors or scalars with respect to A  by similar commutation rules. 
The Wigner-Eckart Theorem will eventually tell us how to evaluate the effect of B  (some other operator 
classified by its commutation rule with respect to A ) on |A α MA〉. 

A scalar is defined as ⎡⎣S,A i ⎤⎦ = ⎡⎣S,A 
± ⎤⎦ = 0  all i, I and S |A α MA〉 = sA |A α MA〉. 

A normal vector (with respect to A ) is defined as 

⎡⎣A 
i ,V j ⎤⎦ = +i∑ ε ijkVk 

k 

It happens that 
⎡⎣L 

i ,S j ⎤⎦ = ⎡⎣L 
I ,S J ⎤⎦ = 0 L , S  operate on different coordinates and are

scalar operators with respect to each other 
and all angular momenta obey normal vector operator commutation rules with respect to J  for space
fixed components. 

⎡⎣J I ,A 
J 
⎤⎦ = i∑εIJK AK 

J  generates rotations in lab frame 
k 

and all angular momenta obey anomalous vector operator commutation rules with respect to R  for body
fixed components. 

⎡⎣R 
i ,A 

j 
⎤⎦ = –i∑εijk Ak 

R  generates rotations in body frame. 
k 

This has convenient effect that ⎡⎣J i ,L j ⎤⎦ = ⎡⎣J i ,S j ⎤⎦ = 0  because J = R + L + S . See this in example. 
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E.g. 
⎡⎣J i ,L j⎤⎦ = ⎡⎣R i ,L j⎤⎦+ ⎡⎣L i ,L j ⎤⎦+ ⎡⎣S i ,L j⎤⎦ 

–iεijkLk +iεijkLk = 0 

which means that J  acts as a scalar operator with respect to
electronic 

|n L Λ S ∑〉 so we can factor ψ into 
⊗ vibration ⊗ rotation factors! 

So we can write a convenient basis set. 

or index fully “uncoupled” basis set in body 

|

vibration

v〉 |nL Λ〉|S∑〉 |ΩJM〉 very convenient for body fixed matrix elements 

electronic rotation 

configuration Case (a)

Now we can work out matrix elements of B(R) R 2 in this case(a) basis set. 

v B(R) v ≡ Bv 
2 

to cancel the 2 from all 
angular momentum matrix
elements 

(Note 〈v|B(R)|v′〉 = Bvv′ ≠ 0)
We will see these again when we use J = 0
potential energy curve to derive centrifugal
distortion effects. 


R J= 


 






 – L


 
– S

R 

Evidently So R z ≡ 0 
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R 2 
= R·R = R 2x + R 2y = (J x − L x − S x )

2 

+ (J y − L y − S y )2 

= (Jx2 + Jy
2 ) + (L2x + L2y ) + (Sx2 + Sy

2 ) 
–2(JxLx + JyLy) 

No need to be careful of order of 
operators because body components of –2(JxSx + JySy) L  and S  commute with each other and 
with those of J . 

+2(LxSx + LySy) 
Now for some convenient simplifications. 

Ax
2 + Ay

2 = A2 − Az
2 

2 A( xBx + AyBy ) = (A+B− + A−B+ ) confirm for yourself 

Thus	 R 2 
= (J2 − J2

z ) + (L2 − L2
z ) + (S2 − S2

z ) diagonal part 
plus off-diagonal terms below. 

selection rules 
L–uncoupling term –(J+L– + J–L+) ∆Ω = ∆Λ = ±1 
S–uncoupling term –(J+S– + J–S+) ∆Ω = ∆Σ = ±1 
Rotation-electronic term +(L+S– + L–S+) ∆Λ = –∆Σ = ±1 (∆Ω = 0) 

So we are almost ready to set up Heff. However L is not a well defined quantity. 

Non-Lecture: Stark effect in atoms 
∆  = ±1 

+ ↔ – 

∆ ML = ∆ λ = 0 
Electric field (axially symmetric) of atom B mixes L’s in atom A 
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ψA =∑ anL nLAMA
L

nL

 

nL HanL ~ n′L′


Eo
nL − Eo

n′L ′

typically 105 cm–1

for 1e– at 1Å

typically 104 cm–1 for
different nL states of atom

* LA destroyed
* MA

L  preserved
* L2 and L± matrix elements not explicitly defined (become perturbation parameter)
* L2 and L± and Lz selection rules on Λ are preserved!
* (L2 −L2z ) ≡ L2⊥ treated as a constant

* 
 
v,n Λ  S ∑ BL+ v′,n′ Λ −1 S ∑ ≡ Bv′vβ  or βvv′ perturbation parameter.

Matrix elements of H
ROT

B(R)R
2

 
=

1. Diagonal part (in v, n, Λ, S, ∑, J, Ω, M)

B(R)⎡(J2 − J2⎣ z ) + (L2 ) + (S2 − S2
⊥ z )⎤⎦

B ⎡
v ⎣J(J +1)−Ω2 + L2

⊥ +S(S+1)−∑2⎤⎦

include BvL
2

in T
⊥

e + G(v)

2S+12. Within a Λ multiplet state.

The splitting of Ω-components within an S ≠ 0 state is
due to  H

SO
 and is usually small relative to splittings

between different nΛ states.  HSO gives “fine structure”.

Spin-uncoupling term — will destroy ∑, Ω provided that EoΩ −EoΩ±1  is small.



5.80 Lecture #14 Fall, 2008 Page 7 of 7 pages 

−B(R) J+[ S− + J−S+ ]

−(BV / 

2 ) ∑ ±1 Ω ± 1 J S H ROT 
∑ΩJS
 = −Bv [J(J + 1) − (Ω ± 1)Ω]1/2 [S(S + 1) − (∑ ±1)∑]1/2 

notice Ω′Ω, ∑′∑ 

Above matrix element is ≈ proportional to J, so at high J H ROT  will always overwhelm 
o∆ EΩ,Ω±1 ∑ and Ω are destroyed, thus spin “uncouples from body frame”. 

3. Between two electronic states ∆S = 0, ∆∑ = 0, ∆Λ = ∆Ω = ±1 

“L-Uncoupling” (even though L is already destroyed) destroys Λ and Ω. 

−(B(R) 2 )[J + L 
− + J− L 

+ ] 

2 ⎤⎦ (   − ⎡⎣ vΛ ±1 B(R) vΛ n′ Λ ± 1 S ∑ J Ω ± 1 J+ L− + J− L+ ) n Λ S ∑ J Ω


−BvΛ±1vΛ 
[J(J + 1) − (Ω ± 1)Ω]1/2
 n′Λ ± 1 L± nΛ  



β(n′Λ′,nΛ) 

−BvΛ±1vΛβ(n′Λ′,nΛ) ≡ β 

an unknown perturbation parameter to be determined directly from spectrum
4. Between two electronic states ∆Ω = 0 ∆Λ = –∆∑ = ±1 

+β[S(S + 1) – ∑(∑ ± 1)]1/2 

same β as above in #3 for L-uncoupling 


