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5.80 Lecture #15

Last Time:

Fall, 2008
Lecture #15: *[] and %Y Matrices

effect of A%, A, A+ on JA 0. M,) basis set
In(L) A S 3) [v) |QIM)
L-destroyed, but not A: I;, 1:1, selection rules

~ ROT
H

case (a) basis set

=B(R)R* matrix elements

<v’ (imlA"* " Tnas 2>‘v>
XBJU+1)—Q+SES+1)-32+ 1]

Diagonal: <n’A’S’Z’

AQ =AY = #1 within A-S multiplet state (S-uncoupling):

<nASZi1 <V‘<Qi lJM‘ﬁROT‘nASZ>‘V>
(T +DX]"
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*#%% In some of my handouts I call J + 1/2 = x. Here, I'll call it y *###*

Here x=JJ +1),y=J+1/2

For example: Start by listing all relevant basis states.

A S

z

QJM> = BJJ+1)—(Q= Q]SS + 1) -

QIM > = 8,1,0,40559550,, 00 adr By

1 |n 1 1/2 1/2> 1,
|n 1 1/2 _1/2> 21—[1/2
|n -1 172 _1/2> 21-[73/2
|n -1 172 1/2> L,
~ROT
(21‘[): 2H3,2 X—943-1 _[X_%]I/Z[%_i_%]l/z 0 2551:—“21 0
B” x 11, sym x—di43-1 @/ + 0
v 21-[71/2 0 0 X—%+%—%—[x %]1/2 1
2Hf3/2 0 0 sym x—243-1
x-1 (X_%)uz 0 0
B sym x+% 0 0
17 0 - (X_%)uz
0 0 sym  x—7

Two identical blocks for Q >0 and Q < 0 - later we will consider parity basis.

What about 3*? Class should do this.



5.80 Lecture #15 Fall, 2008 Page 2 of 6 pages

frnsise

AQ = AA = %1 between A-S multiplet states (L-uncoupling)

QJM> =-B,,JJ + 1) - (Q DQ]" x (nA+1[L,|nA)
L B ]

a perturbation parameter to be determined by a fit to the spectrum. T

\4 <Q + lJM‘fIROT‘nAS Z>‘V>

~50 ~ss ~sr |effective operators
Today: H  H  H

matrix elements
Matrix elements of [, *Y effective H.

spin-orbit a(r)l, s, —a3=0 _forAS=0 AT .S (restricted validity operator replacement)
only y p p
~SS
spin-spin H =850 = k[SSZ - ]+ another termAY, =—AA =12

only

spin-rotation H :yﬁé

usually A, y are very small with respect to A and are dominated by second-order spin-orbit effects (thru
van Vleck transformation)—discussed later

~ SO
H is very important

H :2 a(r)0. 5, not 2 az
|

i |
~~lelectron (not

component)

m’>

i
)

2i,§i are vectors with respect to ] > @i@i is scalar (AJ = AM = AQ = 0) with respect to J.

s, is vector with respectto S — @réi is vector with respect to S > AS=0,+1,AY =0, +1

. . t'
Flne point!
/.-s, does not operate on|QIM), only on[nASY); it is therefore NOT INDEPENDENT of Q because, as
vector with respect to L and S, its matrix elements are not independent of A and .




5.80 Lecture #15 Fall, 2008 Page 3 of 6 pages

Selection rules (ASSERTED) Al=0
AQ =0
+ <5 — (LAB INVERSION 1) (parity)
g <5 u (body inversion i)
X" 3¥ (o)
AS =0, x1
AY =-AA =0, =1

~ SO
H is a one-electron operator, so it has non-zero matrix elements only between electronic

configurations differing by a single spin-orbital. (e.g.  orbital = la, 1P, —1c, —1P spin-orbitals)

Special simplification (due to simple form of Wigner-Eckart Theorem). If B is vector with respect to
A , then AB = 0 matrix elements of a vector operator (ﬁ) with respect to angular momentum (K ) may

be evaluated by replacing B by b A (where b is a constant, often called a reduced matrix element)!

a(r,) i is vector with respect to L

8, is vector with respect to S

For AL =0, AS = 0 matrix elements Za(ri)z i, — ALS (limited validity operator replacement)

~ SO 1
H =ALS + 5(L+S_ +L_S,)

E.g., for ]

<2Ht3/2‘ﬁs ‘2H+%/2> (+1)( Zj %

o P L

all AQ # 0 matrix elements are = 0.

~SS

H 2503875 %xbzz _S(S+1)]+ additional term
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Selection rules AS =0

AS=0 [also +1, £2 neglected here]
AY =0 [also AY = —-AA = £2 (A-doubling in T, neglected here)]

we already know how to
deal with all three of these!

H

Now we are ready to set up full ’[], >>* matrix. Start with all matrix elements of *[],, and then *[],,, and
then 2y, etc.

~ elect ~ vib ~ROT ~ SO ~SS ~ SR

<V’n’2H3/2ﬁ:H +H +H +H +H +H ‘H,2H3/2,V>=

BX-S(S+1) |
2 1Y 3 31 .1 3
T. (0’ [1)+G(vy )+ A  (11/2)+ =4 3-(_j —= |+ (—-——1-———)
(0TI +G(vn ) + A 3 o) Ta)TIm 3T Ty
always = 0 for
Q> +§*-Y? S = 1/2 states!
9 3 1 1 1 7
+B. |[JJ+1)—-=—+=——+ =E._+—A,——vy4+B. [JJ+1)——
VH{( )444@} w Ty ATy VH(( )4)

include with T,
+Gin B,

y=J + 1/2, thus y is an integer since J is half-integer for °[] and °3.

Get same results for <2 I1,, a2 I, /2> .

- 11
(e, A, =E, > An —EYH+BVH[J(J+1)+1/4}

yZ
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Get same results for <2 I1,, 2 H_1/2> .

<221/2|ﬁ|221/2>=<22—1/2 |ﬁ|22—1/2>:Evz _AZO%_%YZ+BV2[J(J+1)_1/4+3/4_1/4:|

y2

T always for 3-states

[ASIDE: we have two explicit cases where, by evaluation of matrix elements, we see that
<AZQ|ﬁ|AZQ> = <—A —Z—Q|ﬁ| -A- Z—Q> . But be careful, this is not true for
(NIAA) = (—A’H

H| - A> ! Non-automatically-evaluable matrix elements.]

Off-Diagonal Matrix Elements
Always ask what operator do we need to get non-zero matrix element between specified basis states?

l(J+s_ +J_S,)

2 1/2 172 1/2
<2H3/2 |H|2H1/2> <2H -3/2 |H|2H 1/2> A“ +|:%(X_%) :|YH _an |:X_l§:| [E_l(_l)}

AQ =0 [y*— 11" 1
(°11,,MA°11,,)=0 AQ =2
(*11,,/0°11,,)=0 AQ =3

@31

(*I1,,H2 %, ) = <VH‘B(R)‘VZ) JA+H=>2 | (eI n'S)

=B, g

(°11,,/0°3 ,,)=0 AQ=2

all done with [T,

(°1,, | 1.,,)=0 AQ=2
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2 O+
VZ 1/2>

<2 I1,, |ﬁ| ? Z1/2> = <V1‘[ ’ I1,, l:%A + B(R):|L+S—

=[s(s+1)-3, Zz]”zkn |Vz><nH‘§L+ n’Zj>+]€vm (nIIL, nzﬂ
- l[avnvz +BVHV2:| \0( \B[
N (1 1/2
<2 l_[1/2 |H| ’ Z—1/2> = _BVHVZ JA+1)— 5 _5 <nH|L+ n,2>
-

~"
= _BVH Vy y }’2

all done with ],

2 -~y _ 1 11" 3 1 N1
(%, H2,,)=-B,_|1q +1>—5(‘5) [Z‘E(‘Eﬂ

o /

y?
=-B,y

all done with >3, ,.

Are we done? Not quite. Must worry about *>* ~ *[] ,, and *3* ~ ’[]_,,, matrix elements. What
happens to the ([T|L,|>) unevaluable factor? Need to consider effects of G,(xz) reflections and X*, >~
symmetry in order to get the correct relative signs of off-diagonal matrix elements.



