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Lecture #17: Hund’s Cases: 2∏, 2∑± Examples 

4 ways to think about Hund’s Cases: 

1.	 Pattern forming quantum numbers. A search for 1∑+-like rotational level pattern 

BJ(J + 1) cases a and c 

BN(N + 1) case b 

Repeated 1∑-like patterns as in 3∏ state. 

o*** 2.	 Heff and Perturbation Theory. When is H12 ′  ∆ E12 and vice versa? 

3.	 Vector precession models. How do the various angular momenta project into the body
and laboratory? What gets averaged out and what does not as vectors precess? Are 
various angular momenta components expected to be conserved? 

4.	 Basis set transformations (like |JMLS〉↔|LML〉|SMS〉 for atoms) 3j, 6j, 9j transformation 
coefficients. Alternate form of H  example: H ROT [  − L]2 .= B(R) N

We are going to look at the 2∏, 2∑+ matrix and use perturbation theory to identify and describe each of 
the Hund’s limiting cases. 

Exclude γ 

⎝⎜
⎛
f
e 
⎠⎟
⎞ 

2∏3/2 

2∏1/2 

2∑+ 

y = J + 1/2 Treat 2∏, 2∑+ together because they could form “p-complex”. 

2∏3/2 
2∏1/2 

2∑+ 

E∏ + A∏/2 + B∏(y2 – 2) –B∏(y2 – 1)1/2 –β(y2 – 1)1/2 

sym E∏ – A∏/2 + B∏y2 α + β(1  y) 

sym sym E∑ + B∑(y2 
 y) 

⎡∆ E∏ 
o = A∏ − 2B∏Crucial Energy Denominators:	 ⎢ 
= ∏3/2 −∏1/2 (spin-orbit) 

⎢∆ E∏−∑ 
o = E∏ − E∑⎣ 

vs. 

pπ pσ 

A B BA 
“ligand field”
(also exchange splittings) for 2e– 

configurations 
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Crucial Coupling Terms −BJ± S ⇒−B∏ (y2 −1)1/2  (spin-uncoupling) 

−BJ± L ⇒ −β (y2 −1)1/2  (-uncoupling) 

H
SO 

⇒α  (spin-orbit) 

Case (a) Strong spin-orbit, stronger non-spherical field 

∆E∏∑   A,α   By, βy 

Ω, Λ, S good |nΛS∑〉 |ΩJM〉
 patterns BJ(J + 1) one for each Ω, separated in energy by AΛ 

Case (b) Weak spin-orbit, strong field 

∆E∏∑   By, βy   A,α 

Λ,S good, ∑,Ω bad |nΛSNJM〉
 patterns BN(N + 1) - with fine structure splittings 

Case (c) Strongest spin-orbit, moderate field 

A,α  ∆E∏∑   By, βy 

Ω good, N, S, Λ, ∑ bad |nΩJM〉 (Ja and Ωa atom-in-molecule 
quantum numbers) 

isolated BJ(J + 1) patterns
[A,α can also be large with respect to ∆G(1/2). Relativistic adiabatic potential curves] 

Case (d) weak spin-orbit, weak field 

By, βy   A,α ≈ ∆E∏∑ 

, S, R good, Λ, ∑, N, Ω bad |nSRM〉
BR(R + 1) 

Case (e) Strong spin-orbit, weak field 

A,α   By, βy  ∆E∏∑ 
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Now let us examine 2∏, 2∑+ blocks separately near the case (a) limit. 

o∆ E∏3/2 ∏1/2 
= A∏ − 2B∏  H′ 3/2,1/2 = B∏ (y2 −1)1/2 

≈ B∏J 

In this case we have two independent sub-states: 
J(J + 1) 

∏ o J(J +1)+ 
B2 (EvJΩ = EvΩ + Bv∏ Eo

vΩ − Eo
vΩ′ 

2 2nd order correction. 
eff B∏ Acts like correction B3/2 = B∏ + 

A − 2B to BJ(J + 1). 

y2 −1) 

2∏ slope B+ 
B2 

E∏ + A/2 – 2B A − 2B 

E – B∏J(J + 1) 

E∏ 

E∏ – A/2 slope B− 
B2 

A − 2B 

J(J + 1) 

2∏3/2 and 2∏1/2 appear to be two completely separate substates with identical ∆G and similar Bv values. 
1∑+-like quantum number is J. 

At high-J, H′ 12 > ∆E° therefore must diagonalize 2 × 2 → case b. LATER 

Vector Coupling picture 

L precesses about z (unit vector k̂ ) to define Λ (all of L does not get averaged to zero) 

Λ provides a unique body-fixed direction for S to couple to! S can’t see k̂  without Λ to mark it! 

S precesses about z to define ∑. 

Λ + ∑ = Ω (because R ⊥ k̂  hence it makes no contribution to projection of J on z-axis) 
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Ωk̂ + R = Ĵ

Ω 

JR 


R, Ω k̂  have non-zero projections on J and precess about J . 

Since J projects into laboratory, the precession of Ω,R about J carries information about Ω,R into
laboratory. 

At high J, BJ±S causes S to couple to a direction other than body k̂ . S begins to precess about J 
rather than k̂  and ∑ is no longer defined (transition to case (b)). J has well defined projnection
in laboratory. Therefore S also has well defined lab projection. S has decoupled from body
frame. MJ and MS. Zeeman effect explained by vector model. 

Case (b) limit 

A – 2B = 0 (or |A – 2B|   BJ) 

S can’t find z-axis because coupling mechanism (HSO) is turned off. 

Look at 2∏ matrix for A = 2B 

( −B y2 −12 ∏3/2 ⎜
⎛E + B y2 −1) ( )1/2 

⎟
⎞ 

(trivial to diagonalize)
2 ∏1/2 ⎝

⎜ sym ( ⎟E + B y2 −1)⎠ 
Let (y2 – 1)1/2 = z. 

eff ⎜
⎛E + Bz2 + Bz 0 ⎟

⎞ 
H∏ = ⎜ 0 E + Bz2 − Bz⎟⎝ ⎠ 

⎛E + Bz(z +1) 0 ⎞ 
= ⎜ ⎟ 
⎝ 0 E + Bz(z −1) ⎠ 

What is z? It is the new pattern forming quantum number. Note that two states follow 
Bm(m + 1) where m’s change in steps of 1. 

y = J + 1/2 (integer if J is half-integer)

z = (y2 – 1)1/2 = (J2 + J + 1/4 – 1)1/2 ≈ J + 1/2 at high J.


Let’s look at the diagonal Heff in this case b limit: 
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N = J + 1/2 

⎛E + BN(N +1)	 0 ⎞ 
= ⎜	 ⎟

⎝ 0	 E + BN (′ N′+1) ⎠ 

N′ = J – 1/2 

N = J + 1/2 

J
2∏3/2
2∏1/2


N = J – 1/2 

This is the same pattern that always is found in 2∑+ state. 

N = J + 1/2 

N = J – 1/2 

J 

e 

f 

– 

+ 

2∑+
⎝⎛ ⎠⎞
e 
f E∑ + By(y  1) 

2By = 2B(J + 1/2) 

+ 
e 

J – 1 

f – N = J – 3/2 

Get pairs of eigenvalues for each J separated by 2By. This is the rotational level separation for
BN(N + 1). 

Get each N split slightly into two J’s (fine structure). 

e⎛⎝
⎞⎠

⎛⎝

case (b)	 2∏
2∑+

E + BN(N + 1)
f 
e 
f⎞⎠
 E + BN(N + 1)


Near degenerate pairs have same N, different J, same parity, opposite e/f (e always above or always
below f). 2∏ looks like a 2∑+ plus a 2∑– state. 
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L precesses about z to form Λ (usually Λ = 0).


S does not see Λ (therefore projections of S are quantized in lab, not body).


    
Λk̂ + R = N, S+ N = J 

S and N couple weakly by magnetic dipoles, therefore S is easily uncoupled from anything that carries
any information about body. Zeeman effect. 

Case (c) Super-Strong HSO (∆Ω = 0) 

α,A large with respect to ∆G, ∆E∏∑, ∆ES,S±1 

each Ω acts as a separate electronic state (distinct shapes of potential curves, especially when A >~ De and 
both Ω’s try to dissociate to same separated atom asymptote). 

Ω,J defined 
S,∑,Λ not defined, lose a lot of information 

Often have a hidden quantum number L + S = Ja atomic total angular momentum
Ja precesses about z to define Ω 
Ωk̂ + R


= J HROT = B(J – Ja)2 

Consider a p-complex in case (c) and let E∏ ≡ E∑ ≡ E 

〈p∏|L+|p∑〉 = 21/2, α = 21/2A/2 = 2–1/2A, and β = 21/2B 

⎝⎜
⎛e 
⎠⎟
⎞

f 
2∏3/2 

2∏1/2 
2∑+ 

2∏3/2 E + A/2 + B(y2 – 2) –B(y2 – 1)1/2 –21/2B(y2 – 1)1/2 

2∏1/2 E – A/2 + By2 2–1/2A + 21/2B(1  y) 

2∑+ E + B(y2 
 y) 

When A   Bx, must diagonalize 2 × 2 Ω = 1/2 sub-matrix. First subtract out center of gravity. 

E − A / 4 + By2 
 B(y / 2)+ ⎜⎜

⎛−A / 4 ± By / 2 2−1/2 A ⎟⎟
⎞ 
⎝⎜
⎛e 
⎠⎟
⎞ 

⎝ sym A / 4  By / 2⎠ 
f 

solve secular equation, eigenvalues are ≈ ± 3/4A when A  Bx ≈ By2 (thus A  By) 
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Get atom-like energy level patterns 

2∏3/2 E + A/2 + B(y2 – 2) 

2∏1/2 ~ 2∑+ E + A/2 + B(y2 
 y/2) 

2∑+ ~ 2∏1/2 E – A + B(y2 
 y/2) Ja = 1/2 (Ωa = 1/2 component only) 

J(J + 1) 

Ω-doubling 

Ja = 3/2 (Ωa = 3/2 and 1/2 components) 

Lande Interval Rule for atomic spin-orbit
(EJ – EJ–1 = AJ) 

(large A prevents Ω = 1/2 and Ω = 3/2 mixing). (Large spin-orbit destroys Λ.)


Case (d)


Consider a p-complex again, now in case (d) and let A = 0 β = 21/2B E∏ = E∑ = E


2∏3/2 
2∏1/2 

2∑+ 

⎝⎜
⎛
f
e 
⎠⎟
⎞ 

E + B(y2 – 2) –B(y2 – 1)1/2 –21/2B(y2 – 1)1/22∏3/2


2∏1/2
 E + By2 21/2B(1  y) 

2∑+ E + By(y  1) 

Simplify by first transforming 2∏ block to case (b). 

ψ± = 2−1/2 [ 3 / 2 ± 1 / 2 ]  (± is NOT parity) 
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∆J = 0 matrix elements: 

(

= E + Bz(z  1) z ≡ (y2 − 1)1/2 

≈ y


ψ± H ψ


= E + B y( 2 − 1)  B y2 − 1)1/2 
ψ± H ψ± 

= −B 

+ 

+ 
e 
⎛ E + Bz(z − 1) −B −2By ⎞


− ⎜
⎜ −B E + Bz(z + 1) 0 ⎟

⎟

∑⎝ E + By(y − 1) ⎠


= −B ⎡⎣(y2 − 1)1/2 
± (y − 1) ⎦

⎤ ≈ −B(y ± y)     (zero for −) 

ψ± H ∑f 
+ 

ψ± H ∑e 

≈ −B(y  y) (zero for +) 

+ 
f
⎛ E + Bz(z − 1) −B 0 ⎞ 

− ⎜
⎜ −B E + Bz(z + 1) −2By ⎟

⎟ 
∑⎝ E + By(y + 1) ⎠ 
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Get groupings of same-R levels as follows. 

R + 1 J + 3/2 f 
e R Result of strong
f R – 1 J + 1/2 e

eR 
level repulsion 

R + 1 J – 1/2 f
f

R 
eR – 1 J – 3/2 

N = R = case (d) pattern 
(same R levels)
[total parity is (–1)R+1]

Can you draw correlation diagram?
case(c) case(b) case(d) 

For Rydberg states 

N = N+ + R (N+ is same as R) 

N is good quantum number (because spin-orbit is negligibly small) but N+ is pattern-forming. We can 
determine N from “stacked plots”, viewing same energy region from different, known-N intermediate
levels. How do we determine N+ (and R) from patterns in the spectrum? 

N = N+ + R (R is projection of  on R ≡ N+ here) 

E(N+ ) = BN+ (N+ + 1) = B⎡⎣(N − R )(N − R + 1)⎤⎦ 
= B⎡⎣N(N + 1) − 2NR + 2R − R ⎤⎦ 

Know N from spectroscopic selection rules. Know B from ion-core B-value.


Plot E – BN(N + 1) vs. N. Get straight line plot of slope –2BR. Knowing N and R, know N+.



