
MIT OpenCourseWare 
http://ocw.mit.edu 

5.80 Small-Molecule Spectroscopy and Dynamics 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


� � 

� � 

� � 

Lecture # 19 Supplement 

Second-Order Effects:

Centrifugal Distortion and Λ–Doubling


Centrifugal distortion originates from vibration-rotation interactions. In other words, it results from the 
fact that the rotational constant B isn’t a constant at all but rather a function of r and as a result can 
have matrix elements off-diagonal in v. Since differences between vibrational energy levels are much 
larger than differences between rotational energy levels, it is appropriate to introduce corrections to the 
rotational Hamiltonian matrix elements by second-order perturbation theory involving summations over 
vibrational levels of the form: 

D ≡ 
� �v|B(r)|v�� �v�|B(r)|v�

. (1)
Ev − Ev�v��v 

We must now examine our rotational Hamiltonian matrix to obtain the precise centrifugal distortion cor­
rections appropriate to each of the matrix elements. The simple minded prescription: “Replace B(r) by 
B(v) − D(v)J(J + 1) wherever B(r) occurs” will be shown to be incorrect. We will use the 2Π, 2Σ Hamilto­
nian again as an example. 

First consider corrections to the 2Π1/2|H|2Π1/2 matrix element. The relevant matrix elements 
off-diagonal in v (but diagonal in |Λ| and S) are 

� 
v, 2Π±1/2|B(r)R2|v�, 2Π1

±
/2� 

v, 2Π±1/2|B(r)R2|v�, 2Π±3/2 . (2) 

Since our basis functions are actually product functions, and since B(r) only operates on v� and R2 only 
operates on 

���Π
Ω
±
� 
, we can factor these matrix elements. 

|

�v|B(r)|v�� � 
2Π±1/2|R

2|2Π±1/2�

�v|B(r)|v�� 2Π1

±
/2|R

2|2Π3
±
/2 . (3)
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�2

The second order correction to 2Π1/2, v|B(r)R2|2Π1/2, v is therefore 

2Π±1/2

�� �2 
�v|B(r)|v��2 2Π1

±
/2|R

2|2Π1
±
/2 + 

G(v) − G(v�)
v� 

|R2

Π3/2 

3/2|2Π±

�2

E(2) 
1/2,1/2 =
 (4)
.


Rewrite (4) using the definition of D,
 �� �2 
E(2) 

1/2,1/2 = −D
 2 2Π±1/2 R2 2 2Π1/2 R2Π±1/2 (5)
|
 |
 |
 |
+
 .


The first matrix element is the coefficient of B(v) in equation (27) of the previous handout and the second 
matrix element is the coefficient in (28), thus 

E1
(2) 
/2,1/2 = −D 

⎡⎢⎢⎢⎢⎣
 J +

1

2


�4 

+


⎡⎢⎢⎢⎢⎣
 J +

1

2


�2 

− 1

⎤⎥⎥⎥⎥⎦⎤⎥⎥⎥⎥⎦ .
 (6)


Similar arguments give the centrifugal distortion corrections to the other diagonal matrix elements. For
2Π3/2|H|2Π3/2 we get ⎧⎪⎪⎨⎪⎪⎩


⎡⎢⎢⎢⎢⎣
 ⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

.
 (7)
− 2


⎤⎥⎥⎥⎥⎦
2 

+


⎡⎢⎢⎢⎢⎣
�2 �21
 1

E(2) 

3/2,3/2 = −D J +
 J +
 − 1

2
 2


For 2Σ+±|H|2Σ+± we get ⎧⎪⎪⎨⎪⎪⎩


⎫⎪⎪⎬⎪⎪⎭


�2 2 
1
 1


2

E(2) 
ΣΣ+ � (−1)J+S = −D
 J +
 J +
 . (8)
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Similarly
 ⎧⎪⎪⎨⎪⎪⎩


⎫⎪⎪⎬⎪⎪⎭


�2 2 
1
 1


2

E(2) 
ΣΣ− ± (−1)J+S = −D
 J +
 J +
 . (8a)
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All that is left now is corrections to off-diagonal matrix elements. The only off-diagonal matrix 
element for which a centrifugal distortion correction is necessary is 2Π1/2|H|2Π3/2 . The second order 
correction is 

�v|B(r)
1

|v��2 

E(2) 
= 1/2,3/2 [G1/2(v) + G3/2(v)] − [G1/2(v�) + G3/2(v�)]

× 
v� 2 2�� � � 

1 � � ��

2Π1/2|R2|2Π3/2

2Π3/2|R2|2Π3/2 + 2Π1/2|R2|2Π1/2
2Π1/2|R2|2Π3/2 . (9) 

Note that the energy denominator of (9) is more complicated than in equation (4), but if the spin-orbit 
constant AΠ is independent of v, then the energy denominator reduces to G(v) − G(v�). It is possible to 
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choose this symmetric form for the energy denominator because G3/2(v) − G1/2(v) ≡ A(v) and typically 
A(v)| � G(v) − G(v − 1) ≡ ΔG v − 1

2 . Notice that a truncated power series explanation gives|


1 1 A 
. 

ΔG(v) + A 
≈ 
ΔG(v)

1 − 
ΔG(v) 

E1
(2) 
/2,3/2 = +D 

⎡⎢⎢⎢⎢⎣
 J +

1

2


�2 

− 1

⎤⎥⎥⎥⎥⎦
1/2 ⎡⎢⎢⎢⎢⎣
2 J +


1

2


�2 

− 2

⎤⎥⎥⎥⎥⎦
 (10)


A diagrammatic approach to these second-order corrections makes their derivation mechanical and 
easily understood. 

1. Write down two basis functions on opposite sides of a piece of paper. The second-order corrections 
to their matrix element of H is to be obtained. 

2. Inspect the matrix elements of H of the left-hand function with all other basis functions and list in 
the middle of the page those other basis functions which have non-zero matrix elements with the 
left-hand function. 

3. Draw lines connecting these middle basis functions with the left-hand functions and write above 
each line the actual matrix element. 

4. Examine the Hamiltonian matrix elements of the right-hand function with the middle basis func­
tions. For each non-zero element draw a connecting line and write the matrix element over it. 

5. Inspect the completed diagram for all continuous paths from left to right. The second-order correc­
tions are simply products of the matrix elements above the connecting lines divided by an energy 
denominator of the form 

1
(Eleft + Eright) − Emiddle(v�). (11)

2
I will now use this diagrammatic method to obtain the second-order matrix elements responsible for 
the lambda doubling in 2Π states. 

All electronic states with |Λ| > 0 have pairs of levels, one for each sign of Λ. These pairs of levels 
would be degenerate (exactly the same energy) if we did not consider second-order corrections to the 
Hamiltonian matrix. The energy separation between these pairs of levels which is introduced by second-
order effects is called the lambda doubling. A typical size for a lambda doubling is 10−4 cm−1 although 
lambda doublings 104 times larger or smaller than this are not uncommon. When one chooses a parity 
basis set, it turns out that the two components of a Λ doublet have opposite parity. It also turns out that 
the existence of a non-zero lambda doubling is due [with one exception: 3Π0 which is substantially due 
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to spin-spin matrix elements of α S2 
+ + S2 ] to second-order interactions of Π states with Σ states. The − 

physical reason for this is simple. Σ states have Λ = 0, thus second order matrix elements exist which 
connect basis functions (non-parity basis) with Λ > 0 to functions with Λ < 0. There is a second reason: Σ 

levels, unlike Π or Δ levels, do not come in nearly degenerate pairs with one member of each parity. Thus, 
since only levels of the same parity can interact (repel each other), only for Σ states can an imbalance exist 
in the repulsion of |Λ| > 0 opposite parity levels. 

We now construct the diagram for second order effects of 2Σ+ states on 2Π states. 
Let x ≡ J + 1

2 

−1 A + Bx2
2Π±

−1 A + Bx2 
2 2 

1/2 

−B[x2 − 1]1/2 −B[x2 − 1]1/22Π± 2Π±2Π±1/2 1/23/2 

1 1 
2 (AL+) + (BL+)[1 ± (−1)J+S x] 2Σ+± 2 (AL+) + (BL+)[1 ± (−1)J+S x] 

(12) 

We are only concerned with 2Σ states in the middle. The two upper paths gave us the centrifugal 
distortion corrections. The thorough student will notice that there are some second-order terms of the form 
A2 and AB that we have not considered (and will not). 

Thus 

� 1 (AL+)2 + (BL+)2 1 ± 2(−1)J+S x + x2 + (AL+)(BL+) 1 ± (−1)J+S x 
E(2) 4 

= . (13)1/2,1/2 EΠ − EΣ(v�)v� 

Since we are only interested in terms contributing to Λ–doubling, let us throw away all non-parity­
dependent terms. � ±(−1)J+S x[2(BL+)2 + (AL+)(BL+)]E(2)± 

= (14)1/2,1/2 EΠ − EΣ(v�)v� 

The purist will notice that EΣ(v�) has a parity dependence also but we will neglect this. 
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−B[x2 − 1]1/2 −B[x2 − 1]1/2 
2Π±1/2 

1 2 1 2 
2 A + B[x − 2] 2Π± 2 A + B[x − 2]2Π± 2Π±3/2 3/2 

−(BL+)[x2 − 1]1/2 −(BL+)[x2 − 1]1/2 
2Σ+± 

(15) 

E(2) 
= 

� (BL+)2(x2 − 1) 
(16)3/2,3/2 EΠ − EΣ(v�)v� 

thus E3
(2)
/2
± 
,3/2 = 0 (16a) 

−B[x2 − 1]1/2 −1 A + Bx2 
22Π±1/2 

1 A + B[x2 − 2] 2 − 1]1/22Π± 2Π±2 2Π±
−B[x

3/2 1/23/2 

−(BL+)[x2 − 1]1/2
2Σ+± 2

1 (AL+) + (BL+)[1 ± (−1)J+S x] 

(17) 

� −[x2 − 1]1/2 1 (AL+)(BL+) + (BL+)2 � (BL+)2(−1)J+S x[x2 − 1]1/2 

E(2) 2 
= (18)3/2,1/2 EΠ − EΣ(v�)v� � �(−1)J+S (BL+)2 x[x2 − 1]1/2 

E(2)± 
= (19)3/2,1/2 EΠ − EΣ(v�)v� 

Equations (14), (16a) and (19) contain all you need to reproduce the finest details of 2Π lambda doubling 
in terms of two unknown parameters. 
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β(ΠΣ) ≡ 
� 

v� 

(BL+)2 

EΠ − EΣ(v�) 

αβ(ΠΣ) ≡ 
� 

v� 

(AL+)(BL+) 
EΠ − EΣ(v�) 

(20a) 

(20b) 

E(2)±
1/2,1/2 = ±(−1)J+S x[2β(ΠΣ) + α(ΠΣ)] 

E(2)±
3/2,3/2 = 0 

E(2)±
3/2,1/2 = E(2)±

1/2,3/2 = �(−1)J+S x[x2 − 1]1/2β(ΠΣ) 

(21a) 

(21b) 

(21c) 

It’s really easy! 


