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Lecture #24 Supplement: Energy levels of a Rigid Rotor* 
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where a, b, c denote the directions of the three principal axes of inertia (fixed in the molecule), P  is the 
total angular momentum vector, with components Pa, Pb, Pc, and the labeling of the axes is chosen so that 

Ia < Ib < Ic, 

or 

A > B > C, 

in terms of the rotational constants 

A = 
8π
h
2Ia 
, B = 

8π
h
2Ib 

, C = 
8π
h
2Ic 

. 

The magnitude of the total angular momentum vector is quantized, and 

P2 = Pa
2 + Pb

2 + Pc
2 = J(J +1)2


J = 0,1,2,…


The orientation of P  with respect to a space fixed z-axis is also quantized. The projection of P  on this 
 z-axis can have only the values given by 

Pz = M 

where, for each given value of J, the “azimuthal quantum number” M takes on the 2J + 1 values 

M = J, J – 1, …, 0, …, –J. 

It is convenient to distinguish the following types of rotors: 

Moments of Inertia Symmetry Rotational Constants Examples
Ia = 0; Ib = Ic Linear A = ∞; B = C HCl, CO2 

Ia < Ib = Ic Prolate A > B = C CH3Cl, C2H6, Football
symmetric top 

Ia = Ib < Ic Oblate A = B > C CH3CF3, C6H6, Frisbee
symmetric top 

Ia = Ib = Ic Spherical top A = B = C CH4, SF6 

Ia < Ib < Ic Asymmetric top A > B > C H2O, C2H4 

* Professor Dudley Herschbach, Department of Chemistry, Harvard University 
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Symmetric Top Spectra 

For symmetric top molecules, the component of P  along the symmetry axis is also quantized, and takes
the values 

Ps = K h 

with K = J, J – 1, …, 0, …, –J; here s denotes the a-axis for prolate tops and the c-axis for oblate tops.
Thus the rotational energy of a symmetric top is given by 

Wr = BP2 + (A − B)Pa
2, prolate case 

= BP2 + (C – B)Pc
2, oblate case 

and the energy level patterns 
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Since the energy is independent of the sign of K, levels with the same absolute magnitude of K coincide,
so that all levels for which K is greater than zero are doubly degenerate, and there are only J + 1 distinct
energy values for each possible value of J. For each particular value of K, there is an infinite series of
levels with different values of J. These are identical in spacing with the linear molecule levels except
that the series must start with J = K rather than J = 0. 

For a symmetric top, the selection rules for J and M are identical to those for a linear molecule, namely: 

∆J = ± 1 

∆M = 0 for radiation polarized along the z direction 

∆M = ± 1 for radiation polarized along the x and/or y direction. 

The selection rule for K is 
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∆K = 0. 

A rigorous quantum mechanical derivation of these selection rules would involve evaluating the
transition integrals, 

µJMK;J′M′K ′ = ∫ ψ*
JMK µψJ′M′K ′dτ 

of the dipole moment operator µ between the wavefunctions of the initial and final rotational states, for
all possible transitions JMK → J′M′K′. (A simplified example is treated on page 75 of Brand and
Speakman.) 

However, an heuristic demonstration of the rules follows from simple semi-classical arguments. Thus,
when the electric field vector of the radiation is polarized in the z direction, the result that M cannot
change is easily understood: M measures the angular momentum about the z axis (in units of ), and
cannot change in this case because an electric vector in the z direction can exert no torque about the z
axis on the molecular dipole. Electric fields in the x or y direction, however, can exert a torque about
the z axis and then M can change by one unit when a photon is absorbed or emitted. The selection rule 
for the K quantum number of a symmetric top may be understood in a similar way. Because of the 
symmetry, there can be no component of the dipole moment perpendicular to the symmetry axis, and
hence no torque along this axis due to the electric field associated with radiation. Accordingly, the
angular momentum along the symmetry axis cannot change due to radiation, so ∆K = 0. 

Because of the above selection rules, the observable frequencies for a rigid symmetric top do not depend
on K or on the moment of inertia about the symmetry axis, but are given simply by 

ν = 2B(J + 1) 

for the J → J + 1 transition, just as for a linear rotor. 

This simple spectrum actually corresponds to that which would be predicted from the classical
mechanics of the rotation of a symmetric top, familiar from children’s toys: 

 
P Ps 

If the dissipative effects of friction were not present, the total angular momentum P  and its projections
Ps (on the top axis) and Pz (on a space fixed axis) would remain constant during the motion, which

consists of a combined rotation around the symmetry axis associated with Ps and a precession on this
axis around the total angular momentum vector P . 

 
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Asymmetric Top Spectra 

For an asymmetric top, the total angular momentum P  and its projection Pz on a space fixed axis remain
constants of the motion; accordingly, the corresponding quantum numbers J and M are “good” and can

be used to specify the state of the rotor. However, there is no longer any direction in the molecule along
which P  has a constant component and thus there is no axis fixed to the molecule that carries out a

simple rotation about P . The quantum number K is no longer a “good” quantum number and indeed
there is no set of convenient quantum numbers that can specify the state and also have simple physical

meaning. The usual means of specifying the energy levels is to give the value of J and the values of Ka
and Kc for the limiting prolate and limiting oblate symmetric tops. The energy levels in general have a
quite complicated functional dependence on J and Ka, Kc, but extensive numerical tables are now
available. The energy of a level designated by 

JKaKc 
would usually be written in the form 

h = 
A + C J(J +1) + 

A − CE (κ,Ka ,Kb )Wr 2 2 

where the quantity E(κ, Ka, Kb) is tabulated as a function of the asymmetry parameter 

κ = 
⎣⎢
⎡
B −⎜

⎝
⎛ A
2 
+ C 

⎠
⎟
⎞
⎦⎥
⎤ 

⎝
⎜
⎛ A
2 
− C 

⎠
⎟
⎞ 
. 

The limiting values are 

κ = –1, prolate symmetric top 

κ = +1, oblate symmetric top 

and the qualitative behavior of the asymmetric rotor levels is readily obtained by interpolating between
these limits, as shown in the following example with J = 4. 
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Oblate Kc 
Prolate Ka 

+1–1 0 
Asymmetry parameter κ 

The spectrum of an asymmetric rotor may be extremely complex in contrast to that of a symmetric top.
In addition to the irregular distribution of energy levels, the selection rules and transition probabilities
between these levels are complicated. In an asymmetric rotor the dipole moment may lie in any
arbitrary direction with respect to the principal axes of inertia, and this is one of the main sources of
complexity. The transitions can be conveniently classified according to which component of the dipole
moment makes them allowed: 

Transition Component Approximate Selection Rule
“a-type” µa ∆Ka = 0; ∆Kc = ±1 
“b-type” µb ∆Ka = ±1; ∆Kc = ±1 
“c-type” µc ∆Ka = ±1; ∆Kc = 0 

In all cases ∆J = 0, ±1 and ∆M = 0 (z polarization) or ±1 (x, y polarization), just as for any type of rotor.
[Although the ∆J = 0 situation was not mentioned earlier, it is allowed also for linear and symmetric
tops, but for them ∆J = 0 transitions are usually of no interest in rotational spectroscopy.] 

The transitions are further classified according to the change in J:
∆J = –1 P branch 
∆J = 0 Q branch
∆J = +1 R branch. 
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ENERGY LEVELS OF AN ASYMMETRIC ROTOR 
(Landau & Lifschitz, p. 383-389) 


2 

H = AJa
2 + BJb

2 + CJc
2 A = 

2Ia 
, etc. A > B >C Ia < Ib < Ic 

Spherical Top:
A = B = C 

( a2 2 + JC
2H = B J + Jb ) = BJ2, E = BJ(J +1) 

Prolate Symmetric Top:
A > B = C 
H = AJa

2 ( 2 ) = BJ2 + (A −B Ja
2+ B J2 − Ja 

)
 

>0 

E = BJ(J + 1) + (A – B)K2 

Oblate Symmetric Top:
A = B > C 
H = B J2 − Jc

2 ) + CJc
2

 Jc
2( = BJ2 + (C − B) 

<0 

E = BJ(J + 1) + (C – B)K2 

Asymmetric Top:
A > B > C 
H = AJa

2 + BJb
2 + CJc

2 

The H matrix will be diagonal in J, non-diagonal in K; will have 〈K|H|K〉 and 〈K|H|K ± 2〉 elements. We 
can choose among three representations: 

I: “Prolate representation”, Ja = K 
II: “Intermediate”, Jb = K 

III: “Oblate representation”, Jc = K 

e.g., in the prolate representation, we can write: 

H = 
B+ C (Ja

2 + J2
b + Jc

2 ) + ⎜
⎛A − 

B+ C ⎟⎞Ja
2 + 

B − C (Jb
2 − J2

c )2 ⎝ 2 ⎠
2  

All this diagonal in both J and K Diagonal in J,
off-diagonal
by ±2 in K 
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Thus, 

J,K H J,K = 
B+ C J(J +1) + 

⎛
⎜A − 

B+ C ⎟
⎞
K2 

2 ⎝ 2 ⎠

J,K H J,K ± 2 = 
B − C ⎡⎣{J(J +1) − K(K ±1)}{J(J +1) − (K ±1)(K ± 2) }⎤⎦

1/2 
.

4 
Returning to the general problem: 

it is conventional to define a reduced rotational energy as follows, 

H(A,B,C) = 
A + C J2 + 

A − C E(κ)
2 2 

where 
E(κ) = H(1,κ,−1) = Ja

2 + κJb
2 − Jc

2 

B − 
A + C 

κ = 2 =  asymmetry parameter →
−1 prolate case 

A − C +1 oblate case 
2 

We can set up E(κ) in any representation. For a given J, we will have a matrix of dimension 2J + 1, but
we can readily see that this can be factored into four submatrices, as a consequence of the following
relations: 

〈K|E|K〉  = 〈−K|E|−K〉
〈K|E|K ± 2〉  = 〈K ± 2|E|K〉  = 〈−K|E|−K + 2〉  = 〈−K+2|E|−K〉

e.g. J = 5 case 11 levels 
5 

⊗ 

3 

1 

–1 

–3

4

2 

0 

–2 

–4

⊗ 
Group into O (odd) and E (even)

⊗ 5 4⊗ 
3  2
 1  0

⊗ ⊗ –1  –2
 –3  –4Even levels are 

⊗ –5connected only ⊗ 

with even, odd
only with odd. 

–5 
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MATRIX ELEMENTS OF REDUCED ROTATIONAL ENERGY, E(κ) 

E(κ) = Ja
2 + κJb

2 − Jc
2 

( 2 ) + ( − J2y )= D J2 − Jz D J′ z
2 + D′′ Jx

2

〈J,K|E|J,K〉 = DJ(J + 1) + (D′ – D)K2 

〈J,K|E|J,K±2〉 = 
D
4
″ 

[{J(J + 1) – K(K ± 1)}{J(J + 1) – (K ± 1)(K ± 2)}]1/2 

I II III 

⎞ 

Prolate Representation Intermediate Representation Oblate Representation 
z → a, x → b, y → c z → b, x → c, y → a z → c, x → a, y → b 

Ka Kb Kc 

D 2
1
 (κ – 1) 0 2

1
 (κ + 1) 

D′ 1 κ –1 

D″ – 2
1 

(κ + 1) 1 2
1
 (κ – 1) 

⎛  

Factor further by Wang transformation: 

This is only for even κ 
⎜ 
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⎜ 
⎜ 
⎜ 
⎜
⎝ 

−1 0 1 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎠ 

−E22 

–1 1


–1 1

1 

2
X−1E(κ)X where X = X−1 = 2 
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E00 2E02 0  

2E02 E22 E24 

0 E24 E44 

  
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Thus, E(κ) factors into four blocks: 

E+


E−


E+ 

O+


O−


E11 ±E11 E13 0 E22 E24 0  

O± E13 E33 E35 E− E24 E44 E46= = 
0 E35 E55 0 E46 E66 

    

We can solve by continued fraction expansion. E.g. consider the E+ block for J = 2 or J = 3. 

) 

1 
2E02 

E00 − λ 
0

E00 − λ 2E02 0


2E02 E22 − λ E24 = 0 = (E00 − λ 2E02 E22 − λ E24


0 E24 E44 − λ
 0 E24 E44 − λ 

1 
2E02 

E00 − λ 
0 

2E02
2 

So (E00 − λ) 
E22 − λ − 

E00 − λ 
E24= (E00 − λ) 0 E22 − λ 

2E02
2 

E24E00 − λ 
E24 E44 − λ0 E24 E44 − λ 

Similarly, we get 

E00 − λ) E44 − λ)
⎡
E22 − λ − 

2E02
2 

− 
E24

2 ⎤
⎥ = 0( ( ⎢

⎣ E00 − λ E44 − λ ⎦
 

λ=E22 − 
2E02

2 2 
− 

E24 iterate
E00 −λ E44 −λ

In the same way, we get 

λ = E00 − 
2E02

2 

2 and λ = E44 − 
E24
2 

2 

E22 − λ − 
E24 E22 − λ − 

2E02 

E44 − λ… E00 − λ… 


