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Lecture #27: Polyatomic Vibrations III: s-Vectors and H2O 
Last time: 

F-matrix: too many Fij’s even at quadratic-only level 

Internal coordinates:	 types

3N–6 independent ones

constraints * translation


* rotation

s -vectors ∇αSt ≡ stα * direction of fastest increase

	   * magnitude resulting from unit displacement

in optimum direction 


ρ ρstα α α
 


N

(
 ) =
St {
 }
 ∑
 •

α=1 

 

rigid translation ρα = ε for all α 

constraint ∑ s

tα = 0 no center of mass translation 

α 

Rα × drigid rotation by dΩ
 

 
ρα 


) =
(dΩ Ω



 
stα × Rα 



constraint ∑ stα × Rα
e = 0 ECKART 

α (minimizes vibrational angular momentum)
If the normal displacements are built from stα  vectors that satisfy these constraints, then, for

infinitesimal displacements from equilibrium, there is no rotation. For large displacements, or for small
displacements away from a non-equilibrium configuration, there is a small vibrational angular
momentum. This definition of vibrations embeds a specific partitioning between rotation and vibration. 

TODAY: 
G from stα ’s 

 

Examples of stα ’s	 1. valence bond stretch ∆r 
 2. valence angle bend ∆φ 

G matrix using diagrams and tables from WDC pages 304 and 305
H2O FG handout 
G ≡ DD† 

recall |S〉 = B|ξ〉 = D|q〉 = DΜ1/2|ξ〉

B = DM1/2 

BM−1/2 = D 

G = DD† = BM−1/2 (M−1/2 )† 
B† = BM−1B† 


St (dΩ) = d ∑
Ω •


α 
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Gtt ′ = ∑ 1 BtiB
*
t i ′

i=1

3N

mi 

definition of |S〉 = B|ξ〉 → ⎝
⎜
⎛∂
∂ξ
S

i

t 

⎠
⎟
⎞ 

0 
⎜
⎝
⎛∂
∂ξ
St

i 

′ ⎟
⎠
⎞ 

0 

= ∑ 1 (∇αSt )0 ·(∇αSt′ )0 
α=1

N

mα 

N 1 st ′α
 

stα ·



Gtt ′ = ∑ 
α=1
 mα


This way to derive G is convenient 
*	 locally defined stα . Easy to compute stα  · st ′α . 

	   

*	 Each St involves small number of stα’s (only the involved atoms). 

*	 Small number of topological cases for internal displacements. All analyzed in WDC, pages
303-306. 

s -Vector Method. WDC pages 54-63.
 *	 start with all atoms at equilibrium positions;

*	 direction of stα  is direction of α’th atom must move to yield maximum increase in St;
 * magnitude of stα  is increase in St that results from unit displacement of atom α in optimal
direction;

*	 must verify or impose the 6 constraints (3 Cartesian components for the two vector constraint
equations). 

 e∑stα = 0 ∑Rα × stα = 0 
	 α α 
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Several possible types of internal displacements. 

1. Bond Stretch 





2. Valence angle bend
3. angle between a bond and a plane (non-planar A 1A2 state of H2CO) defined by 2 bonds
4. torsion → trans-bent excited A 1Au state of HCCH 

1. Bond Stretch St ≡ ∆r 

e12 

e12 

st1 st2 

r12 21 

only 2 nonzero s  vectors (even in a long linear chain)!
Atom 1 unit displacement 


st1 

st2 

(displacements of all other atoms have no effect on ∆r12) 

ρ −ρ1 2 

These are the vector representations of S .∆r



Are the constraints satisfied? 

∑ stα = st1 + st2 = −ê12 + ˆ















e21 




= −e21 

e12 

1
 = −
st1 =
 =


Atom 2 st2 = 1 =


({
 ) = ê21}
St (
 )
ξα 

= 0!
e12 

α 

= R1
e × −ê12( (ê12∑
 R2

e ×) +
 )
eRα × stα
α 

= 

R2 
e − 
( 

center of 
mass 


R2 

e 

R1 

e 

) × ê12 
eR1 




e e e– =
R2 R1 R12
 e∴ R12 ×


1 2




e12 = 0!
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2. Valence Angle Bend St ≡ ∆φ 

∆φ 

φ 

3 

r32r31 

st1 st2 

1 2 

Exactly 3 atoms are involved. 3 nonzero stα ’s. 
 How to move each atom to increase φ by maximum amount? 

tan∆ φ ≈ ∆ φ = 
st1 

r31 

How to define a UNIT VECTOR pointing in correct direction? 

ês

t1 
= ê31 × 

ê31
sin 
×
φ 
ê32 Recall ê31 × ê32 = sin φ 

right hand rule 
⊥ to plane, up out of board 

Rules for vector triple product 

ê = (ê31·ê
cos φ 

32 ) ê31 − (ê31·ê31 

1 

) ê32 
s


t1 sin φ 

ê = 
cos φê31 − ê32 

s


t1 sin φ 

 

Now, how much does unit displacement of atom 1 in ê  direction increase St?st1
 

tan ∆ St ≈ ∆ St = 
unity 1 = = st1 r31 r31 

∴ st1 = st1 êst1 
= 
cosφê31 − ê31 

r31 sin φ 

this is a vector of specified
length and direction 



1 
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similarly for atom 2 
cosφê32 − ê31=s


t2 r32 sin φ 

now for the hard one: atom 3!


Easy way: impose constraint ∑ stα = 0

α 

∴st3 = −(st1 + st2 ) =
(r31 − r32 cosφ) ê31 + (r32 − r31 cosφ) ê32 



 r31r32 sin φ 

Hard way: move atom 3 1 unit in optimal direction, then translate deformed molecule rigidly to put
atom 3 back at its original position. This evidently leaves atoms 1 and 2 displaced by st1  and st2 

respectively.   

3 

2 

move atom 3 

 
st2 

 
st1 

− 
 
st 3 

 
st 3 = − 

 

translate distorted structure 
back to put atom 3 in original location 

st1 + st2 (
 )


This obviously satisfies ∑ stα = 0 
α 

eIt is harder to show that it also satisfies 0 = ∑R


α × stα . 
Grind out the algebra! (see Non-Lecture on next page) 
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Alternative definition of S∆θ as a linear displacement rather than an angular displacement is possible. 
e.g. r31∆φ, r32∆φ, or (r31r32)1/2∆φ. 

Then S∆φ would have dimension of length and all bending force constants would have same units as
stretching ones. The derivation of S∆φ would follow same path, but each stα  gets multiplied by the

relevant length factor, r31 or r32 or (r31r32)1/2. 

NON-LECTURE 
Proof that stα ’s satisfy Eckart Condition

 

cos φê31 − ê32=st1 

st2 

st3 



 

 

r31 sin φ 

cosφê32 − ê31=










r32 sin φ 

(r31 − r32 cosφ) ê31 + (r32 − r31 cosφ) ê32 

 

 



R2 + R23 

R1 + R13 

R3 × st3 

st2 

=

r31r32 sin φ 

0 ? R1
e × st1 + R2

e × st2 + Re
3 × 

  
st 3 

R3 

R1 R2 




R3 

R3 = 

=


 

 







 

R3 − R13 R3 − R23 st2 + 

s +t2


R3 × (st1 + st3 ) R13 × st1 + R23 × 



 
0=



 
ˆ ˆR Re s× ×13 31 23 32 



= 0 = 0 

0 ? R


13 ×
⎛
⎜ 

−ê32 
⎞
⎟− R


23 ×
⎛
⎜ 

−ê31 
⎞ 

⎝ r31 sin φ ⎠ ⎝ r32 sin φ ⎠
⎟ 

R


13 × ê32 = r31ê13 × ê32 = −r31ê31 × ê32


R


23 × ê31 = r32ê23 × ê31 QED


0 ? (
 ) ×
 (
 ) ×
s +t1
 

0 ?
 (
 )
−
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G-Matrix 

Gtt′ = ∑ 
N 1 stα × st′α


α=1 mα  


Could compute directly from stα ’s, but easier to use diagrams from WDC page 304 and table on
WDC, page 305.  

DIAGRAMS # of atoms common 

diagonal stretch-stretch G2
rr 

to both t and t′ 

an atom involved in both t and t

2 1 

′ 
stretch 

2 

1 

3 

off-diagonal stretch-adjacent stretch G′ rr 

2 13 
3diagonal bend-bend Gφφ bend 

2 1 
3 

off-diagonal bend-internal stretch Gr
2 
φ 

etc. 

TABLE Grr 
2 = µ1 + µ2 µα ≡ 

1 
mα 

G1
rr = µ1cφ cφ ≡ cosφ 
3 2 2Gφφ = ρ12 

2 µ3 + ρ12 + ρ23 − 2ρ12ρ23cφ) µ2 
2 µ1 + ρ23 ( 

( )−1ρij ≡ rij 
e

Gr
2 
φ = −ρ23µ2sφ sφ = sin φ 

1 4 

2 3cis bent acetylene 

s
1 

∆ r12 s
2 

∆ r23 s
3 

∆ r34 

s∆ 

4 

φ123 
s∆ 

5 

φ234
s

6 

∆ τ 
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G matrix has 
6 × 7 

2  = 21 

G : 1 Grr 
2 Grr 

1 0 Grφ 
2 

independent elements 

Grφ 
1 1 

2 

⎛ 

⎝
⎜ 
⎞ 

⎠
⎟ Grτ 

2 

2 Grr 
2 Grr 

1 

3 Grr 
2 

4 Gφφ 
3 

5 Gφφ 
3 

6 G ττ 
4 

See J. C. Decius Journal of Chemical Physics 16 1025 (1948)! for torsion and out of plane bend
distortions! 


