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Lecture #29: A Sprint Through Group Theory

Bernath 2.3-4,3.3-8,4.3-6.  I'll touch on highlights

Symmetry
odd vs. even integrands — O integrals
selection rules for matrix representation of any operator
* transition moment

* H < block diagonalization
generation of symmetry coordinates

how to deal with totality of exact [6,ﬁ =0
approx. [6, ﬁ°] =0
) be SROT .
convenient [C; “,H }: 0 symmetries

Chapter 2: Molecular Symmetry

. ~ . 2 A A oA2
rotation C, (axis) rotation by ?n radians about (specified) axis (C.Cn =Ci etc.)
reflection p (plane) reflect thru plane

o, vertical (includes highest order C, axis)
o, horizontal (L to highest order C, axis)
o, dihedral (also vertical, bisects angle between 2 C, axes
1toC)
contrast to I - inversion in
lab (parity)
inversion in body i=C.0n inversion (C, axis L to plane of on)
improper rotation Sn =64Cn =CaGn (C, axis L to plane of 6n) [i=S,]
identity E do nothing

Groups: Closure

Associative Multiplication
Identity Element
Inverse of every element R.

Rigid isolated molecules — point groups — all symmetry elements intersect at one point
[distinct from translational symmetries — periodic lattices
CNPI - nonrigid molecules (Complete Nuclear Permutation-Inversion)
MS - (Molecular Symmetry Group) subgroup of CNPI, isomorphic with point group, but
more insightful (especially when dealing with transitions between different point-
group structures)]

Point Group notation
C,, G, C,, D,, C,, Cu, D, , D,
l ! l U ¥ y

1 plane  inversion nC,1C, no, C,+0, C,+nC,Ll+c, C,+nC,L+0cy
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Sn Td Oh Ih I<h
tetrahedral octahedral icosohedral spherical

[Flow Chart: Figure 2.11, page 52 of Bernath]

Bernath Chapter 3. Matrix Representations

()

which means r =x1+yj+zk =

Vol

A

€3

y
\Z )

Apply symmetry operator, R, to coordinates of an atom (“Active”)

X, (X;\ (¢ )
)

X, X, X3

1

N

R

R =D

/
X, X, X,

X5 ) \X3) (X3

D(R) is a 3 x 3 matrix representation of the R symmetry operator.

1 0 O
D(c(12))=|0 1 0
0 0 -1
cO s6 0
D(C,(3))=|-s6 ¢ 0
0O 0 1
3 axis
%? __8? What is the inverse of D(6(3)) ?
(A 71) B What are the characteristics of a unitary
DICe(3)" )= transformation?
P * normalized rows and columns
* rows (and columns) are orthogonal

Page 2 of 8 pages

inei

1

convenient

notation
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-1 0 O
p(i)=| 0 -1 0©
0O 0 -1
c6 s0 0
D(§6(3)): —s0 ¢0 0 |difference between So and Co
0 O
1 00
D(E)={0 1 0©
0 0 1

We have been considering the effect of symmetry operations on coordinates of a point. We generated
matrices which represent the symmetry operations by producing the intended effect on coordinates.
These matrices have the same multiplication table as the symmetry operations themselves. The matrices
form a representation of the group that includes these symmetry operations .

We can form a matrix representation of any group by selecting any set of:
BASIS VECTORS;
coordinates of each atom in molecule;
each equivalent bond;
each equivalent angle;
anything convenient. (over-complete is OK)

Before generating lots of matrix representations, we must consider ACTIVE vs. PASSIVE coordinate
transformations.

ACTIVE: move the object (r — ). Change the coordinates of the object.

PASSIVE: move the axis system. (& — ¢’)

Equivalence of the two kinds of transformation: the coordinates of the untransformed object in the new
axis system are identical to the coordinates of the transformed object in the old coordinate system.

o~ t
L — 261X1 : L — g X in matrix notation

=

I
)
| =

I
[}
1
|,
~—

)

N
B
1
I
[}
>

active (transformation
applied to the object)

)il X passive (transformation
- applied to the

coordinate system)
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elt gtD(ﬁ)

¢’ =[e'DR)] =D'(R)e=D(R")e !
N

same as inverse for unitary matrix

R acts on the coordinate system in the inverse sense to the way it acts on the object.

We are now ready to construct 3N X 3N dimension matrix representations of effects of symmetry
operations on an N-atom molecule.

We are going to simplify things soon to the traces or characters of these matrices, x(f{) :
3N
X (R) = ZI_) (R)ii
i=1
Keep this in mind when we focus on only what appears along the diagonal of ]_D(ﬁ) !

If a symmetry operation causes 2 atoms o, 3 to be permuted, all information about this is in the o, B off-
diagonal 3 X 3 block.

)

ol o, 3

. no contribution to
character, ¥
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NON-LECTURE

What about the effect of a symmetry operation on a function?

f(x) = a number

active: move the function f(x") = a different #

passive: move the coordinate system, which changes the function so that f'(x) # f(x) [but it must
be true that f'(x) = f(x")]

We want to find out what f'(x) is in terms of a complete orthogonal set of basis functions. How
do we do this?

We require that f(x) = f'(x”). The new function operating in the new coordinate system gives the
same number as the old function operating in the old coordinate system.

See pages 75-76 in Chapter 3 of Bernath for how to derive the new functions in terms of old
coordinates
f(x,y,z) = xyz for example

Oc,if (X, y,2) = F'(x,y,2) = (—(3"2 12) x> + (32 1 2)x2 +x,x, ) X, / 2

So we know how to derive a matrix representation of any symmetry operation.
NOT unique, but it doesn't matter because regardless of what set of orthogonal basis vectors we use to
generate our matrices, the matrices
* have the same trace (sum of eigenvalues)
* have the same eigenvalues (and determinant which is product of eigenvalues)
* differ from each other by at most a similarity transformation
D'=T'DT T'=T (unitary)
L |

a special case.

A~

Suppose we have generated a set of 3N X 3N matrix representations of all symmetry operations, R.

Perhaps there is a special unitary transformation T that causes all matrices to take the same block
diagonal form. Reduced dimension representations.

Group Theory helps us to find these simplest possible “irreducible representations.”

I' symbolizes a representation

Fred — {D (ﬁl ) D (ﬁ ) ) } a set of same-dimensional matrices
— el ° et 90 00
rred — r(l) @ F(z) @ .o F(n) blocks assembled along diagonal

— means direct sum of representations
a (V) ® di ] .
AY%

\Y
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Great Orthogonality Theorem (GOT) = helps to find the irreducible representations
and, most importantly, to reduce the reducible representations to a sum of
irreducible representations.

1 jugat
specific irreducible compiex conjugate

representation order of group (# of

symmetry operations)

GoT: Y DL(R)| DY (R)| =23,5.3,,

R 2
ﬁ row and dimension of y-th
column‘ irreducible representation
of matrix
2 nl=g (sum of squares of dimensions of irreducible representations is order of group)

v

Simplify to characters (because characters are all we need for most applications).

“(R)= Z D (R) n, is the dimension of the y-th irreducible representation

For characters, we have a simplified form of the GOT:

GOT: Y %’ R)x'R)] =gs,,

" (R) = 2 ax’ (R)
Y

sum over all

irreducible
representations
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a, = 12 YA (ﬁ)x” (R)

g ﬁ _—— be careful about classes

*

# of times p-th irreducible representation appears in initial reducible representation

Example:
Condensed according to “classes”. To find the members of

Cw | E O 35 N o n
: 2 = - the class that contains R, perform R RR forall R

N | 1 : # of classes: k

¥ ; 11 _01 # members of each class: g

Zgi:g

3 classes, 3 irreducible representations i
# of irreducible representations: r

r =k (.. condensed character table is square!)
2 _
Xn, =g
Mulliken Notation for irreducible representations.

1 dimensional: A or B

x(an) =+1 (for A) -1 (for B) (n 1s highest order rotation)

2 dimensional: E
3 dimensional: T or F

if 1 is present x(D)=+10r -1 (eg A, A
g u

A

Gy %(6,)=+lor -1 (eg. A’, A”)

, and , labels — no special rule except by convention for problematic point groups.

NH; [C;,] 12 x 12 reducible Cartesian representation

ﬁ 263 36V
e 12 0 (from H’s) 2—1 (for N)
271
1+2COS?_O 2 — 1 (for one H)

(from N)
12 0 2

X =112,0,2]
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Decompose )™

a, = éz v (R)x™ (R) g =6 (one E, two C,, three G,)
R
1 1
= g[12-1+2-o-1+3-2-1] = 8[12+ 6]=3
1

a, = g[12-1 +2:01+32:(-1)]=1

a, = %[12-2 +20-(—1)+320] = 4

341+24)=12

Next: remove rotations and translations.



