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Lecture #33: Vibronic Coupling 

Last time:	 H2CO A 1A2 – X 1A1 

Electronically forbidden if A -state is planar 
vibronically allowed to alternate v′ 4 vibrational levels if A -state is planar 
inertial defect says A -state is not planar
expect to see all v′ 4 if not planar
staggering of v′ 4 level spacings⇒inversion through low barrier to planarity
dynamic vs. rigid molecule symmetry classification: molecular symmetry group 

How does vibronic coupling really work?
What are the vibrational intensity factors analogous to Franck-Condon factors in the case of

vibronically allowed rather than electronically allowed transition? 

See T. Azumi and K. Matsuzaki, Photochemistry and Photobiology 25, 315 (1977) for an
extremely readable review article. 

Outline:	 Crude Adiabatic Approximation
Correction of ψ for effect of neglected off-diagonal matrix elements 
H2CO A

1
A2 example

What happens to Franck-Condon factors for a “vibronically allowed” transition?
Two electronic basis sets — prediagonalize “symmetry-breaking” vibronic

interaction 
Changes in shapes of potential curves (deperturb to a simpler, “more natural”

shape)
K. K. Innes’ model for vibrational band intensities and level staggering 

Recall Born-Oppenheimer or “clamped nuclei” approximation. 

We use this procedure to define complete sets of electronic and nuclear motion wavefunctions with
which we can FORMALLY expand exact ψ’s and compute (or parametrize) all properties of exact
eigenstates. 

The simplest basis set is called “CRUDE ADIABATIC” (CA) 

CA	 o CAψ jt (r,Q) = ψ j (r,Q0 ) χ jt ( ) Q
vibrational state 

fixed nuclear locations!electronic state 

Q0 is a convenient reference structure (usually the equilibrium geometry or a high-symmetry potential
energy maximum or saddle point). 

oψ j is the electronic wavefunction in the j-th electronic state computed at the chosen and explicitly 
specified set of fixed nuclear coordinates Q0. 
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CA (Q) is the vibration-rotation wavefunction computed from an approximate nuclear Schrödinger χ jt 
Equation. 

eigenvalue of

clamped nuclei


nuclear potential electronic ∆U(r,Q) = U(r,Q) – U(r,Q0)
kinetic energy of Schrödinger change in e– ↔nuclear and e– ↔e– 

energy bare nuclei Equation at Q0 
Coulomb energy 

o o o CA CA⎡⎣TN (Q) + V(Q) + ε j (Q0 ) + ψ j (r,Q0 ) ∆ U(r,Q) ψ j (r,Q0 ) ⎤⎦χ jt ( ) Q = E jt QCAχ jt ( ) 

effective potential-
energy surface 

Note that the ∆U integral is evaluated using ψo
j (r, Q0) thus cannot contain the exact effect of distortion 

of molecule from Q0. To get a better representation of the distortion from Q0, we must use perturbation
theory. 

We have explicitly excluded the effects of off-diagonal matrix elements. In order to get a better
approximation to the exact ψ, we must use perturbation theory to correct ψjt. 

CA ∆ U
ψ jt (r,Q) = ψ jt 

kr 
∑
≠ jt 

{ψ
E
jt 

jt 
CA

CA 

ψkr 
CA (r,Q) + 

ψkr } CA (r,Q)CA − Ekr 

CA ψk
o CA∆ U ψ j

o χ jt )
= ψ j

o (r,Q0 )χ jt ∑ ∑ CA − Ekr 
CA 

CA (Q)+
k≠ j r 

(χkr 

E jt 

CA (Q)× ψk
o (r,Q0 )χkr call this a vibronic 

mixing coefficient 
{ } means integrate over r and Q (both electronic and nuclear)

( ) means integrate over Q (nuclear)

〈 〉  means integrate over r (electronic)


This form of ψjt(r,Q) is called the Herzberg-Teller expansion. 

Now expand ∆U(r,Q) in power series about Q0 in each of the normal coordinates. 
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∆ U = ∆ U(r,Q0 ) + ∑ 
n 

⎡∂U(r,Q) ⎤ 

0 

Qn + 1
2 n,m 

⎡

⎣

∂2U ⎤

⎦0
= 0 by definition ⎣⎢ ∂Qn ⎦⎥ goes into

∑ ⎢ ∂Qn∂Qm 
⎥ QnQm etc. 

of ∆U electronic nuclear matrix to be initially
elementfactor	 neglected 

Now define the mixing coefficient. 

⎡ ∂U ⎤o o CA Qn 
CAψ k (r,Q0 ) ψ j (r,Q0 ) χkt χ jt 

⎣⎢∂Qn ⎦⎥ 0γ kr, jt 
n ≡ 

E jt 
CA CA − Ekt 

everything collected into single parameter 

CA(Q) + n	 CA (Q) ψ jt (r,Q) = ψ o
j (r,Q0 )χ jt	 ∑∑∑ γ kr, jt ψ

o
k (r,Q0 )χkr 

k ≠ j r n 
note vibrational 

Electronic Promoting wavefunction for 
states vibrational mode k-th,

states states NOT j-th
electronic state! 

nBut we can see that γkr, jt must vanish if 

Γk ⊗Γ j ⊄ ΓQn 
OR Γr ⊗Γ t ⊄ ΓQn 

(required by definition of ∆U above) 
electronic selection vibrational selection 

rule rule 
which is equivalent to requiring that

Γkr ⊗Γ jt ⊂ Γ totally symmetric  (and Qn is not totally symmetric). 

So now we are ready to consider the specific case of the H2CO A 1A2 state. 

Out-of-plane Bending mode as promoter b1 vibration 
b1 ⊗ A2 = B2 vibronic symmetry 

So we are considering vibronic coupling to the 1B2 state. 

Non-Lecture This is a simplified version of Innes’ model, to be discussed later. 

Let’s make a really crude model for the out-of-plane bending levels of both 1A2 and 1B2 states. 
This is an example when nature is too careless. Deperturb back to a simpler picture. 
* both are harmonic (NB assume that the A  state is NOT a double minimum non-planar state!!) 



5.80 Lecture #33	 Fall, 2008 Page 4 of 10 pages 

* both have same frequency ω 

* coupling is exclusively via 	 ∂U Qn  term. 
∂Qn 

O atom π in-plane 
⇓


nσ π n0 π∗ σ∗

↓ ↓ ↓ ↓ ↓ 

3a1
2 4a1

2 1b2
2 5a1

2 1b1
2 2b2

2 2b1
0 6a1

0 X 1A1 
0 eV 

elect. forbidden 2b1 ← 2b2 A 1A2 π*←n0 
3.5 eV 

elect. allowed (b-type) 6a1 ← 2b2 B 1B2 σ*←n0 
7.1 eV 

elect. allowed (a-type) 2b1 ← 1b1 
1A1 π*←π 8.0 eV 

elect. allowed (c-type) 2b1 ← 5a1 
1B1 π*←nσ 9.45 eV 

A –X  transition can borrow oscillator strength by “vibronic coupling” with
1B2 via b1 vibration because A2 ⊗ b1 = B2 
1A1 via a2 vibration because A2 ⊗ a2 = A1 

(a2 vibration doesn’t exist)

1B1 via b2 vibration because A2 ⊗ b2 = B1


I will now show, via a simple model, that vibronic coupling accounts for both the oscillator strength of 
the vibrational bands in the A –X  transition and the staggering of ν4 vibrational levels in A -state. 

Assume ν4 in A  and B  states is 
⎧harmonic - not a double minimum non-planar state 

convenient for 
calculating
vibrational matrix 
elements 

⎪
⎪⎪
⎨ planar — the high-symmetry point) 
same ω  and not displaced (necessarily not displaced if minimum or maximum is 

⎪ 
⎪
⎪⎩


coupling is exclusively via 
∂
∂
Q
U

n

 Qn  term 
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1 

2 

v4 = 0 

1B2 

1 
2 

v4 = 0 

1A2 
3 

mode #4, not 4th power 

CA + 4	 CAψAv = ψo
A χAv ∑ γBv ,AvψB

o 
 χB (perturbation theory)	 retaining only′	 v′ 

levels of B 
Similarly for ψBv′ 

v′	
state in the 
Herzberg-Teller
expansion⎡ ∂U ⎤ v′ 4 Q4 v4ψo

AψB
o 
 
⎣⎢∂Q4 ⎦

⎥ 
0 

CA CAEAv4 
− EBv′ 4 

′γB
4 
v ,Av ≡ 

 
a mass-independent

electronic factor


∝ 
(µω 

1 
)1/2 ⎡⎣ v4 + 1δv4 ′ ,v4 +1 + v4 δv′ 4 ,v4 −1 ⎤⎦ comes from 

actually Q is mass
weighted 

≡ βB
4 
 A	 − ∆ T0

B− A − ω4 (v′ 4 − v4 ) modeling ν4 as 
 the same in(T0 A +v4ω4 )−(T0 B +v4 ′ ω4 ) 

both B  and A 
states. 
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Summary of non-zero matrix elements 

4 
3 
2 
1 

1 1 2 2 3 3 4 

v′ 4 = 0 

matrix element 

3 
2 
1 

v′ 4 = 0 

So we have 

lump everything into this adjustable constant 

CA CA CA ⎤ψAv4 
= ψ o

A χAv4 
+ βψB

o 
 ⎣⎡ v4 χB + v4 + 1χBv4 +1 ⎦v4 −1 

CA CAψBv4 ′ 
= ψB

o 
 χCA

Bv4 ′ 
− βψ o

A ⎣⎡ v′ 4 χAv4 ′ −1 + v′ 4 + 1χAv4 ′ +1 ⎦⎤
same constant but opposite sign because of
the energy denominator. 



2 
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Transition probability for Av′ 4 ← Xv′′ 4  (B  and A  states have same potential surface but X  is different). 

2 
= ψAv4 ′

IAv4 ′ ,Xv4 ′′ 
µ ψXv4 ′′ 

Only the B  state is assumed to contribute 

⎡ 1/2 CA CA CA CA ⎤+ (v4 + 1)1/2 µbψB
o 
 ψ o

X χBv4 −1 χXv4 
χBv4 +1 χXv4

IAv4 ′ ,Xv4 ′′ 
= β2 

⎣v4

Xv4 
⎥⎦ 

⎦ 

v4qv4 −1,v4 

⎢ 
(

positive
squared
terms 

B

either sign
cross terms 

⎡ − X + v4 + 1)qB
v4 

− 
+
X
1,v4 

⎡⎣ ( )⎤⎦
1/2 ⎤
⎥

+ 2 v4 v4 + 1 
= β2 Mb,B− X

2 ⎢

× Bv4 − 1
Xv4 Bv4 + 1⎣

F-C factor 

Note that this is more complicated than usual FRANCK-CONDON expression for allowed transitions.
It is expressed in terms of Franck-Condon factors for B–X NOT A–X!!!! We still have a symmetry
selection rule for the ν4 vibrational mode because it is non-totally symmetric. 

From v″ 4 = 0 we can only reach B v4 = even (because ν4 is not totally symmetric) which requires A v′ 4 = 
odd. Note that the intensity expression above vanishes for v′ 4 = 0 and v″ 4 = 0 because 

B−X ≡ 0  (by symmetry). 

This can be expressed more generally, for any vibrational band in the A –X  system that is made 
allowed by vibronic coupling to the B 1B2 state promoted by ν′4. 

q1,0 

individual mode F-C factors (product over all modes except the promoting mode) 

vB
4 vB

4 v4
X 

vi
X v4

A Q4 ∏ q Bvi
∑IAV ′,XV ′′ = β2 Mb,B − X

2 

vi ≠v4 vB
4 symmetry selection B − vX

4 = even b-type rule v4 

v4
A − vB

4 = odd ∴vA
4 − v4

X = odd 

K. K. Innes J. Mol. Spectrosc. 99, 294 (1983) performed a vibronic coupling calculation which not only
reproduced the mode-4 intensity promotion factors, but also “explained” the level staggering in the 
A -state. 

2 
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In order to define complete basis sets, we solve an approximate Schrödinger equation by neglecting
specified terms in the exact H, or by ignoring off-diagonal elements of these terms. 

In the crude adiabatic approximation, we define potential curves by ignoring terms of the form 

CACA ∆ H(r,Q) ψkr .ψ jt 

We showed that, by expanding ∆U as power series in Q (the normal mode displacements), we get 

oψ j (r,Q0 ) ⎢
⎡
⎣∂
∂
Q
U
n 

⎤
⎥⎦0 

ψo
k (r,Q0 ) Qn = ∑ γnjk Qn .(H′ electronic ) jk = ∑


n
 n 

We can go to a new electronic basis set by diagonalizing H0 + ∑ γ njk Qn . 
n 

Suppose we have two harmonic zero-order potential curves, V0(Qn), for mode n of electronic states j and
k. Then we have the following zero-order and diagonalized potential curves. 

Vk(Qn) 

Vk 
0 (Qn) 

Vj 
0 (Qn) 

Vj(Qn) 

Qn = 0 

′H = γ jk 
n Qn 
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Upper curve gets narrower.

Lower curve turns into a double minimum curve.

Qn = 0 points of both curves do not shift because H′→ 0 at Q = Q0 by definition.

Vibrational eigenstates of lower curve will exhibit the pattern of a symmetric double minimum potential.


Vk
0 (Qn ) = ωk

2Qn
2 

Vj
0 (Qn ) = ω2

jQn
2 

H′ ij (Qn ) = γ njk Q
1
n 

⎫⎪
⎬
⎪⎭


here we are allowing harmonic frequencies to be different 

Second-order perturbation theory: 

n 2 

Vk = ωk
2Qn

2 + (ωk
2 −ω

(
2
j 

γ

)
jk 

Q
)2
n

Qn = ω′ k
2Qn

2 + αQn
4 

2 + Tek − Tej 
(We do power series expansion of the second term about Qn = 0. There can be no 
constant term because Vk vanishes at Qn = 0. Note that the coefficient of Qn

2  changes 
because it is ωk

2  plus a Qn
2  term from the power series.) 

Vj = ω′ j
2Qn

2 −αQn
4 

(same α because it is the same expansion but with opposite sign energy denominator) 

ω′ k
2 = ωk

2 + 
T
( 
ek 

γ n 

− 
jk )
T

2

ej 

from power series expansion 

n 

(ω2
k − ω′ k

2 ) = − ω ( 2
j − ω′ j

2 ) = − 
T
( 
ek 

γ
− 
jk )
T

2

ej 

get opposite sign shifts in the effective harmonic frequency 

n 

α ≡ (γ jk )2 

(ωk
2 −ω2

j ) get a quartic term that depends on difference in ω's for j and k.
(Tek − Tej )2 

The quartic term vanishes if ωj = ωk. 

This shows that upper state ω increases and lower state ω decreases. 

“Exact” 2 × 2 deperturbation treatment for the potential curves 

⎛ ∆ V − E H12 
⎞
⎟ ⎡ ⎤1/2 ⎜


⎜ 2 ⎟⇒ V± = 
Vk + Vj ± ⎣⎢

∆ V2 
2


⎜⎜ H12 
− ∆ V − E⎟⎟ 2 4 

+ H12 ⎦⎥ 

⎝ 2 ⎠ 
∆ V = (ω2

k − ω 2j )Q2
n + Tek − Tej  (includes difference between minima of Vk and Vj) 

Vk + Vj ω2
k + ω2

j 
⎡(ω2

k − ω 2j )2 ⎤
1/2


=
 +V± 2 2 
Q2
n ± 

⎣
⎢ 

4 
Qn
4 + (γ njk )2 

Q2
n ⎦
⎥ 
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(the ∆Te/2 term seems to have been omitted from the [ ]1/2 term) 

For large γn, second term in [ ]1/2 will dominate at small |Qn| but first term will eventually
dominate at large |Qn|. We obtain two perturbed potential energy curves. 

Now go back to the original vibronic Hamiltonian and get a degenerate perturbation expression for the
energy levels. 

A second-order perturbation treatment of this kind of 2-state interaction in the CA picture cannot give
this type of level stagger. It is necessary to set up and diagonalize two large dimension matrices 

HI 

⎧
⎨
⎩


odd quanta of upper state 
even quanta of lower state 

HII 

⎧
⎨
⎩


even quanta of upper state 
odd quanta of lower state 

because of odd-even symmetry of a symmetric (not necessarily harmonic) potential, there can be no
coupling matrix elements between these two matrices.
The level shifts are larger for the lower states in HII than those in HI. For example, the lower state v = 1
level is pushed down by v = 0 and 2 of the upper state, but the lower state v = 0 level is only pushed
down by v = 1. 

This produces level staggering. 

K. K. Innes [J. Mol. Spectrosc. 99, 294-301 (1983)] reproduced A − X  intensity and A -state level 
pattern with 

∆ T0
B − A = 28035 cm−1


ωB
4 
 = ω4

A = 1125 cm−1


H′ AvA ,BvB = vA +1 = β(vA + 1)1/2 
β = 3138 cm−1


1/2
H′ AvA ,BvB = vA −1 = βvA



