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Lecture # 33 Supplement

‘ Based on a lecture written by Professor Patrick H. Vaccaro. ‘

Outline

(i) “true” Eigenstates: A long, hard climb;
(ii) the “total” molecular Hamiltonian and its Schrédinger Equation;
(iii) the electronic Schrodinger Equation;
(iv) transformation of the molecular Schrédinger Equation;
(v) the Adiabatic Approximation;
(vi) Adiabatic corrections;
(vii) Non-Adiabatic corrections;

(viii) the transition moment of the ALAy « X1A; absorption in HyCO: a vibronic coupling model.

Image removed due to copyright restrictions.

Figure 1: Various routes to approach the exact non-adiabatic wavefunction. From “What Does the Term
‘Vibronic Coupling” Mean” by T. Azumi and K. Matsuzaki, Photochemistry and Photobiology 25, 315-326
(1977).
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Time-Independent Schrodinger Equation for a Molecular System

Htotal(rv Q)\Ijt (Tv Q) = Etlllt(rv Q)
where
Htotal(ra Q) = Te(r) + TN (Q) + U(Ta Q) + V(Q)

“r” represents electronic coordinates

“Q" represents mass-weighted nuclear coordinates describing displacements from a reference configuration

((QO”

_h2 62

L~ 5o W

represents the electronic kinetic energy

_p2
Z 3 Q2 represents the nuclear kinetic energy
U(r, Q) represents the Coulombic potential energy
V(Q) represents the potential energy of the nuclei

PROBLEM: Hamiltonian does not permit separation of variables. Therefore, exact solution is not possible.

Consider only the terms depending on the electronic coordinates (i.e. the so-called Electronic Hamilto-

nian)
Helee(r, Q) = Te(r) + U(r, Q)

- Te(r) + U(Ra QO) + AU(Tv Q)

- HCICC(Tv QO) + AU(Tv Q)
where

U(Ta Q) = U(Tv QO) + AU(Tv Q)
clcc( QO) ( ) + U(Tv QO)

Note that:

U(nQ) =U(rQo) + Y [%L@l
| [2U(,Q) Q)
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Consequently:

U(n@)mZ{ Ao ]Qw Z[‘ZX%] QuQu +

n

Define two types of Electronic Schrédinger Equations

(i) The Dynamical equation for Hejec(r, Q)

{the “Born” representation}
Helee(r, Q)0i(r, Q) = €i(Q)i(r, Q)
[Te(r) + U(r, Qlvi(r, Q) = ei(Q)i(r, Q)

dynamical electronic wavefunctions: ;(r, Q) = Born Space
(i) The static equation for Heec(r, Qo)

{the “Longuet-Higgins” representation}
clcc( QO)U)O( T, QO) = E?(QO)d}? (Ta QO)
[Te(r) + U(T, QO)]sz (Ta QO) = E?(QO)d}? (Tv QO)

static electronic wavefunctions: ) (r, Qo) = Longuet-Higgins Space

The Eigenstates of the Total Hamiltonian can now be expanded in either of these two electronic basis

sets:

(i) The dynamical or Born Representation:

e(r, Q) = Z i (r, Q)xi (Q)

k

(ii) The static or Longuet-Higgins Representation:

Uy(r,Q) = Up(r, Qo)xii(Q)-

k
Note that
Ur(r, Q) =Y 7 (r, Qo) \en(Q)
4

and

Z Yr(r th Q)

= Z [Z ¥y (r, Qo) Aer(Q )] Xie(@)
= ZW » Qo) th Q).
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where

Xlt Z Ao (Q)x 1 (Q

Now recall the Schrodinger Equation for the total Hamiltonian

(i) the dynamical or Born Representation:

Htotal(T, Q)‘I/t(T, Q) = Et‘l/t(T7 Q)
[Te(r) +U(r, Q) + Tn(Q) + V(Q) — Et]¥y(r, Q) =0

[Hetee(r; Q) + Tn (Q) + VI(Q) = Ei] > v (r, Q)X (Q) = 0

substitute the dynamical electronic Schrodinger Equation and the explicit expression for T (Q):

k

h? %y (r
S { @+ win)

n

Z l{ﬁk(Q) +V(Q) — B} ¢u(r, Q)xin(Q)

82X£t(@) + 287/%(7”, Q) 8XEt(Q) } -0
902 0Qn  0Qn S|~

Multiply from the left by 9% (r, @) and integrate over the electronic coordinates realizing that:
(0 (r, Q)IYr(r, Q)) = G-
One thus obtains a set of coupled differential equations:

{Tn(Q) + V(Q) + ¢;(Q) + (¥ (r, QTN (Q)I5 (1, Q) — Ee} x51(Q)

0
,;{ Q)TN (@)l (r, Q) h22<w] ‘m

@) 8Qn} B(@) =0

Problem still not solvable.
(ii) The static or Longuet-Higgins Representation:
Htotal (T7 Q)\Ijt(ra Q) = Et\I]t (’f', Q)

[T(r) + U(r,Q) + Tn(Q) + V(Q) — E]¥:(r,Q) = 0
[Hetee(r; Qo) + AU (r, Q) + T (Q) + V(Q) — Ed] Y R (r, Qo)xi (@) = 0.
k

By similar manipulations, realizing that

(v (r, Qo)lwg( 0)) = dgk

<1/1?(7”7 Qo) i, Q0)> <z/1?(7‘, Qo) 3Q2
=0 for all j, k

3Qn Ui, Q0)>
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one obtains

{TN(Q) + V(Q) + ES(QO) + <’Q/J§J(T', Q0)|AU(T‘, Q)W?(T‘a Q0)> - Et}

XXGQ) + Y (17 (r, Qo) AU (r, Q) (r, Qo)) xt(Q) = 0
k#j

Adiabatic Approximations

Definition: Adiabatic refers to any vibronic approximation scheme in which the wavefunction is factorized

in the form:
UAP(r, Q) = ¥(r, X)X P (Q)

One must distinguish between several adiabatic schemes:

Any adiabatic scheme is valid only if the “effective potential surface” is well separated from all other
potential surfaces.

(i.e. concept of a potential surface for the nuclear motion has meaning only if the adiabatic separation is

a sufficiently good approximation for the description of the molecular state under consideration)

Three Commonly Encountered Adiabatic schemes

I. The Born-Huang (BH) Adiabatic Approximation

In the set of dynamical differential equations, eliminate the coupling terms between
Xﬁ(@) and X, (Q) where k # j
by assuming

<"/]j (Tv Q)|TN (Q)|wk (T‘, Q)>

<¢j(7“, Q) }% Y(r, Q)> =0  forall k,j.

Thus, the decoupled equations become

0 for k #£ j

effective potential

[Tn(Q) +V(Q) +¢;(Q) + (v;(r, Q)T (Q) ¥ (r, Q)) x5 (Q) = Ej' x5 (Q)

which implies

VB (r, Q) = v;(r, QXP(Q).

II. The Born-Oppenheimer (BO) Adiabatic Approximation

In the set of dynamical differential equations, eliminate the coupling terms between

Xﬁ(Q) and th(Q) where k # j
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by assuming

<"/]j (Tv Q)|TN (Q)|wk (T‘, Q)>

<1/)j(7”, Q) }% Yr(r, Q)> =0 for all j, k.

Thus, the decoupled equations become

0 for all j, k

effective potential

{Tn(Q) + V(Q) + (@) 15 (@) = EROX5°(Q)

which implies
WPO(r, Q) = 1 (r, QX5 (Q)-

ITI. The Crude Adiabatic (CA) Approximation

In the set of static differential equations, eliminate the coupling terms between

X5H(Q) and x7,(Q) where j # k

by assuming

(43 (r, Qo)| AU (r, Q)4 (r, Qo)) = 0 for k # j.
Thus, the decoupled equations become
[Tn(Q) + V(Q) + €}(Q) + (4] (r, Qo) AU (r, Q)[4 (r, Q)] x5 (@) = E5* x5 (Q)

which implies

U5 (r, Q) = ¥ (r, Qu)x5i (Q).



5.80 Lecture # 33 Supplement Page 7

Crude

Born-Oppenheimer
Adiabatic Approximation

Born-Huang

Adiabatic Approximation Adiabatic Approximation
Adiabatic TEA(r, Q) = ¥ (r QX5 (Q) PEO(r, Q) = ¢ (r, QX5 (Q) U (r, Q) = 5 (r, QX7 (Q)
Wavefunction
Electronic [Te(r) + U(r, Q)]¥J(r, Qo) [Te(r) + U(r, Q)5 (r, @) [Te(r) + ( Q)Y;(r, Q)
Equation = 6_(7') (Q)’/f? (T‘w QU) = 6«7( )w] (7’7 Q) = f] 7/’] Q)
Vibrational [TN(Q) +V(Q)+ f“(Q) TN (Q) +V(Q) +¢(Q)] Tn(Q) +V(Q) +¢(Q)
Equation + (@9 (r, Q)| AU (r, Q)[49(r, Qo))] 2 (Q) = ERPxGP(Q)

xxX5MQ) = ﬁAx]cfA @)

Approximations | (¥9(r, Qo)[AU (r, @)U (r, Qo)) = 0 for k # j
Utilized

+ (1 (1, Q)T (@) 145 (r, Q)]
xx5(Q) = BHX?fH(Q)

(3 (r, QTN (@Q)1x(r, @) = 0 | (&;(r, Q)TN (Q)[Pr(r, Q)) = 0 for k # j

and and

(0, Q) |58 | 0r(r @) =0 | (150, Q) |58 | v (r.Q)) =0
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Example of Corrections within the Adiabatic Approximation

Improvement from the Crude Adiabatic (CA) Approximation to the Born-Oppenheimer (BO) Approximation

(Herzberg-Teller vibronic coupling)
wo(rv QO) - ’L/J(T, Q)
The difference in the electronic Hamiltonians comes from the term AU(r, Q) where:

U (r,Q) 1 Z [82U(7°, Q)

AUr,Q) =~ {7]0 Qnt352 5000

o | o

n n,m

By perturbation theory
bilr, Q) ~ 4 (r, Qo) + D> Aji(Q) (r, Qo)
JFi
<¢?(T7 Q0)|AU(T7 Q)|¢? (Ta Q0)> .
e)(Qo) — €)(Qo) ’

where

Aji(Q) =

thus

V5O (r, Q) = vi(r, Qxi (Q)
~ (900 Qo) + D A, Qo) XEC(Q).

Corrections of Adiabatic Schemes to Non-Adiabatic Schemes

Goal: To express the total non-adiabatic wavefunctions in terms of adiabatic wavefunctions
via non-degenerate perturbation theory:
\IJir(ru Q) = \Ijg‘D(Tv Q) + Z th,irqj?tD(Tv Q)
kt#ir

where
_ WP e QM QAP @)}

Ckt,ir = AD AD
Eir - Ekt

The perturbation operator represents the breakdown of the adiabatic approximation:

H'(r,Q) = Heotar(r, Q) — H*P (1, Q)
= Htotal(rv Q) - Z ‘\I/?tD (Ta Q)} E]?tD {\I/?tD (Tv Q)|
kt

This leads to Born-Huang (BH) Coupling and Born-Oppenheimer (BO) Coupling.

The Transition Moment of the K1A2 — }NilAl Absorption Transi-
tion in Formaldehyde

The transition moment between adiabatic wavefunctions is given by
A A A A
M, = { AP, Q)0 WA (r, @)}

= (@ [ (s, QIO (r,@)) | xAP(@))
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To proceed, need to know Q-dependence of electronic integral.

Let us apply this, with the Born-Oppenheimer, Adiabatic representation; to the A'Ay « X'A; transition
of formaldehyde.

Lowest Singlet Electronic States in Ho,CO

Energy (ev) State Designation State Number

0 1A, 0
3.50 LAy (n, %) 1
7.08 1By(n, o) 2
7.97 AL (m, ) 3
9.45 1By (on, ) 4

Assume that the electronic eigenfunction of the ground state can be expressed in terms of a non-mixed

crude adiabatic function:
V52 (r, Q) = vo(r, @)xor (@)
~ 90 (r, Qo)X (Q).

Perform a “Herzberg—Teller” expansion of the wavefunction for the first excited singlet state:

\I/?TO (Ta Q) = 1/)1 (Ta Q)X]?TO(Q)
i (r, Q) = ¥ (r, Qo) + > Aj1(Q)¥Y (r, Qo)

where

o (0 Qo) AU (r, Q)14 (1, Qo))

A = G - @)
and
N oU(r,Q)
AU(Tv Q) ~ ; [ 8Qn :|0Qn
Thus
< (r, Qo) ‘ [8%(5”@} \w?(n Q0)>
A]l(Q) = Z 6(1) 0 j(Qo) Qn

- ZFYngn

Now

Di(r, Q) = 45 (r, Qo) + D D Q5 (r, Qo)

j>1 n

and the Born-Oppenheimer Adiabatic wavefunction for the first excited singlet state becomes:
VEP(r, Q) = i(r QX3 (Q)

~ |90 (r, Qo) + Y Y A Qut) (r, Qo) | XTI Q)

j>1 n



5.80 Lecture # 33 Supplement Page 10

The transition moment now becomes:

MES, = {60, @)0(I¥EC Q) |

- (xStA@) [(wb(r.Q0) |O0)| ¥00 @

Simplification yields:

o)) + 30 3@ [0, Qo)) XA (Q)) .

j>1 n

MES, = (¥8(r, Q)OI (1, Qo) ) (M @INSA (@)
+ 303 i (U8, Q)OI (. Qo) ) (M @)IQn A (@) -

j>1 n

Now consider the coefficients 77, :

n

(090 Qo) | [H52] |8(r. Qo))
(Qo) — €)(Qo) '

Vi1 = e
Since the Hamiltonian must be invarient under all symmetry operations,
oU (r,
[ﬂ] must transform as @,,.
IQn g

Given that 99 (r, Qo) transforms as Ay, it is easy to find the appropriate combinations of @, and ¥3(r, Qo)

such that 7} does not vanish via symmetry. Three non-zero coeflicients are obtained:

4 5 6
Yo1 o Va1 5> Va1-

Thus the transition moment for HoCO can be written, more explicitly, as

MES, = (¥(r, Qo) IO (. Qo) ) (HQINEA(Q))
+ 9 (9801, Q)OS (1, Qo) ) (WM (@)IQ:SA (@)
+ 5 (88, Q0) OIS (. Qo) ) (A (Q)IQs XA (@)
+ 95 (48, Q)OI (. Qo) ) (A QIR EA (@)
= (*A1(, Q0) O ()] " Ax(r, @ >>(X$A<@>|x?;*<@>)
9 (M1, Qo) O()['Ba(r, Qo) ) (x5 (Q)IQaEM (@)
+ 75 (A1 (r, Q0)IO() |B1rczo>(x0t )IQs XA (@)
95 (A, QIO 'Bi(r, Qo) ) (x5 @)IQs KA (Q))

CA
Xot

(
(

Note that:
M= A1 pz = B1 py, = Ba
mZ:>A2 m,; = B my:>B1



