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Lectures #  &  Wavepacket 
Dynamics II and III 

An eigenstate does not move and the population in an eigenstate does not decay. 

Quantum Beats: polarization vs. population. 

Concept of “bright” and “dark” states 

Nonradiative decay 
into dense manifold of dark states


Fermi’s Golden Rule

Bixon-Jortner


into continuum: Complex Heff (SDDM, pages 671-683) 

Dynamical Quantities 

some are in real coordinate/momentum space 
others are in state space 
key is to reduce the quantity of information from what is contained 

in Ψ(t) yet retain visibility that 
* reveals mechanism 
* suggests experiments 

examples 
* probability density 
* density matrix 
* autocorrelation function 
* survival probability 
* transfer probability 
* �Qi�(t), �Pi�(t) Ehrenfest’s Theorem 

* �Ei� = ωi a†i ai (t) OR anharmonic 

�vi� = ai
†ai (t) 

* expectation values of resonance and transfer rate operators (SDDM, pages 694-701) . 

It is also possible to go from a Quantum Mechanical Heff to a Classical Mechanical Heff 

and view structure and dynamics in an action-angle represention of phase space. Regular 
(quasi-periodic trajectories) and Chaotic regions of classical phase space. 
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An eigenstate ψj , Ψj (t) = ψj e
−iEj t/�, from a harmonic oscillator potential surface 

�Ψj (t)|Q|Ψj (t)� = �ψj |Q|ψj � = 0 

because Q is Δv = ±1 off-diagonal. 

Suppose ψj = αφ0 + (1 − α2)1/2φ0 (a vibrationally mixed state)v v+1 

�ψj |Q|ψj � = 2α(1 − α2)1/2 ��v + 1��|Q|v�� = 0� . 

∝(v+1)1/2 

Still no motion. Also 

Pj = �Ψj (t)|Ψj (t)� = �ψj |ψj � = 1 

does not decay. 

Suppose, using a short pulse of radiation, we excite a coherent superposition of two 

eigenstates, ψj and ψk. Then 

Ψ(0) = αψj + (1 − α2)1/2ψk ≡ φ0 
B


Ψ(t) = αψje
−iEj t/� + (1 − α2)1/2ψke

−iEkt/�


Ψ�(t)Ψ(t) = |α|2|ψj |2 + |1 − α2||ψk|2


+ α�ψ�(1 − α2)1/2ψke
−i(Ek−Ej )t/� + c.c.j 

= |α|2|ψj |2 + |1 − α2||ψk|2 + α�(1 − α2)1/2ψj
�ψke

−iωkj t + c.c. 

= |α|2|ψj |2 + |1 − α2||ψk|2 + 2Re α�(1 − α2)1/2ψj
�ψk cos ωkj t 

+ 2Im[α�(1 − α2)1/2ψ�ψk] sin ωkj t.j 

We have a constant term and two oscillating terms. More insight is obtained if we ask for 

the time dependent probability of finding the system in Ψ(0) ≡ φ0 
B 

PB (t) = ��� 
Ψ(t)|φ0 

���2 
= | �Ψ(t)|Ψ(0)� |2 

B 

= �Ψ(t)|Ψ(0)� �Ψ(0)|Ψ(t)�� � � � 
= |α|2 e−iEj t/� + |1 + α2|e−iEkt/� |α|2 e iEj t/� + |1 − α2|e iEkt/�

= |α|4 + |1 − α2|2 + |α|2|1 − α2|(e iωkj t + e−iωkj t) 

= (1 + 2|α|4 − 2|α|2) + 2|α|2|1 − α2| cos ωkj t. 

The time dependent term is largest when α = 2−1/2, then 

1 
PB(t) = (1 + cos ωkj t),
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2π 4π π 3πwhich oscillates cosinusoidally between 1 (at t = 0, 
ωkj 

, 
ωkj 

. . . ) and 0 (at t = 
ωkj 

, 
ωkj 

, . . . ). 

Note that PB(0) = 1, as it must be because it is the bright state that is initially populated. 

The modulation depth of the quantum beat is less than 100% when the mixing between 

bright and dark states is less than 50/50. For a simple 2–level QB it is always true that 

P (0) = 1. However, if you have two bright or partially bright basis states, the QB might be 

phase-shifted from a maximum at t = 0. 

Polarization beats result when a ΔM = 0 coherence is produced. As a result, the angular 

distribution of the fluorescence is time-dependent. 

Population beats result when one bright state and one dark zero-order state perturb each 

other. The beating is metaphorically the population flowing out of the bright state and back 

in again. 

Problem for the class: suppose you know the radiative decay rates for φ0 and φ0 
Bright Dark. 

What would be the decay behavior of the constant and modulated parts of the quantum 
beating I(t) signal? 

Non-radiative decay 

For an absorption transition between two eigenstates, there is a definite relationship between 

the absorption cross-section and the zero-pressure radiative lifetime. In the 1960’s, there was 

a lot of controversy about why (i) the fluorescence decay rates were faster than calculated 

from the absorption cross-section and (ii) the fluorescence quantum yield was smaller than 

unity. Predissociation and autoionization can be ruled out by thermodynamics. Is the ob­

served effect due to extremely efficient collisional quenching or to some other phenomenon? 

Bixon and Jortner explained how a non-fragmenting, non-quenched molecular excited pop­

ulation can decay non-radiatively. They constructed a simple model of one bright state 

interacting with a manifold of equally spaced dark states. 

Fermi’s golden rule relates the decay rate to the density of states and the average squared 

matrix element between the bright state and the manifold of dark states. 

Another way of understanding non-radiative decay is to allow the diagonal elements of 

an Heff to be complex. 

Ψj (t) = ψj e
−iHjj t/� 

Hjj = Ej − iΓj /2 

Ψ�
j (t)Ψj (t) = ψj 

2 e(+iEj −Γ/2)t/� e(−iEj −Γ/2)t/�| |

= |ψj |2 e−Γt/� 
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where the lifetime is 

τ = �/Γ. 

See SDDM, pages 672-683 for non-degenerate and degenerate perturbation theory with 

complex Heff models. 

Key is that a dark quasi-continuum (many discrete non-decaying eigenstates) may be 

lumped into one broad (Γ > 0) super-eigenstate. This allows the interaction of one bright 

state with a manifold of many dark states to be reduced to a slightly non-standard two-level 

problem. 

A key insight is a bifurcation of the dynamics that occurs when (Γk − Γj )/2 > |Hkj |. 
strong-coupling: maps onto the ordinary two-level problem 
weak-coupling: the sharp state can tune through the broader 

“state” without level shift or broadening. 

Goals of a Frequency Domain Experiment: First deter­

mine and then use the Heff 

1. Use information in the spectrum to determine the parameters that define the Heff . 

This is the usual first step. When the Heff model used is not sufficiently flexible to fit 

the spectrum, it is necessary to add local (perturbation) or global (polyad) interaction 

terms to Heff . 

Sometimes mini-experiments (e.g. quantum beat, pair of “main” and “extra” relative 

intensity measurements) yield local determinations of specific parameters in Heff . 

2. Once Heff is determined from the spectrum, (i) find out something not already known 

about stable large amplitude motions and dominant energy flow pathways; (ii) or 

discover unconventional diagnostics for the nature of an unknown state or unspecified 

pluck. 

The key tool is the ability to select a variety of classes of “bright state.” The var­

ious dynamical measures, based on a fitted but not fully understood Heff , reveal the 

emergence and nature of new classes of local motions, dominant energy flow pathways, 

diagnostic patterns in a spectrum, schemes for designing an “optimal pluck” to gain 

access to a designed region of state space, or rational external control over dynamics. 

Examples: appearance of local modes, regular vs. ergodic dynamics, best design of an 

experiment (which bright state, optimal timing). 
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Now for a quick sprint through many dynamical quantities. For the initial state, denoted 

by I (not to be confused with the interaction representation), 

ΨI (0) = aj ψj where {ψj } are eigenstates and {Ej } are eigenvalues of H

j


ΨI (t) = aj ψj e
−iEj t/� .


j


To get to this expression it is usually necessary to find the linear combination of eigenstates 

of Heff that corresponds to a Zero-Order Bright-State (ZOBS). Heff is expressed in the {φ0 
j }

basis set ⎛ ⎞ 
E1 0 

U†Heff ⎜ . ⎟ .{φ0 
j }U = ⎝ . ⎠ 

0 En 

where U is unitary. 

We get 

=φ0 
k bkj ψj 

j 

from the columns of U† (or is it U?). This gives us ΨI (t) = j bj
kψj e

−iEj t/� . We use ΨI (t) 

in many clever ways. 

Probability density: Ψ�
I (t)ΨI (t) [not to be confused with �ΨI (t)|ΨI (t)� = 1.] 

This is a moving wavepacket. It is real (and positive) everywhere and for all t because it is 

an observable quantity. It is a function of position and time. It is the basis of a lot of useful 

cartoons of coordinate space dynamics � � � � � � � � 
Ψ� 2 2 � � 

I (t)ΨI (t) = |ai| |ψi| + 2Re aiaj ψiψj
� cos ωjit − 2Im aiaj ψiψ

� sin ωjit .j 
i j>i 

Note that the probability density is experimentally observable, whereas ΨI (t) is not observ­

able. The disadvantage of the probability density is that it contains far more information 

than the wavepacket cartoons. It is often reduced to a moving and spreading Gaussian 

wavepacket. 

Student exercises: 

(i) Draw a cartoon that describes the appearance of Ψ�
I (t)ΨI (t) when the leading part of


the wavepacket overlaps with the trailing part at a turning point.


(ii) Contrast the behavior of a Gaussian wavepacket in a Harmonic and in a Morse poten­


tial. Choose ωHarmonic = ωMorse and De 
Morse = 10(hcωMorse).
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Density Matrix: ρI (t) = |ΨI (t)� �ΨI (t)| 

This describes a freely evolving system after a specific initial preparation of the system. 

This is a state space quantity. It is implicitly integrated over coordinate (or momentum) 

space when we compute the implied matrix elements in the eigen-basis. One constructs the 

elements of the density matrix 

(t)
ρI 

jk 
= �ψj |ΨI (t)� �ΨI (t)|ψk� 

where the diagonal elements are real, positive, and time-independent and are called popula­

tions and the off-diagonal elements are time-dependent and are called coherences. � � � � 
2 � 

j e
−iωij tρI (t) = |ai| |ψi��ψi| + [aia |ψi��ψj | + cc.] . 

i j>i 

Some coherences can radiate at ωij . 

Some off-diagonal elements of ρI (t) are complex, but ρI (t) is Hermitian. 

The density matrix is useful for computing the time-dependent expectation value of any 

observable quantity, A, where 

�A�(t) = Trace(ρA) = ρjkAkj . 
j,k 

The density matrix is better suited for computing expectation values and other dynamical 

properties than for reduced-information visualization of dynamics. 

i�ρ̇ = [H, ρ] 

Autocorrelation function: �ΨI (t)|ΨI (0)� = j |aj|2eiEj t/� 

It is a time-dependent state-space quantity because it is integrated over coordinate space. 

The absorption spectrum is the Fourier transform of the autocorrelation function. 

Student exercise: 

For a spectrum, I(ω), that looks like equally spaced Lorentzian lines of width δ and the lines 
have a Lorentzian overall intensity distribution of width Δ, what does �ΨI (t)|Ψ(0)� look 
like? 

The words “recurrence” and “dephasing” are used to describe features of the autocorre­

lation function. These features are usually explained by looking at the probability density 

representation of wavepackets. 
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Survival Probability: PI (t) = | �ψI (t)|ΨI (0)� |2 

PI (t) describes how a wavepacket moves away from (and returns to) its t = 0 form. It is 

integrated over coordinates, but is equally useful for explaining coordinate space or state-

space pictures of dynamics: � � � � 
4 2 2PI (t) = | | + 2| | | | cos ωjktaj aj ak . 

j k>j 

Transfer Probability: PI→F (t) = | �ΨI (t)|ΨF (0)� |2 

This is useful to describe how a time-evolving wavepacket develops overlap with some sort 

of a priori specified target state. PI F (t) is useful in combination with PI (t). 

ΨI (0) = aj ψj , |

→

aj 
2 = 1 |


j j 

ΨF (0) = bj ψj , |bj |2 = 1 
j j 

2 2 � �|bj | + 2Re(aj akbj bk
�) cos ωjkt − 2Im(aj akbj bk

�PI F (t) = ) sin ωjkt|aj |→
j k>j 

PI F (t) is real, positive, and ≤ 1 at all t. →

Expectation values of coordinates and conjugate momenta: �R�I (t), �P �I (t) 

The expectation values of coordinates and momenta follow the classical mechanical equations 

of motion (Ehrenfest’s Theorem). This provides a simple representation of the motion of 

the “center” of a wavepacket, but tells us nothing about complicated shapes and widths of 

wavepackets. 

Expectation values of state-space quantities 

†
j aj 

hcωe �Ej � (t) = 

�vj � (t) = (t)
a
 �� � � ��

†
j aj

2 
†
j � ��2 

+
a
 aj a

hcxe †
j aj

†aj aj+
 +
a
 .

4


†a1a1 +
 †a2a2For a polyad where P = 2v1 + v2 = 2 

�v2� = P − 2 �v1�


so one expects �v2� to oscillate opposite in phase and with twice the amplitude as �v1�.
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Resonance Operators 

See SDDM pages 646-649 and 694-700. 

Dynamics occur as a result of off-diagonal matrix elements of H. Dynamics are suppressed 

(or opposed) by large differences between diagonal elements of H. 

Suppose we partition Heff 

Heff = Hdiag + Hres 

where Hres is exclusively off-diagonal. Hres may be a sum of different resonance mechanisms 

Hres = Ok 

k 

and Ok can always be expressed as a sum of two (not necessarily Hermitian) terms 

Ok = Ωk + Ω†
k 

because Heff is Hermitian (because O†
k = Ok as defined here). Every anharmonic resonance 

has the form, for example 

Ωk = kaabbaa
†2 ab 

2 

then 

Ω† = k� 2 a†2 .k aabbaa b 

This means that we automatically know how to write Hres as 

Hres = Ok = (Ωk + Ωk
†). 

k k 

It will be informative to compute the expectation value of every Ok term for each plausible 

bright state pluck, which is expressed as 

ΨI (t) for ΨI (0) = φ0 
bright. 

We can ask questions: 

(i) What is the fractional importance of the kth resonance operator relative to the totality 

of resonance operators, for a given pluck? 

(ii) Which Fourier components of the �Hdiag� (t) are due to Ok? 

(iii) What is the term in H that is responsible for the time dependence of �Ok� (t)? 
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Let’s do some analysis 
d 

i� [�Ok� (t)] = �[Ok, H]� (t). 
dt 

If it is possible to evaluate [Ok, H] by operator algebra, then we know the operator responsible 

for the time dependence of any pluck of Ok. 

For a freely evolving, isolated system 

�H� = E. 

The total energy for any pluck state ΨI (t) is time-independent. 

This means that it is instructive to compare �Hdiag� to the corresponding expectation 

value of each of the resonance operators 

E = �Hdiag� (t) + �Hres� (t) 

= �Hdiag� (t) + �Ok� (t). 
k 

The dynamical features of �Hdiag� (t) “caused by” Ok will be those that have the same Fourier 

components but opposite phase as �Ok� (t). The fractional importance for a particular Ok 

relative to the totality of Ok terms is given by � T1 
lim dt �Ok� ≡ Eres,k 

T →∞ T 0 

Eres = Eres,k. 
k 

Thus the fractional importance of the kth resonance term is 

fk = 
Eres,k 

Eres 
.


The fractional importance of the kth resonance term will depend on which basis state is 

chosen as the initial pluck of the system. 

See Jacobson and Field, Chem. Phys. Lett. 320, 553 (2000). 
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“Intramolecular Radiationless Transitions” by M. Bixon 
and J. Jortner 

J. Chem. Phys. 48, 715-726 (1967). 

ABSTRACT 

In this paper we consider a theory for intramolecular radiationless transitions in an iso­

lated molecule. The Born-Oppenheimer zero-order excited states are not pure in view of 

configuration interaction between nearly degenerate zero-order states, leading to the broad­

ening of the excited state, the line shape being Lorentzian. The optically excited state can be 

described in terms of a superposition of molecular eigenstates, and the resulting wavefunc­

tion exhibits an exponential nonradiative decay. The linewidth and the radiationless lifetime 

are expressed in terms of a single molecular parameter, that is the square of the interaction 

energy between the zero-order state and the manifold of all vibronic states located within 

one energy unit around that state. The validity criteria for the occurrence of an unimolec­

ular radiationless transition and for exponential decay in an isolated molecule are derived. 

Provided that the density of vibrational states is large enough (i.e., exceeds the reciprocal 

of the interaction matrix element) radiationless transitions are expected to take place. The 

gross effects of molecular structure on the relevant molecular parameters are discussed. 
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