1.050 Solid Mechanics, Fall 2004
Problem Set 9 Solution

Problem 9.1
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Figure 1.1
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For the shear stress at the NA (at the left end of the beam), we get that
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From the stress transformation equations and the ¢’y, must be zero on the plane that have
maximum and minimum normal stresses, we get that

2
1277.3(cos 2¢)
cos2¢ =0
2¢ = 90°
¢ = 45°

Oy = —{GX % }(sin 2¢)+0,,(cos2¢) = 0

0

At the left end of the beam, the normal stress caused by the bending moment (oy) is zero.
Therefore, we get that
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For the shear stress at the point where the web meets the flange (at the left end of the
beam), we get that
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Note that the maximum normal stress caused by the shear force at the left end of the
beam is much less than the maximum normal stress caused by the beam bending at the
middle (pt.C) of the beam (1277.3 psi vs. 2229.5 psi). Therefore, the maximum normal
stress that you should use in the design of the beam is still that of the flexure formula at
the maximum bending moment (2229.5 psi). Also note that the shear force at the middle
of the beam is zero and hence have no effect on the maximum normal stress at that point.

Problem 9.2

The main differences between the ox from the three section are from the y/I factor. Let’s
look at the y/I factor of each case. Case 1, 2, and 3 represent the | section wood chip,
2x10, and 4x10 section, respectively. Also note that the moment of inertia, I, for a
rectangle section is bh®/12.
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Therefore, we get that o3 < ox1 < ox2 and =0.73 and —==0.1.46.
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Problem 9.3

In this solution, | show you how to derive the moment of inertia, I, using the direct
integration method which is different from the method used in the class (in the class you



use J to calculate I). Figure 3.1 shows the sketch of the solid and hollow circular section
with relevant dimensions for the calculation of the moment of inertia.
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Figure 3.1

For a solid circular section with radius of r:
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For a hollow circular section with radius of R and thickness of t:
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For a hollow circular section with small t, we get that
I, = %(4R3t+6R2t2)

From 27Rt =ar?, we get that
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Therefore, for the same area, the Ixnoiiow) 1S larger than lyeolia).
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