
1.105 Solid Mechanics Laboratory 
Fall 2003 

Experiment 2 

Experiment 2 consists of two separate experiments. In the first experiment, 2.1 you will verify static 
equilibrium consequences for a weight(s) suspended from a cable. 

In the second experiment, 2.2, you will determine the force/deflection relationship for a redundant 
structure built up of cables under pretension. Your report on this experiment will be due at the 
beginning of your lab session the week of 1 October. 

In both experiments you will be using some standard weights, large ones painted grey, smaller 
ones painted red. At the outset, measure and record the values of these weights using the balance 
scale on the cabinet near the entrance to the lab. Do a sampling of values of each weight and 
include an estimate of uncertainty in your measurement. 

Experiment 2.1a 

The figure shows the experimental set-up for 
the first part (of the first experiment). A cable 
is supported by two pulleys and loaded by 
two equal weights at its extremes, A and B. 
Take WA=WB = Wbig = One of the big 

weights.1 

WA 

W 

C 

L 

x 
θ 

BA 
A third weight, which you will vary, is sus­
pended from the cable at midpoint. The 
weight W is not quite free to slide along the 
cable so you will have to ensure it remains at WB 
midpoint by adjusting on occasion. 

L/2 

You will apply the load using a light chain and 
not so light pail hooked to point C. Since the 
chain and pail have weight, they will deflect the cable some. Hence your first reading for x, the ver­
tical displacement from level, will be with the chain plus pail. Don’t forget to measure their weight. 

Incrementally increase the weight W, continuing from this point, adding the smaller red weights to 
the pail. Measure, using the meter stick, the corresponding values of the vertical displacement x. 
Continue until the latter in nondimensional form, x/L, is in the vicinity of 1/2. 

Unload the system incrementally, again measuring and recording the displacement x. 

Experiment 2.1b 

In this part of the experiment we keep the interior weight (W0 in the figure) constant, equal to one 

of the big weights. and, in addition, fix the point of application to the cable2. The weights at the 

1. Be careful with units. Your rough data in your lab notebook should record measurements in the units of the 
instrument you are using, e.g., the dial gage indicator reads in increments of .001". Make conversions and 
report your results using a consistent system, either metric or english. 

2. This requires some hardware adjustments which your instructor will take care of. 
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ends of the cable, as in the prior experiment, are initially the same - hence the initial configuration, 
all three weights are equal, and each equal to one of the big weights. 

Now increment the weight WB at the right, start­
ing from W0. using the smaller red weights. 
(Use the chain hanging from the bottom hook of 
B and attach the smaller weights to the links of 
the chain underneath the grill structure). 

B Make measurements of both distances x and y 
(or L- y), at each loading using the meter stick. 
Make sure you associate an uncertainty with 

WB 
each kind of reading. 
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Unload incrementally and record x and y again. 
When finished, remove the middle weight and 
the chain for the weight at B but leave the two 
big weights attached to the ends. 

Report Contents 2.1 

Your report should be in the format: 

Summary (One or two paragraphs)

Introduction

Experimental Method

Results (including comparison with theory)

Conclusion

Appendix


In your results for 2.1a, you are to plot W/Wbig versus x/L (i.e., in nondimensional form). Compare 
to theory. (The tensions in the cable on either side of midpoint, assuming frictionless pulleys, are 
equal to Wbig. Static equilibrium of an isolation of the midpoint where the load is applied then gives 
a relationship between the tensions in the cable and the applied load. But the angle theta neces­
sarily enters into this equation. Theta, in turn is a function of x - a relationship derived from the 
geometry of the deflected configuration.  In this way you can construct a theoretical relationship 
between x/L and W/Wbig, (the tensions being known) 

For part 2.1b, make two plots of the data obtained, one for WB/W0 versus x/L and another for the 
ratio WB/w0 versus y/L. Show what theory predicts for these relationships on the same graphs. In 
this, make use of the analysis found in  Appendix A. One way to proceed is as follows: 

i) pick a value for θB 

ii) from the fact that FA=WA=W0 and the relationship FA = W ⋅ cos θB ⁄ sin (θ A + θB) derived from o 

equilibrium as in the appendix, compute a  value for θA. 

iii) The ratios x/L and y/L can then be found from the geometry of the deflected configuration for 
these values of θB  and θA. 

iv) The other equation derived from equilibrium gives WB/W0  (or FB/W0 ). 

FB = W ⋅ cos θ A ⁄ sin (θ A + θB)o 
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(Note: The analysis of Exercise 2.3 of the textbook, has a notation difference from that which is 
included in the Appendix. The notation in the Appendix is consistent with the notation used 
above). 

Elaboration of these cryptic instructions will be given in a session of 1.050, the companion subject. 

Experiment 2.2 

Here, we test the force-deflection behavior of a 
planar structure which includes two pre-ten-
sioned cables for support. Slots in the support at 
C will allow you, with the assistance of the lab 
instructor, to pretension cable BC.  Since the 
support at D is a frictionless pin, or as close to 
that condition as we can come, this will preten­
sion cable AB as well. 

Using a meter stick measure the dimensions 
between all pins. 

Experiment 2.2a 

A 

B 

C 

P, ∆ 

D 

First we will leave cable BC slack and incre­
mentally increase the load W at B and measure the corresponding deflection ∆ using the dial gage 
indicator. This will enable you to calculate the “stiffness” at B (in the vertical direction) of this, now 
statically determinate system. 

The dial gage indicator should be “preloaded” to some positive displacement, > .020 in. During 
loading, this will decrease. Record the actual scale reading. Compute the displacements later. 

In loading, use the red weights as increments and do not exceed ten, (10) pounds. Use the chain 
and pail to hold the loads. (Measure their weight before you start) Although the structure should 
not fail at this loading, the person reading the dial gage should wear safety glasses. 

Unload incrementally, recording displacements as you go. Record the zero load displacement. 

Repeat the proceedure, taking another data set. 

Experiment 2.2b 

Now, with the dial gage still in place, and all loading removed, adjust the support at C to take up 
the slack, then pretension BC until the dial gage indicates a vertical displacement of around .025". 
Do not exceed .035". 

Now again load the structure, using the chain and pail, at point B. Again use one pound incre­
ments but go to 20 pounds. Do not exceed 20 pounds. You should see the cable BC go slack 
before you reach this maximum load. 

Unload incrementally, recording displacements as you go. Record the zero load displacement. 

Repeat the proceedure, taking another data set. 

Finally, release the pretension by loosening the support at C, and read and record the dial gage. 

Report Contents 2.2 

Follow the same format as in Experiment 2.1. 
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In your results section, for 2.2a, plot load P versus deflection ∆ and determine the stiffness - i.e., 
the value of K in 

P= K ∆ 

by “best” fitting a straight line to the plotted data.


In your results section for 2.2b, the pretensioned, statically indeterminate system, plot load P ver­

sus deflection ∆. How does this plot differ from that of experiment 2.2a?


At maximum loading conditions, how much has the angle the cable AC makes with the horizontal 
member changed? 
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Appendix A 

Exercise 2.3– Show that the forces in cable AC and CB are given by 

FB = W cos θ A ⁄ sin (θ A + θB)o 

and 

FA = W cos θB ⁄ sin (θ A + θB)o 

We first isolate the system, making it a particle. Point C, where the line of action of the weight vec­
tor intersects with the lines of action of the tensions in the cables becomes our particle. 

The three force vectors, F
A

, F
B 

and Wo 
then must sum to zero for static equilibrium. Or 
again, the resultant force on the isolated particle 
must vanish. We meet this condition on the vector 
sum by insisting that two scalar sums – the sum of 
the horizontal (or x) components and the sum of 
the vertical (or y) components – vanish indepen­
dently. For the sum of the x components we have, 
taking positive x as positive: 

W 

θBθA 

FBFA 

x 

y 

C 

–FA cos θ A + FB cos θB = 0 

and for the sum of the y components, FA sin θ A + FB sin θB – W = 0 o 

A bit of conventional syntax is illustrated here in setting the sums to zero rather than doing other­
wise, i.e., in the second equation, setting the sum of the two vertical components of the forces in the cables 
equal to the weight. Ignoring this apparently trivial convention can lead to disastrous results, at least early on 
in learning one’s way in Engineering Mechanics. The convention brings to the fore the necessity of isolat­
ing a particle before applying the equilibrium requirement. 

We see that what we need to know to determine the force in cable AC and in cable CB are the 
angles θA and θB and the weight of the block, Wo. These are the givens; the magnitudes of the two forces, FA 

and FB are our two scalar unknowns. We read the above then as two scalar equations in two scalar 
unknowns. We have reduced the problem... show that... to a task in elementary algebra. To proceed requires 
a certain versatility in this more rarefied language. 

There are various ways to proceed at this point. I can multiply the first equation by sinθA, the sec­
ond by cosθA and add the two to obtain 

FB ⋅ ( sin θ A ⋅ cos θB + sin θB ⋅ cos θ A) = W cos θ Ao 

Making use of an appropriate trigonometric identity, we can write: 

FB = W ⋅ cos θ A ⁄ sin (θ A + θB)o 

Similarly, we find: 

F = W ⋅ cos θB ⁄ sin (θ A + θB)A o 
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Appendix B 

We want to determine the stiffness k of the cable alone. For this statically determinate structure, 
derive an expression for the force in the cable AB as a function of the structure geometry and the 
applied load from equilibrium considerations. Derive then the extension, δ, in the cable AB as a 
function of ∆, the vertical displacement of point B from compatibility of deformation. With these in 
hand, and using the measured values for the applied load and ∆, calculate pairs of values for the 
force in the cable, fAB and its elongation δ and plot fAB  versus δ. From this plot, determine the 
slope, the stiffness, k, of the cable. 

Note: For small deflections and rota­
tions, the extension of the cable AB is 
given by the projection of the vertical 
displacement of point B onto the cable. 

That is, compatibility of deformation 
requires: δ = ∆ sin φ 

∆ 
δ 

φ 

φ 

= ∆ sinφ 

A 

B 

fAB 

fBC 
φ 

P 
The force in the cable AB, fAB, in terms 
of the measured, applied load at B, is 
found from equilibrium of the “pin” at B. 

The stiffness, k, of the cable is then 
found from the slope of the graph of fAB 
versus δ. 

fAB =kδ 
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