
1.0 Appendix  - Dealing with Uncertainty 

1.1 Theory 

In making measurements, in doing experiments to evaluate the behavior of a structure, or 
more simply to determine the value of a property, the instruments we use, whether unaided 
eyesight or laser interferometer, have a limited resolution. There will always be some 
uncertainty in the measured value which is on the order of the fineness of scale. When we 
make a measurement, we should record an estimate of the associated uncertainty. This is 
part and parcel of a value, as inseparable as the measured quantity’s units. 

We might indicate the uncertainty in the Data Sheet below, as in your Pasta report, in the 
third row as +/- ?? mm and the units of the column quantity in the second row.: 

TABLE 1.  Data Sheet Format 

Spc 
# 

Length, L Height, h Span, s h/L R/L e|max s/L 

mm mm mm measd. graph 

+/- ? mm +/­ ? mm +/- ?mm +/­ +/­ +/­ +/­

1 

The question marks are to be filled in by the one(s) taking the measurement. Generally one 
estimates an uncertainty as one number, to be representative of a whole set of specimans 
subject to that measurement. For example, for the long strands, after measuring the 
lengths of several, make an estimate of uncertainty. That one number goes at the top of the 
column, replacing the questionmark. (You may want to record another estimate for the 
short specimans). 

Ultimately we want to know the uncertainty in the quantity we seek to determine - the 
strain at fracture. The question then can be put: How do all the uncertainties of these indi­
vidual, measurements combine and affect the uncertainty in the bending strain? Alterna­
tively, and more in line with the lingo of the trade: How do these uncertainties propagate 
through to final result? 

Consider a first step in moving from the measured values to the value for the ratio h/L. 
Given the measurements of L and h and associated estimates of uncertainties, call them uL 

and uh, what is the uncertainty in the ratio, h/L, or uh/l? 
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We proceed as follows: For any group of specimans of like kind - e.g., plain spaghetti 
strands in their long, original state - we expect the measurements of length L and of the 
deflected height h to show only small variations in the neighbohood of some nominal val­
ues, Ln hn. In this case, the value of the change in the quantity (h/L) can be aproximated, 
using a Taylor expansion, by 

∂ f ∂ f∆(h L) = ⎛ ⎞ ⋅ ∆L + ⎛ ⎞ ⋅ ∆h⁄ ⎝ ⎠  ⎝ ⎠∂L ∂h 

⁄ ⁄∆(h L)= (–h L
2 ) ⋅ ∆L + (1 ⁄ L) ⋅ ∆h 

Consider, for a moment, how one estimates the mean and variance of a linear function of 

two random variables.1 If Y depends upon X1 and X2 according to 

Y = a1 ⋅ X1 + a2 ⋅ X2 

then the mean, or expected value of Y, computed according to 
n 

1
Y = --- ⋅ ∑ Y i = E Y( )

n 
i = 1 

is a linear function of the means of the variables X1 and X2. If we now interpret our small 
changes in h and L as random variables, of zero mean, i.e., in the notation of the equation 

⁄ ⁄immediately above: ∆(h L)= (–h L
2 ) ⋅ ∆L + (1 ⁄ L) ⋅ ∆h 

With ∆L = 0 and ∆h = 0 then the mean of ∆(h/L) is also zero. In this case , 
we must push further to obtain an uncertainty estimate for the latter. We will use the vari­
ance. 

Returning to our general case, the variance of Y is given by: 

( )  = E Y  
2

Var Y ( )  – Y 
2 

Var Y ( 2 ( ( , )( )  = a1
2 ⋅ Var X1 ) + a2 ⋅ Var X2 ) + 2a1a2 ⋅ Cov X1 X2

In this, the covariance of X1 and X2 is computed according to 

Cov X1 X2 [(( , ) = E X1 – X1 ) ⋅ ( X2 – X2 )] 

Now if X1 and X2 are independent random variables, (as are the measurements h and L, 
i.e., we would not expect our measurement of h to be influenced by our measurement of L, 

1. Ang, A., Tang, Wilson, Probability Concepts in Engineering Planning and Design, Vol. I, John Wiley and 
Sons, New York, 1975, p191 ff. 
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assuming we are working with one set of specimans), then the covariance is zero and the 
last term vanishes from the expression for the variance. 

We now make a crucial step: We associate (or define, if you like) the uncertainty in an 
experimental value with its variance. In this way we can write: 

⁄ 2
Var(∆(h L)) = a1

2 ⋅ Var(∆L) + a2 ⋅ Var(∆h) 

or 

2 2 
uh L ⁄ 2 

⁄ = (h L
2 )

2 
⋅ uL + (1 ⁄ L)2 ⋅ uh 

where we have equated the uncertainties to the variances and, from our expression for the 
linear sum, identified 

⁄a1 = (–h L
2 ) and a2 = (1 ⁄ L) 

The above gives us a way to compute the uncertainty in the ratio h/L having (independent) 
estimates of the uncertainties of h and L, uh and uL 

In general, if Y is a function of X1, X2,....Xn, and the X’s are all independent, we can 
write: 

2 2 ⎛∂Y ⎞ 
2

2 ⎛∂Y 2
2⎛∂Y ⎞ 

2 
⋅ u1 + ⎝∂ X2

⎠ ⋅ u2........+⎝∂ X ⎠
⎞ ⋅ u
nuY = ⎝∂ X1

⎠ 
n 

1.2 Example: Two Resistors in Parallel 

Taking an example from electrical cir­
cuits (we will be building some when 
we use strain gages), consider two resis­
tors in parallel. Without too much loss 
in generality, we take them to be equal, 
say 10 kilo-ohms each. 

An estimate of the uncertainty in the 
effective resistance R where 

R2R2

R= R1*R2/(R1+R2

= 10 kohm= 10 kohm 

) = 5 Kohm 
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1 1
R = ------ + -----­

R1 R2 
              is, after taking the partial derivatives, and noting they 

or 

R = (R1 ⋅ R2) ⁄ (R1 + R2 ) 

⎞ 4 ⎞ 42 2 2⎛ R2 ⎛ R1are squared: u R = ------------------ ⋅ u2 + ------------------ ⋅ u2⎝ R1 + R2
⎠ ⎝ R1 + R2

⎠ 

1
If R1 = R2, this simplifies and can be written as; (check it out): (uR ⁄ R) = ------- ⋅ (u1 ⁄ R1 )

2 

This says that the uncertainty in the effective resistance, of the two in parallel is less than 
the uncertainty (expressed as a percentage) of either of the two taken alone! Can you 
explain this, perhaps counter-intuitive result? 

1.3 Example: Propagation of Uncertainty with Pasta. 

We consider, as an example, estimating the uncertainty in the bending strain at failure of 
the thickest pasta and only the case where the length is the original length. Our goal is to 
see how uncertainties in the measured values of L, h, and r, (actually 2r, the diameter), 
propagate through to produce an uncertainty in the bending strain, ε. We can then see if 
this brackets the results obtained from experiment on the 15 specimen. If so, then we have 
some confidence that our theory of failure is correct and that we have not overlooked some 
important factor - in the physical composition and behavior of the pasta and/or in our mea­
surement technique that might explain a broader range of values of ε. 

2r 

h 

s 

L 

To determine the maximum bending strain at 
failure, we first make several measurements of 
the diameter, d, along a single strand to check 
its uniformity and across several different-
strands. This produces, not just a nominal 
value for the diameter, e.g., 1.9 mm, but also a 

value for the associated uncertainty1, e.g., 
0.1mm. 

1.3.1 Setting Uncertainties of Measured Values. 

For each of the 15 strands tested, we measured the original length L, e.g., 240.0 mm, and 
estimated an associated uncertainty, e.g., 1mm.  [Note: Strands of different length, L, of the same 
radius, will fail at different heights, h. But theory states that the radius of curvature should be the same, 

1. The uncertainty in this instance may be taken as, not just the uncertainty due to the limited resolution of 
the calipers and our imperfect interpolation capabilities, but also the variability in diameter from speci­
men to specimen. In a more detailed experiment we might be required to pin down more precisely the 
characteristics of the distribution of the diameter (radius) considered as a random variable. 
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across all specimens. The uncertainty in this instance should not include the variation in original length. If, 
after analyzing the outcome of the experiments on the shorter strands of the same radius, we find our propa­
gated uncertainty does not bracket the range of ε, we can conjecture that length does matter in some way and 
look for a physical or experimental reason why]. 

Applying the end load, we carefully noted the height, h, e.g., 40 mm, and span, s, e.g., 220 
mm, just prior to fracture. After several trials, we made estimates of their associated 
uncertainties, e.g., +/- 2 mm and +/- 2 mm respectively. 

Summarizing, letting the bold represent nominal values (later to be replaced by mean val­

ues), we write1 

d = d + ud  = 1.9 +/- 0.1 mm 

L = L + uL = 240 +/- 1.0 mm 

h = h + uh = 40 +/- 2.0 mm 

s = s + us = 220 +/- 2.0 mm 

1.3.2 Propagation of Uncertainties. 

As the simplest example of “propagation of uncertainty” consider how we obtain the 
uncertainty in the radius once having estimated the uncertainty associated with our mea­
surement of the diameter. The radius is linearly related to the diameter; it’s just one-half 
the diameter. Our variance of the radius is then given in terms of the variance of the diam­

eter by 2 

Var(r) = (1/2)2 Var(d) 

or, since we interpret the variance as the square of the uncertainty, we have ur = (1/2) ud , 
and so 

r = r + ur  = 0.95 +/- 0.05 mm. 

This, at first sight, appears strange, i.e., we have a smaller uncertainty in the radius than 
the diameter. But note that the uncertainty relative to the nominal value is the same, for 

ur/r = ud/d =.05/.95 (or 1.0/1.95) = .053 = 5.3% 

Representing uncertainties as percentages of their nominal values will be pursued in what 
follows. 

Recall the process for finding the strain: For each specimen, we compute the ratio of the 
height, h, at failure to the original length, L. With a value in hand for this ratio, we go to 
the graph and determine a value for the ratio of the radius of curvature at mid span, R, to 

1. The nominal values are, to a certain extent, artificial; the estimates of uncertainty more real. 

2. There is nothing approximate about this relationship in this instance since the relationship between diam­
eter and radius is linear. 
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-----

the original length. Knowing L, we can determine R. Knowing R and the radius, r, we can 
determine the strain. 

Our propagation of uncertainty follows this same route. As a first step we determine an 
uncertainty to associate with the ratio (h/L). 

We have from before: 

⎛ ⎞ 2 2 ⎛ ⎞ 2 1 2h 1 2 ⁄ 
uh L ⎝ ⎠  --

L 
­⁄ = ------ ⋅ uL + ⎝ ⎠ ⋅ uh 

L2 

Dividing both sides by (h/L) we can write this in terms of uncertainties relative to the 
nominal values of their associated quantities. 

uh L uL 
2 uh 

2 1 2
⁄ ⎛ ⎞

⁄ 
---------------- = ⎛ ⎞ + ----­
(h L) ⎝ ⎠  ⎝ ⎠⁄ L h 

With 

uL/L = 1/240 = .0042 (note: less than 1%), 

and 

uh/h = 2/40 = .050 (5.0%) 

we obtain 

uh L ˙⁄---------------- = 0.0502 (5%)
(h L)⁄ 

(Note how the uncertainty in h predominates relative to the uncertainty in L). 

With the ratio of the nominal values  (h/L) = 40/240 = 0.167, the uncertainty of the ratio 
itself is 

uh/L = 0.0084 

Next, we propagate this measure through to an uncertainty of R/L using the graph. To do 
so, think of the plot of R/L versus h/L as a one-to-one functional relationship, which it is, 
to which we can fit a linear approximation in the vicinity of h/L = 0.167 by graphical 
means. 
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This I have done, drawing a line tangent to the curve at this point. 

h/L

 R/L 
s/L 

R/L 

1.18 

0.3220.167 

0,569 

We have, as a linear approximation, 

R/L = 1.18 - (1.18/.322)* (h/L) = 1.18 - 3.66(h/L) 

Interpreting the square of the uncertainty as the variance and noting that 
∂ 

h L⁄( )∂ 
R L⁄( ) = 3.66 – 

we have 

uR L⁄ = 3.66( )2[ ⋅ uh L⁄( )2 ]
1 2⁄ 

= 0.0307 

and with 

R/L = .568, uR/L / (R/L) = .054 (5.4%) 

I suggest another uncertainty associated with reading the graph. Think of the ordinate 
scale as a measuring stick. Its resolution is .05. There is some additional uncertainty in fix­
ing R/L due to inaccurate readings of the scale, e.g., +/- 0.02. How to account for this? 
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-----

One way is to think of the intercept of our linear approximation as being another indepen­
dent random variable, z, (or if you like, it bounces up and down from one reading to 
another). Write 

R/L = z - 3.66(h/L) where z = z + uz  = 1.18 +/- 0.02 

Then our estimate of uncertainty in R/L becomes, according to our consideration of vari­

ance of the sum of two random variables,1 

2 2 1 2
uR L = [1 ⋅ u 

2
+ (3.66) ⋅ uh L ]

⁄ 
= 0.0367⁄ z ⁄ 

uR L⁄So ---------------- = 0.0645 ( 6.5%)
(R L)⁄ 

To find the uncertainty in the strain, which is our goal, we need to take this process one 
step further. Writing 

ε = r/R = (r/L) / (R/L) 

we have for the uncertainty in the strain: 
2 1 2⁄

⁄ ⁄uε ⎛ur L⎞
2

+ ⎛
uR L⎞----- = ---------- -----------

ε ⎝ r L⎠ ⎝R L⎠⁄ ⁄ 

so we need one additional bit of information, namely 

ur L u 2 uL 
2 1 2

⁄ r ⎛ ⎞
⁄ 

---------- = ⎛ ⎞ + -----
r L ⎝ ⎠  ⎝ ⎠⁄ r L 

which with r= r + ur = 0.95 +/- .05 mm and L = L + uL  = 240 +/- 1mm gives 

ur L⁄---------- = 0.053 (5.3%)
r L⁄ 

With this, and our already determined uncertainty for R/L, our final result of this propaga­
tion of uncertainties gives  ue/ε = 0.084 (8.4%) 

which, with our nominal value of strain ε = r/R  = 0.95/136.5 = 6.96 E-03 

which says that our values should lie within the range  6.4E-03 to 7.6 E-03. 

1. Note we can not express this in terms of relative values so neatly. 
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