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Introduction to
Matrix Algebra

1-1. DEFINITION OF A MATRIX

An ordered set of quantities may be a one-dimensional array, such as
a1, Az, -« 5 Uy

or a two-dimensional array, such as

Agy, 12y 0 -5 Ayp
A21, 022, - - -5 A2y .

Amis Gm2s -« + > Amn

In a two-dimensional array, the first subscript defines the row location of an
element and the second subscript its column location.

A two-dimensional array having m rows and » columns is called a matrix
of order m by n if certain arithmetic operations (addition, subtraction, multi-
plication) associated with it are defined. The array is usually enclosed in square
brackets and written as*

Ay Q2 "7 Qg

a a v qa

21 G2z :2n - [aij] ~a (1-1)
Amy  Gpmz "' Omp

Note that the first term in the order pertains to the number of rows and the
second term to the number of columns. For convenience, we refer to the order
of a matrix as simply m x n rather than of order m by n.

* In print, a matrix is represented by a boldfaced letter.
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A matrix having only one row is called a row matrix. Similarly, a matrix
having only one column is called a column matrix or column vector.* Braces
instead of brackets are commonly used to denote a column matrix and the
column subscript is eliminated. Also, the elements are arranged horizontally
instead of vertically, to save space. The various column-matrix notations are:

€11 ¢y
C C
.21 = _2 = {Cb Cz,...,C,,} = {Ci} = C (1“2)
Cut Cy

If the number of rows and the number of columns are equal, the matrix is said
to be square. (Special types of square matrices are discussed in a later section.)
Finally, if all the elements are zero, the matrix is called a null matrix, and is
represented by 0 (boldface, as in the previous case). -

Example 1-1

3 x 4 Matrix

' 2 -1 2
-7 1 -8
2 4 -3 1

W

1 x 3 Row Matrix

34 2]
3 x I Colurmn Matrix
3 3
45 or |4for{3,4,2}
2 2

2 x 2 Square Matrix

-]
o o)

* This is the mathematical definition of a vector. In mechanics, a vector is defined as a quantity
having both magnitude and direction. We will denote a mechanics vector quantity, such as force
or moment, by means of an italic letter topped by an arrow, e.g,, F. A knowledge of vector algebra
is assumed in this text. For a review, see Ref. 2 (at end of chapter, preceding Problems).

2 x 2 Null Matrix
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1-2. EQUALITY, ADDITION, AND SUBTRACTION OF MATRICES

Two rpatrices, a and b, are equal if they are of the same order and if cor-
responding elements are equal:

a=>» when aij = bij (1—‘3)
Ifa is of order m x n, the matrix equation
a=D)h
corresponds to mn equations:
o = i=1,2,...,m
Y Yooj=1,2...,n

Addition and subtraction operations are defined only for matrices of the same
order. The sum of two m x n matrices, a and b, is defined to be the m x n
matrix [a;; + b;;]:

[ai;] + [by] = [as; + by] . (1-4)

. lai;] = [by] = [a; — by] (1-5)
For example, if
1 2 1 0 -1 -1
aﬁ[l‘ 0 ~1} b‘[z 1 0}
1 1 0
+b= g
? [4 1 -1]

13 2
2 [-2 ~1 —1]

It is obvious from the example that addition is commutative and associative:

Similarly,

then

and

a+b=>b+a (1-6)
at+b+c)=@+b)+ec 1-7)

1-3. MATRIX MULTIPLICATION

' Thcj, product of a scalar k and a matrix a is defined to be the matrix [kaj;],
in which each element of a is multiplied by k. For example, if

k=5 and a=[‘2 7]
21

la — —~10 +35
10 5

then



[} INTRODUCTION TO MATRIX ALGEBRA CHAP. 1
Scalar multiplication is commutative. That is,
ka = ak = [ka,;] (1-8)

To establish the definition of a matrix multiplied by a column matrix, we
consider a system of m linear algebraic equations in n unknowns, xy, X,, . - ., X,:

ayyXy + apXy + 0 4 AgeXy =
Ap1Xy + AppXy 4+t A dgpXy = Cy (1-9)
AmiXy + GpaXy + 2 + amr;xn = Oy

This set can be written as

n

Y, auxy = ¢ i=1,2,...,m ()
k=1 -
where k is a dummy index. Using column matrix noéation, (1-9) takes the form
, {i aikxk} = {¢;} i=1,2,...,m (1-10)
k=1
Now, we write (1-9) as a matrix product:
dfd =) L pRn -1

Since (1~10) and (1-11) must be equivalent, it follows that the definition
equation for a matrix multiplied by a column matrix is

ax = [aij] ’{Xj} = {kgl aikxk} i=12.....,m (1*12)

This product is defined only when the column order of a is qual to the row
order of x. The result is a column matrix, the row order of which is equal to
that of a. In general, if a is of order » x s, and x of order s x 1, the product
ax is of order r x 1.

Example 1-2

M@ + (-1B3) -1
ax ={(8)2) + (—4)3), =< 4
0)2) + 3)3) 9
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We consider next the product of two matrices. This product is associated
with a linear transformation of variables. Suppose that the n original variables
X1, X2,. .., X, in (1-9) are expressed as a linear combination of s new variables
VisYar ey ¥st

Xp = Z bkjyj k= 1, 2,..‘,71 (1—13)
j=1

Substituting for x, in (1-10),

{i aij(i bkj)’j)} ={a} i=1L2....m (@)

=1

Interchanging the order of summation, and letting

= i=1,2,....,m
— . b N 2 < > _ 4
Pu=ewb (1-14)
the transformed equations take the form
{Z pllyj} = {Ci} i: 1525~"7m (1“15)
=1

Noting (1-12), we can write (1-15) as
py =c¢ (1-16)

where pism x sandyis s x 1. Now, we also express (1-13), which defines
the transformation of variables, in matrix form,

X = by (1-17)
where bis n x s. Substituting for x in (1-11), . ‘
aby =¢ , ‘ (1-18)

and requiring (1-16) and (1-18) to be equivalent, results in the following
definition equation for the product, ab:

i=1,2...,m
ab = [aik] [bkj] = [leJ k = .1, 2,...," (1*19)
ji=12,...,s

n

pij = Z aikbkj

This product is defined only when the column order of a is equal to the row
order of b. In general, if 4 is of order  x 7, and b of order n x g, the product
abis of orderr x g. The element at the ith row and Jth column of the product
is obtained by multiplying corresponding elements in the ith row of the first
matrix and the jth column of the second matrix.
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Example 1-3
~ 1 ? L[t roo -t
= “lo 1 -1 3
02

OO+ OO | MW +OW ] MO+ 0D b0+ 00
ab = | (= 1)(1) + (DO | (= D) + O | (=DO + D=1 L= + (MB)
O+ Q0| OW+@M1 OO +E@X-1 [ O-1+ 0

+1 +1 0 -1
ab=1|-1 0 -t +4
0 +2 -2 +6

If the product ab is defined, a and b are said to be conformable in the order
stated. One should note that a and b will be conformable in either order only
when a is m x nand b is n x m. In the previous example, a and b are con-
formable but b and a are not since the product ba is not defined.

When the relevant products are defined, multiplication of matrices is as-
sociative,

a(bc) = (ab)e (1-20)
and distributive, '
a(b + ¢) = ab + ac
(b +cla =ba + ca (1-21)

but, in general, not commutative,
ab # ba (1-22)

Therefore, in multiplying b by a, one should distinguish premultiplication, ab,
from postmultiplication ba. For example, if a and b are square matrices of order

2, the products are
a1 a2 || bus blz] _ [anbu + agabyy | oanbis + a‘leZZ]
az1 Q22 by1 bay ay:1b1y + Gz2b21 I| az1b1a + az2b32
by bz || au alz] . [buau + bi202y I byia:2 + blZaZZ]
= |
by baa a2 Q22 byiay; + byaazy 1 bai@rz + b22022
When ab = ba, the matrices are said to commute or to be permutable.

1-4. TRANSPOSE OF A MATRIX

The transpose of a = [a;] is defined as the matrix obtained from a by
interchanging rows and columns. We shall indicate the transpose of a by

SEC. 1-4 TRANSPOSE OF A MATRIX 9

a’ = [daf]:

dy1 Qiz ayn |
_ dzy Az """ dp
a=la;]=]. ; "
Gnxn) : : : (1-23)
Uy Am2 Qoun
agr Qa1 "7 Gy
T _ T Qyp Oz "7 4
a [afi] =1 - . Sm2
(n X m) :
Aun  Gan Conn_|

. 'I‘ . .
The element, a;;, at the ith row and jth column of a”, where now i varies from 1

to n and j from 1 to m, is given by

T

al = a; (1-24)
where a;; is the element at the jth row and ith column of a. For example,
32
a=1|7 1 aT = l::’: 7 5]
5 4 2 1 4

Since the transpose of a column matrix is a row matrix, an alternate notation
for a row matrix is
[as, az, . .. an] = {ai}T (1-25)
W; consider next the transpose matrix associated with the product of tWo
matrices. Let
p = ab (a)
whgre aism x nand b is n x 5. The product, p, is m x s and the element,
Di js 1s

" i=12...,m
p - ai b 3 b 3 3
i kzl Kok ,] = ls 2,7~~"S (b)
The transpose of p will be of order s x m and the typical element is
pij = pi ©

where now i = 1,2,...,sand j = 1,2,...,m Using (1-24
write (0) a5 g ( ) and (b), we can
u z - i =1,2,...,s
plT = a.b ;= sz T I s 43 s
’ 121 A k‘él K =12,....,m (d)
It follows from (d) that -
p” = (ab)” = bTa’ (1-26)

Equation (1-26) states that the transpose of a product is the product of the
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transposed matrices in reversed order. This rule is also applicable to mulitiple
products. For example, the transpose of abc is

(abe)” = cT(ab)” = ¢’b"a” (1-27)
Example 1-4
3 2 5
a=|7 1 b= {_ 1}
5 4
4
ab = <13 @)’ =[4 13 6]
6
Alternatively,

307 _
(ab)” = bTa” = [2 —1][; | i}=[4 13 6]

1-5. SPECIAL SQUARE MATRICES

If the numbers of rows and of columns are equal, the matrix is said to be square
and of order n, where n is the number of rows. The elements a;; (1 = 1, 2,.. .., h)
lie on the principal diagonal. If all the elements except the prxnc1g>al~d1ag011al
elements are zero, the matrix is called a diagonal matrix. W@ will use d for
diagonal matrices. If the elements of a diagonal matrix are all unity, t‘hc diagonal
matrix is referred to as a unit matrix. A unit matrix is usually indicated by I,

where n is the order of the matrix.

Example 1--5

Square Matrix, Order 2

Diagonal Matrix, Order 3

Unit Matrix, Ovder 2
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We introduce the Kronecker delta notation:

AT 4-29
With this notation, the unit matrix can be written as
L=1[0;] 4j=12...,n (1-29)
Also, the diagonal matrix, d, takes the form
d = [di6;;] (1-30)
where d;, ds, . . ., d, are the principal elements. If the principal diagonal elements
are all equal to k, the matrix reduces to '
[kdi;] = Kk[0i;] = K1, (1-31)

and is called a scalar matrix.
Let a be of order m x n. One can casily show that multiplication of a by a
conformable unit matrix does not change a:

al, = a

La=a (1-32)

A unit matrix is commutative with any square matrix of the same order.
Similarly, two diagonal matrices of order n are commutative and the product
is a diagonal matrix of order n. Premultiplication of a by a conformable
diagonal matrix d multiplies the ith row of a by d; and postmultiplication
multiplies the jth column by d;. ‘ ‘

o 2 o)=L

Example 1-6

e =)

A square matrix a for which a; = a;; is called symmetrical and has the
property thata = a”. Ifa; = —a; (i # j) and the principal diagonal elements
all equal zero, the matrix is said to be skew-symmetrical. In thiscase,a’ = —a.
Any square matrix can be reduced to the sum of a symmetrical matrix and a
skew-symmetrical matrix: '

a=b+c
by = 3a;; + az)
Loyt (1-33)
¢ij = zlay — ap)
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The product of two symmetrical matrices is symmetrical only when the matrices
are commutative.* Finally, one can easily show that products of the type
(aTa) (aa”)  (a"ba)

where a is an arbitrary matrix and b a symmetrical matrix, result in symmetrical

matrices.
A square matrix having zero elements to the left (right) of the principal

diagonal is called an upper (lower) triangular matrix. Examples are:

Upper Triangular Matrix

~3
o

Lower Triangular Matvix

300
570
2 1 4 |

Triangular matrices are encountered in many of the computational procedures
developed for linear systems. Some important propertics of triangular matrices
are:

1. The transpose of an upper triangular matrix is a lower triangular matrix

and vice versa.
2. The product of two triangular matrices of like structure is a triangular
matrix of the same structure.

[“11 0 }[”11 0 ]:[‘f‘_{{’i ,,,,,,,,,,,, Lo ]
a1 A2z || D21 b2z ayibyy + azabay | axzbas

1-6. OPERATIONS ON PARTITIONED MATRICES

Operations on a matrix of high order can be simplified by considering the
matrix to be divided into smaller matrices, called submatrices or cells. The
partitioning is usually indicated by dashed lines. A matrix can be partitioned
in a number of ways. For example,

|
ayy Q12 3 Ayy iz Q3 Qyy Q12 | Qi3
[ T (S 2
a = {dyy Gy Az3f = |y Q22 J dy3 | = |dz1 Q22 | d23
a3y Aszz Qs;z a3y A3z | dss dy1 43z | dss

Note that the partition lines are always straight and extend across the entire
matrix. To reduce the amount of writing, the submatrices are represented by

* See Prob. 1-7.
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a single symbql. We will use upper case letters to denote the submatrices
whenever possible and omit the partition lines.

Exampie 1-7
We represent
dyy  dyy { dis
A=y a4y { dz;s
31 a3 r a3z
as
a= [Au sz] Ay A;z
= or a= .
Az Aj A, Ay,
where

dj1 dyy a3
All = A, =
Az Az (2%

Az = {as; as;] Az = [aas]

If two ma.trices of the same order are identically partitioned, the rules of
matrix addition are applicable to the submatrices. Let

Ay Ap » By, By, '
a = b = —
[Azx As B, Bzz] (1-34)
where B;; and A;; are of the sume order. The sum is |
A11 -+ B11 ! A + B i .
a + b = s I _.__{_2,,._....*.1,5 —
[Azx + By | Azy + Bzz] (1-35)

The rules of matrix multiplication are applicable to partitioned matrices
provided that the partitioned matrices are conformable for multiplication. In
general, two partitioned matrices are conformable for multiplication if the
partitioning of the rows of the second matrix is identical to the partitioning of
the columns of the first matrix. This restriction allows us to treat the various
submatrices as single elements provided that we preserve the order of mul-
tiplication. Let a and b be two partitioned matrices:

i=1,2...,N

b= [B;] i=12....M (1-36)
k=1,2,...,8

We can write the product as
¢ =ab = [Cy]
M .
= l= 1! 2,...,N
Cy = j=21 AiBj k=125 . (1-37)

when the row partitions of b are consistent with the column partitions of a.
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As an illustration, we consider the product
ayy ayz ags| [by
ab = |a,; ay; ay3] {bs
asy a3y asz| |bs
Suppose we partition a with a vertical partition between the second and third
columns.

!
ayy 4y | 43
i
a = |dz1 Ay ! Qa3 | = [Aquz]
a3y asz; | das

For the rules of matrix multiplication to be applicable to the submatrices ot." a,
we must partition b with a horizontal partition between the second and third

rows. Taking .
by :
B
b=<{byp = {B“}
by 21

-

the product has the form
B
ab = [AuAlz]{ 11} = A;Bi + AByy
BZL

The conformability of two partitioned matrices does not depepd on the
horizontal partitioning of the first matrix or the vertical partitioning of the
second matrix. To show this, we consider the product

ayy iz ays| | by b
ab = |ay; a2y ax3| | b2 by
a3y a3z dszf | bs; bi,

Suppose we partition a with a horizontal partition between the second and
third rows:

agy Qg2 dy3
a a a a At
= 21 22 231 =
Ay

Since the column order of A;; and A, is equal to the row order of b, no
partitioning of b is required. The product is :

CTAuT, [Aub
ab = [Am] "= Ab

As an alternative, we partition b with a vertical partition.

byy | by
b = 1by E bzz :[BMBIZ]
by | b3,

[
In this case, since the row order of B;; and B;, is the same as the column
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order of a, no partitioning of a is necessary and the product has the form
?lb = a[BuBlz] = [aBy; | aB;,]

To transpose a partitioned matrix, one first interchanges the off-diagonal
submatrices and then transposes each submatrix. If

r

Ay Ay o Ag,
a = Azx Azz e AZn
Aml Amz e Amn
then - (1-38)
FAL A£1 e A:Zl
al — Afz Agz T AZIZ
AT, AL - Al

A particular type of matrix encountered frequently is the quasi-diagonal
matrix. This is a partitioned matrix whose diagonal submatrices arc square of
various orders, and whose off-diagonal submatrices are mull matrices. An
cxample is

a=|0 dz; azs
0 azz aszs

which can be written in partitioned form as

Ay O .
a = [0 AZ] = [Ai()ij]

a; a
Ay = [ay] A, = [ 2 23]

a3z Qsz

where

and 0 denotes a null matrix. The product of two quasi-diagonal matrices of
like structure (corresponding diagonal submatrices are of the same order) is
a quasi-diagonal matrix of the same structure.

AL 0 - 0[B, 0 -0 AB; 0 0 )

0 A, -0 ({0 B, -~ 0 0 AB, - 0

s b i S : (1-39)
0 0 - A0 0 B Jo o - AB

where A; and B; are of the same order.
We use the term quasi to distinguish between partitioned and unpartitioned
matrices having the same form. For example, we call

1-40
l:Au Az (1-40)

a lower quasi-triangular matrix.
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1-7. DEFINITION AND PROPERTIES OF A DETERMINANT

The concept of a determinant was originally developed in cognection with
the solution of square systems of linear algebraic equations. To ‘111ustrate how
this concept evolved, we consider the simple case of two equations:

Ay1Xy + AypXy = ¢ (a)
Az1Xy + Qz2X; = €3

Solving (a) for x, and x,, we obtain

(@11G2; — @12031)X1 = C1a35"— €244, (b)
(a11G22 ~ @12821)%X; = — €131 + Calyy

The scalar quantity, a, ;a,, — @,a,,,is defined as the determinant of the secpn@—
order square array a;; (i, j = 1, 2). The determinant of an array (qg matrix) is
usually indicated by enclosing the array (or matrix) with vertical lines:

i = |3| = AyyQyy — dy2d;4 (1-41)
day A2
We use the terms array and matrix interchangeably, since they are synony-
mous. Also, we refer to the determinant of an nth-order array as an nth-or(?er
determinant. It should be noted that determinants are associated only with
square arrays, that is, with square matrices.

The determinant of a third-order array is defined as

dyy diz 413 +ay1072033 — A1103303;
Gz1 Gz dp3| = —d13021433 + dy202303, (1~42)
a3y dzz dszs +day30z1a3; — A1307203

This number is the coefficient of x,, x,, and x3, obtained when t.he third-order
system ax = ¢ is solved successively for x,, x,, and x;. Comparing (1-41) and

{1-42), we see that both expansions involve products which have the following

properties:

1. Each product contains only one element from any row or column and
no element occurs twice in the same product. The products differ only

in the column subscripts. _
2. The sign of a product depends on the order of the column subscripts,

e.g, +0a,,0,,053 and —a, ,a,305,,
These properties are associated with the arrangement of the column .subscrifots
and can be conveniently described using the concept of a permutation, which

is discussed below. ' _ ’

A set of distinct integers is considered to be in natural order if each mtege;r
is followed only by larger integers. A rearrangement of the natural order is
called a permutation of the set. For example, (1, 3, 5) is in natural order and
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(1,5,3)is a permutation of (1, 3, 5). Ifan integer is followed by a smaller integer,
the pair is said to form an inversion. The number of inversions for a set is defined
as the sum of the inversions for each integer. As an illustration, we consider
the set (3, 1, 4, 2). Working from left to right, the integer inversions are:

Integer Inversions Total
3 (3, )3, 2) 2
1 None 0
4 4,2) 1
2 None 0
3

This set has three inversions. A permutation is classified as even (odd) if the
total number of inversions for the set is an even (0dd) integer. According to
this convention, (1, 2, 3) and (3, 1, 2) are even permutations and (1,3,2)isan
odd permutation. Instead of counting the inversions, we can determine the
number of integer interchanges required to rearrange the set in its natural order
since an even (odd) number of interchanges corresponds to an even (odd)
number of inversions. For example, (3, 2, 1) has three inversions and requires
one interchange. Working with interchanges rather than inversions is practical
only when the set is small.

Referring back to (1-41)and (1 ~42), we see that each product is a permutation
of the set of column subscripts and the sign is negative when the permutation
1s odd. The number of products is equal to the number of possible permutations
of the column subscripts that can be formed. One can casily show that there
are n-factorial* possible permutations for a set of n distinct integers.

We let (g, a5, ..., a,) be a permutation of the set (1,2, ..., n) and define

eaﬂz R as

Coarmy = +1 when (e, o, . . ., ) is an even permutation (143
Coray gy = —1 when («;, @, . . ., «,) is an odd permutation

Using (1-43), the definition equation for an nth-order determinant can be
written as

iy iz Tt Ay,
O S it G, (148
éf;n L:'nl T ‘:lnn

where the summation is taken over all possible permutations of (1, 2,- . ., n).

* Factorial n = n! = n(n — Dn — 2)--- Q)1).
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Example 1-8

The permutations for n = 3 are

o, =1 ay =2 oy =3 eyz3 = +1
op =1 =3 o03=2 e3=-1
oy =2 oy =1 o3 =3 ey13 = —1
o =2 o, =3 oy =1 €331 = +1
o =3 ay =1 oz = 2 ez = +1
oy =3 oy = 2 a3 = 1 €35, = —1
Using (1-44), we obtain
Qg1 4i2 dys Ay1022033 — 411082303,
Qz1 Gz2 dz3| = —Q13021433 + A1202303,
asy Qsz; dszs +0y3021032 — 033022033 °

This result coincides with (1-42).

The following properties of determinants can be established™ from (1-44):

1. If all elements of any row (or column) are zero, the determinant is zero.

2. The value of the determinant is unchanged if the rows and columns are
interchanged; that is, |a”] = |al.

3. If two successive rows (or two successive columns) are interchanged, the
sign of the determinant is changed.

4. Ifall elements of one row (or one column) are multiplied by a number k,
the determinant is multiplied by k.

5. If corresponding elements of two rows (or two columns) are equal or in
a constant ratio, then the determinant is zero.

6. If each element in one row (or one column) is expressed as the sum of
two terms, then the determinant is equal to the sum of two determinants,
in each of which one of the two tcrms is deleted in each element of that
row (or column). :

7. If to the elements of any row (column) are added k times the cor-
responding elements of any other row (column), the determinant is
unchanged.

We demonstrate these properties for the case of a second-order matrix. Let
aq; ‘a
a= [ 11 12]
a1 a2

Ial = Q13033 — Q12021

The determinant is

Properties 1 and 2 are obvious. It follows from property 2 that [a”| = |a|. We

* See Probs. 1-17, 1-18, 1-19.
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illustrate the third by interchanging the rows of a:
a
2 = [ 21 Q22
a1 iz
la/f = d211y — Apilyy = *lal

Property 4 is also obvious from (b). To demonstrate the fifth, we take

ay; = kay, ay; = ka
Then 22 12
[a‘ = ay(kay,) — ayz(kay;) = 0
Next, let
ayy = by + ¢y Ay = byy + ¢y
According to property 6,
lal = [b[ + |c]
where
by by ¢y €
lb, - . 2 IC] — 11 12
21 Qa3 dyy Ay

This result can be obtained by substituting for a,, and ay, in (b). Finally, to
illustrate property 7, we take '

biy = ayy + kay,

bia = ay; + kay,
by = a5,
bys = ay,

Then,
‘bi = (a1y + kayy)az; — (ay; + kayz)ay, = '3!

1-8. COFACTOR EXPANSION FORMULA

If the row and column containing an element, g; j» in the square matrix, a,
are deleted3 the determinant of the remaining square array is called the minor
of a;, 'and is denoted by M,;. The cofactor of a;, denoted by A, is related to
the minor of M;; by

Ay = (= )M, 1-45 |
As an illustration, we take ! ’ ( )
3 28
a=|1 7 4
5 31
The values of M;; and A;; associated with a3 and a,, are
3 2
Mjys = ‘5 3 = -1 A2z = (—1)’M; = +1
, 38
M22=15 I'Z —37 A22=(~1)4M22= —37
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Cofactors occur naturally when (1-44) is expanded* in terms of the elements
of a row or column. This leads to the following expansion formula, called
Laplace’s expansion by cofactors or simply Laplace’s expansion: T

[l = 3 apdu = Y. aydy; (1-46)
k=1 k=1

Equation (1-46) states that the determinant is equal to the sum of the products
of the elements of any single row or column by their cofactors.

Since the determinant is zero if two rows or columns are identical, if follows
that

Y, Ay =0 r#
= (1-47)
Z Ay = 0 S#j
k=1 :

-

The above identities are used to establish Cramer’s rule in the following section.

Example 1-9
(1) Weapply (1-46) to a third-order array and expand with respect to the first row:

Ay Gy2 Gys
Gy Gz Gz3
az; A3z G3s

dy; dz tyy dzz

It

ayy(—1) + ap(—1)° + ags(—1)*

= ay1(A22833 — d23d32) + Q12— 03,033 + az3a31) + a13(a21932 ~ G22031)

3
sz dszy  daz d3y a3y

Ay da3
33

To illustrate (1-47), we take the cofactors for the first row and the elements of the second
row:

3
Z Ay
k=1 .
= a31(A22833 — G23032) + A22(—a21033 + G33031) + G23(A21032 — Gz2a31) = 0
(2) Suppose the array is triangular in form, for example, lower triangular. Expanding
with respect to the first row, we have
agy 0 0

[<29) 0
Gy a 0 |=ay,

a3z

I = (031 0a22033) = 11032033
33
azy dzp Qa3

Generalizing this result, we find that the determinant of a triangular matrix is equal to
the product of the diagonal elements. This result is quite useful.

* See Probs. 1-20, 1-21.
t See Ref. 4, sect. 3-15, for a discussion of the general Laplace expansion method. The expansion
in terms of cofactors for a row or a column is a special case of the general method.
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The evaluation of a determinant, using the definition equation (1-44) or the
cofactor expansion formula (1-46) is quite tedious, particularly when the array
is large. A number of alternate and more efficient numerical procedures for
evaluating determinants have been developed. These procedures are described
in References 9-13. ‘

Suppose a square matrix, say ¢, is expressed as the product of two square
matrices,

¢c=ab (a)

and we want |c|. It can be shown* that the determinant of the product of two
square matrices is equal to the product of the determinants:

le| = [a] [b] - (1-48)
Whether we use (1—-48) or first multiply a and b and then determine Iab[ depends

on the form and order of a and b. If they are diagonal or triangular, (1-48)
is quite efficient. }

Example 1-10

v 13 23
R IR

b =-4 =5 |d=-20

5 15
=[u 29] and |¢f=-20 ~

el (I R P

bl=5 [pl=8 |f=-+40

Alternatively,

@

Determining c first, we obtain

5 12
¢ = }:5 20:] and o = +40

1-9. CRAMER’S RULE

We consider next a set of n equations in 7 unknowns:

n

Yoapx =c¢;  j=1,2....n - (a)
k=1 ,

* See Ref. 4, section 3-16.
T See Prob. 1-25 for an important theoretical application of Eq. 1-48.



22 INTRODUCTION TO MATRIX ALGEBRA CHAP. 1

Multiplying both sides of (a) by 4;,, where r is an arbitrary integer from 1 to n,
and summing with respect to j, we obtain (after interchanging the order of
summation)

n

2 (Z ajkAj,> Xe = Y, Apc (b)
1 \j=1 j=1

k=

Now, the inner sum vanishes when r # k and equals |a| when r = k. This
follows from (1-47). Then, (b) reduces to

lajx, = Y Ajc¢; (©
j=1
The expansion on the right side of (c) differs from the expansion

la| = ;1 e (d

only in that the rth column of a is replaced by ¢. Equation (c) leads to Cramer’s

rule, which can be stated as follows:

A set of n linear algebraic equations in n unknowns, ax = ¢, has a
unique solution when |a| # 0. The expression for x, (r = 1,2,...,n)is
the ratio of two determinants; the denominator is |al and the numerator
is the determinant of the matrix obtained from a by replacing the rth
column by c.

If [a| = (, a is said to be singular. Whether a solution cxists in this case will
depend on ¢. All we can conclude from Cramer’s rule is that the solution, if
it exists, will not be unique. Singular matrices and the question of solvability
are discussed in Sec. 1-13.

1-10. ADJOINT AND INVERSE MATRICES

We have shown in the previous section that the solution to a system of n
equations in » unknowns,

Lai;] {x;} = {ci} Lj=1,2,...,n : (a)
can be expressed as
1 n
xiz——ZAjicj i=1,2,...,n (b)
lal ;=

(note that we have taken r = i in Eq. ¢ of Sec. 1-9). Using matrix notation,
(b) takes the form
1
x; = —[4;,] ¢, C
‘al [ J:I { J} ( )

Equation (c) leads naturally to the definition of adjoint and inverse matrices.
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We define the adjoint and inverse matrices for the square matrix a of order n as

adjointa = Adja = [4,;]" ‘ (1-49)
. 1
inversea = a~ ! = ‘;I Adja (1-50)

Note that the inverse matrix is defined only for a nonsingular square matrix.

Example 1-11

We determine the adjoint and inverse matrices for

M 2 3
a=|[2 3 1}
14 1 2
The matrix of cofactors is
[ 5 0 -10
=7 +5 -1
Also, la] = —25. Then
5 1 =7
Adja = [4,;]" = 0 —10 +5
-10 +7 -1
1 —1/5 +1/25 +7/25
-1 .
a7 = —Adja = 0 +2/5 -1/5

fa

+2/5 =725 +1/25

Using the inverse-matrix notation, we can write the solution of (a) as

c (d)
Substituting for x in (a) and ¢ in (d), we see that a~! has the property that

x=a"!

a’la=aa" ! =] (1-51)

Equation (1-51) is frequently taken as the definition of the inverse matrix

nstead of (1-50). Applying (1-48) to (1-51), we obtain
™! Ja] =1

It fol}oyvs that (1-51) is valid only when a| # 0. Multiplication by the inverse
matrlxnls analogous to division in ordinary algebra.

If a is symmetrical, then a™ ! is also symmetrical. To show this, we take the
transpose of (1-51), and use the fact that a = a7

i

(@ 'a) =aa T = I,
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Premultiplication by a~* results in .

-1, T

a b7 =at

and therefore a~! is also symmetrical. One can also show* that, for any
nonsingular square matrix, the inverse and transpose operations can be inter-

changed:
Tt = b T (1-52)
We consider next the inverse matrix associated with the product of two square

matrices. Let
c=ab

where a and b are both of order n x n and nonsingular. Premultiplication
by a~! and then b™* results in

(b a e =1,
It follows from the definition of the inverse matrix that
(ab)"! = b~ 'a™! (1-53)

In general, the inverse of a multiple matrix product is equal to the product of
the inverse matrices in reverse order. For cxample,

(abed)™ ! = d t¢c”'pta?

" The determination of the inverse matrix using the definition equation (1-50)
is too laborious when the order is large. A number of inversion procedures
based on (1-51) have been developed. These methodsare described in Ref. 9-13.

1-11. ELEMENTARY OPERATIONS ON A MATRIX

The elementary operations on a matrix are:
1. The interchange of two rows or of two columns.
2. The multiplication of the elements of a row or a column by a number

other than zero. )
3. The addition, to the elements of a row or column, of k times the cor-

responding element of another row or column.

These operations can be effected by premultiplying (for row operation) or
postmultiplying (for column operation) the matrix by an appropriate matrix,

called an elementary operation matrix.
We consider a matrix a of orderm x n. Suppose that we want to interchange
rowsjand k. Then, we premultiplyaby anm x m matrix obtained by modifying

the mth-order unit matrix, L, in the following way:

1. Interchange d;; and d;.
2. Interchange d, and ;.

* See Prob. 1-28.
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For example, ifa is 3 x 4, premultiplication by

0 0 1
01 0
1 00

interchanges rows 1 and 3 and postmultiplication by

SO O -
-0 o ©
S = OO
OO = O

interchanges cglumns 2 and 4. This simple example shows that to interchange
rows, we ﬁx"st‘mterchange the rows of the conformable unit matrix and rgev
multiply. Similarly, to interchange colurans, we interchange columns ofpth
conformable unit matrix and postmultiply. - -
The elemcntary operation matrices for operations (2) and (3) are also obtained
by operating on the corresponding conformable unit matrix. The matrix which
multiplies row j by o is an mth order diagonal matrix having d, = 1 for i # j
and‘ d; = o Similarly, postmultiplication by an nth order dilagc'mal rnatri)j(
having d; = 1 for i # jand d; = « will multiply the jth column by «. Suppose
that we want to add o times row j to row k. Then, we insert o in tk{c kth row
and jth cqlumn of 1, and premultiply. To add « times column j to column &
we put ¢ in the jth row and kth column of I, and postmultiply. ,
We let e dex}ote an clementary operation matrix. Then, ea represents the
result of applying a set of elementary operations to the ro;vs of a. Similarl
ae represents the result of applying a set of elementary operations to £he columgs,
of a. In ggnera!, we obtain e by applying the same operations to the conformable
unit matrix. Since we start with a unit matrix and since the elementary opera- 4
tions, at most, change the value of the determinant by a nonzero scalar f: I:; *
it follows that e will always be nonsingular. en

Example 1-12

We illustrate these operations on a third matrix:

112 15
a=| 37 2
-2 1 3

We first:

1. Add(— 3} times the first row to the second row.
2. Add (2) times the first row to the third row.

* See properties of determinants (page 18).
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These operations are carried out by premultiplying by

1

and the result is

to12 15
0 112 7/5
0 2 27/5
Continuing, we multiply the second row by 2/11:
1 0 oy 12 15 112 1/5
0 211 ollo 12 750 = 0 1 14/535

00 1110 2 215 0 2 27/5

Next, we add (—2) times the second row to the third row:

1 o Olf1 12 s 1 oy2 15
0 1 ojf{o 1 14/55] = |0 1 14/55
0 -2 1o 2 27)5 0 0 269/55
Finally, we multiply the third row by 55/269. The complete set of operations is
1 00 1 o offt 0 0 1 00 112 ;/5
010 0 1 o141 211 03 1-3 1 0 3 7 :
0 0 557269] [0 ~2 110 0 { 20 1}{-21
1 12 15
=10 1 14/551 = b
00 1

n of a square matrix to a triangular matrix using

i llustre e reductio A triar :
T o - e basis for the Gauss elimination solution scheme

elementary operations on rows, and is th
(Refs. 9, 11, 13). We write the result as

ea=b
where e is the product of the four operation matrices listed above:
1 0 0

e = |—6/11 211 0
+1870/2059 —220/2959  55/269

g with a unit matrix. This is more

eratjons, startin '
¥ ’ he various steps.

. . e
We obtain e by applying successive opeiad . it mas
convenient than listing and then multiplying the operation matrices

The form of e after each step is listed below:
Initial Step 1 Step 2
1 00 1 00 1 0 0
010 -3 10 ~6/11 211 0
0 01 2 01 2 0 1
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Step 3 " Step4
1 0 0 1 0 0
—6/11 2/11 0 —6/11 Y11 0

+34/11 —4/11 0 +1870/2959  —220/2959 55/269

Two matrices are said to be equivalent if one can be derived from the other
by any finite number of elementary operations, Referring to Example 1-12, the
matrices

1 12 15 1 12 15
37 2 and 0 1 14/55
-2 1 5 00 1
are equivalent. In general, a and b are cquivalent if
b = paq (1-54)

where p and q are nonsingular. This follows from the fact that the elementary
operation matrices are nonsingular.

1-12. RANK OF A MATRIX

The rank, r, of a matrix is defined as the order of the largest square array,
formed by deleting certain rows and columns, which has a nonvanishing deter-
minant. The concept of rank is quite important since, as we shall see in the
next section, the solvability of a set of linear algebraic equations is dependent
on the rank of certain matrices associated with the set.

Let a be of order m x n. Suppose the rank of a is ». Then a has r rows
which are linearly independent, that is, which contain a nonvanishing deter-
minant of order r, and the remaining m — r rows are linear combinations of
these r rows. Also, it has n — r columns which are linear combinations of r
linearly independent columns.

To establish this result, we suppose the determinant associated with the first r
rows and columns does not vanish. If a is of rank », one can always rearrange
the rows and columns such that this condition is satisfied. We consider the
(r + Dth-order determinant associated with the first r rows and columns, row
p, and column g where r < p < m,r < q < R

“11 a12 PPN a“ aiq
Azp O3 "7 Gy, Gy,

Arer =)o R (1-55)
Ay Gy T Gy Gy
Gy Gy 4 4,

We multiply the elementsinrowjby 4,;(j = 1, 2,...,r) and subtract the result
from the last row. This operation will not change the magnitude of 4, ; (see
Sec. 1-7). In particular, we determine the constants such that the first » elements
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in the last row vanish:
ay; Gz 77 4 Apt dyy
G5 G2z ° 77 3| 1 Ap2 — ('lpz (1»56)
g, aZr ERR /”pr a‘pr

Equation (1-56) has a unique solution since the coefficient matrix 1s non-
singular. Then (1 —55) reduces to

i
ayy 912 Ay § 19
- a
ayy G2 Gy, 1 Gzg
=l Do (1-57)
Ar+1 1 . . -
arl %) T arr L_(_lfg_
___________________ i (1)
0 0 U
where ,
Apt
Y,
»? (1-58)
aly = Apg ~ {ayg d2g -+ irg]
A

Applying Laplace’s expansion formula to (1-57), we sec that 4,,, vanishes

when att) = 0. ‘ o
Now”if ais of rank r, 4,4, vanishes for all combinations of pand q. It
2

follows that .

pl
' Lp2 g=r+1...,n (1-59)
aﬂq:[alq’“lq""’a"l] : p=r+Lr+2,...,m
Apr
Combining (1-56) and (1 -59), we have
ay;, Gy 7 4n Apy apy
dyy Gy 0 Gl lhel )AL o 2m (1260)
&ln (:zZn U C.lm }Vpr apn

Bquation (1-60) states that the last m — r rows of a are linear combmfa:zrrxz
of the first ¥ rows. One can also show* that the last n — 7 columns 0

linear combinations of the first r columus.

Example 1-13

Consider the 3 x 4 matrix

1 2 3 4
a=12 1 3 2
5 7 12 14

* Gee Prob. 1-39.
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We see that a is at least of rank 2 since the determinant associated with the first two rows
and columns is finite. Then, the first two rows are linearly independent. We consider the
determinant of the third-order array consisting of columns 1, 2, and ¢:

L 2 ay
Az =12 1 ay
5 7 as
Solving the system,
A+ 22, =5
2+, =7
we obtain .
Ay=3 Ay =1

If a is of rank 2, A5 must vanish. This requires
A3 = Aty + A8z, = 3ay, + ay,
q =34

Since a33 and as, satisfy this requirement, we conclude that a is of rank 2. The rows are -
related by

(third row) = + 3 (first row) + (second row)

One can show* that the elementary operations do not change the rank of
a matrix. This fact can be used to determine the rank of a matrix. Suppose b
defined by (1-61) is obtained by applying elementary operations toa. We know
that b and a have the same rank. It follows that a is of rank p. A matrix having
the form of b is called an echelon matrix. When a is large, it is more efficient

to reduce it to an echelon matrix rather than try to find the largest nonvanishing
determinant:

(pxp) { ('pX(n*p))
dy1 Q2 7t Qg Loby o blﬂ{ {
ty1 Gz "~ dzp 0 1 bzp} ! B,
: : - |=b= ‘ | { (1-61)
: : : |
Om1 Gmz """ Oy Q-,p___().“-_.l__“{~_1’.___
i
(n=p) x p) | (on~pyx (i~ p))
Example 1-14
1t 2 3 4
a=|2 1 3 2
5 7 12 12

First, we eliminate a,, and as,, using the first row:
1 2 3 4
a» =10 -3 -3 -6
0 -3 -3 -8
* See Prob. 1-40.
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Next, we eliminate a4y, using the second row:
-1 2 3 4
a%=| 0 -3 -3 -6
0 0 0 -2

At this point, we see that r = 3. To obtain b, we multiply the second row by — 1/3, the third

row by —1/2, and interchange the third and fourth columns:
1 2 43

b=10 21

0 10

1
0

Suppose a is expressed as the product of two rectangular matrices:

(m; s) _ (m{; ny (n; 1s) . (1 -62)

One can show* that the rank of a cannot be greater than the minimum value
of r associated with b and c:
ra) < min [r(), r(c)] (1-63)

As an illustration, consider the product

12 412 0]
a:[——l/z +12 1

Since each matrix is of rank 2, the rank of a will be <2. Evaluating the product,

1 0
10
1

we obtain 0 o
=10 1

1-13. SOLVABILITY OF LINEAR ALGEBRAIC‘ EQUATIONS

It follows that a is of rank 1.

We consider first a system of two equations in three unknowns:

[au a2 am] f; __:{ﬁ} (1-64)
dyy G2 A3 X3 Ca
ax = ¢
Suppose a is of rank 2 and
| S P (1-65)
a1 dz2

* See Prob. 1-44.
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Ifais of rank 2, we can always renumber the rows and columns such that (1-65)
is satisfied. We partition a and X,

a=[a“ o a”}=[A1 As] (1-66)
21 daz | dy3
0 s
X7 %= X,
X3

and write (1-64) as A X1 + AyX, = ¢. Next, we transfer the term involving
X, to the right-hand side: :

AXy =¢— AX, ‘ (1-67)

Since ]AI: # 0, it follows from Cramer’s rule that (1-67) has a unique solution
for X,. Finally, we can write the solution as

X1 = Ar'e — A5X,) (1-68)

Since X, is arbitrary, the system does not have a unique solution for a givene.
The order of X, is generally called the defect of the system. The defect for this
system is 1. ‘

If a is of rank 1, the second row 18 a scalar multiple, say A, of the first row.
Multiplying the second equation in (1-64) by 1 /4, we have

AuiXy + AiaXy + ag3xs = ¢ -
Xy + a12X; + ag3x; = cy/A

(1-69)
If e, # Acy, the equations are inconsistent and no solution exists. Then, when
ais of rank 1, (1-64) has a solution only if the rows of ¢ are related in the same
manner as the rows ofa. Ifthis condition is satisfied, the two equations in (1-69)
are identical and one can be disregarded. Assuming thata,, % 0, the solution is

X1 = (1/ay;)(cy — QA32X2 — Ay3X3) (1-70)

The defect of this system is 2.
The procedure followed for the simple case of 2 equations in 3 unknowns is
also applicable to the general case of m equations in n unknowns:

A G2 o ag, | fx ¢y
Gioan || e (a-71)
Gt Ay o Cmin Xy | Ci

If a is of rank m, there exists an mth order array which has a nonvanishing
determinant. We rearrange the columns such that the first m columns are
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linearly independent. Partitioning a and x,

' ..
a1 Q2 7 Qe { A1, m+1 Qin
dyy Gz " ‘.12"1 } flz,m+1 T flz:z =[ A, A ]
: : } : . (mxm) (mx{(n—~m))
"lml mz " Omm } A, m+1 """ Cpm (1—72)
. | ox) = { X, X, }
{xl x?. Xm | Xm+1 n} {(mxl) (=% 1)
we write (1-71) as
A]Xl = C — A2X2 (1"73)

Since [A,! # 0, (1-73) can be solved for X.‘ in terms of ¢ and. th. The iefef;
of the set is n — m, that is, the solution involves n — m arbitrary constan
by X,. A B ‘
re%rs;;zt:: a 1ys of2 rank r where r < m. Thez}, a has r rows vyhxch contain ij;
rth-order array having a nonvanishing determinant. The remaining m — ; rct> '
are linear combinations of these r rows. For (1-71) to be consistent, t ?1 is,
have a solution, the relations between the rows of ¢ must be the same as those

for a. The defect for this case is n — r.

Example 1-15
As an illustration, consider the third-order system

11Xy + A1Xy + @y3X3 = ¢y
= a
a21X1 + QaXp + A33X3 = C; (a)

a3 Xy + a3X; + a33X3 = C3
Suppose that r = 2 and the rows of a are related by
(third row) = A, (first row) + 2, (second row) (b)

For (a) to be consistent, the elements of ¢ must satisfy the requirement,
€3 = MCy + Aacy (©)
To show this, we multiply the first equation in (a) by — 4,, the second by — ,, and add to
these equations the third equation. Using (b), we obtain
0= c3 — Agcy — Ayey (d)

Unless ';he right-hand side vanishes, the equations are contradictory or inconsistent anc.i n(i
solution exists. When ¢ = 0, (c) is identically satisfied and we see that (a) has a non*tnwa
solution (x # 0) only when r < 3. The general case is handled in the same manner.

* See Prob. 1-45.
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In general, (1-71) can be solved when r < mif the relations between the rows
of a and ¢ are identical. We define the augmented matrix, a, for (1-71) as

|
Qi1 dz o oay, e
t
A2y Ay - zy | C3
=1 = d (1-74)
. . : |
Uy Ay - [« |‘ Crn

When the rows of a and c¢ are related in the same way, the rank of o is equal to
the rank of a. It follows that (1-71) has a solution only if the rank of the aug-
mented matrix is equal to the rank of the coefficient matrix:

F(OI) = r(a) : (1 _“75)

Note that (1-75) is always satisfied when "(a) = m for arbitrary c.

We can determine r(a) and r(a) simultaneously using elementary operations
on « provided that we do not interchange the elements in the last column. The
reduction can be represented as

AL 1 o
a=l qz[ﬁ”‘““f‘%’n} (1-76)

where A is of rank r(a). If C{ has a nonvanishing element, re) > Ha) and
no solution exists. .

When Ha) = r(a), (1 ~71) contains r independent equations involving # un-
knowns. The remaining m — r equations are linear combinations of these
r equations and can be disregarded. Thus, the problem reduces to first finding
() and then solving a set of r independent equations”in 7 unknowns. The
complete problem can be efficiently handled by using the Gauss elimination
procedure (Refs. 9, 11, 13).
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PROBLEMS
1-1. Carry out the indicated operations:
(a)
1 40 2 35
3 2 1j{+|7 13
510 0 5 6
(b)
2.7 31 (-4 1 5
516 3 - 2
© 1 2 11 2 3
o e[ -0 ]
(d)
1 -2 {2}
-3 4115
(©
{*1 1] [4 1}
2 =312 3
0

0

1-2. Expand the following products:

(@)

[Cll, A2y v v vy a,,] {b17 bz, vy b"}
(b)

{ala Ay« o vy an} [bla be ey bn]
©

[cl 0] [au alz]
0 ¢ |21 @22

(d)

S1:

Szz

can be written as

PROBLEMS

dyy Qg ¢y O
dyy daz 0 Cy

1-3. Show that the product of

3
ay + a; + az = Zak

b1+b2+b3"

|
Me
o
=

3 3
SISZ = Z Z akbj

k=1j=1

Generalize this result for the sum of n elements.

1-4. Suppose the elements of a and b are functions of y. Let

then

da [ﬁ‘ﬁ@ db _ | dby
dy dy dy ~ |dy
Using (1-19), show that if
c = ab
de _ a b + da b
dy dy dy

1-5.

35

Counsider the triple product, abc. When is this product defined? Let

p = abc

Determine an expression for p;;. What is th i
S8 ;e e order of p? Determine p;;
case where ¢ = aT. ! P i for the

1-6. Evaluate the following products:

(@)

i

{a+ b)a+Db)

3
2

H1EEIHN

where a is a square matrix.

1-7. Show that the product of two s ic ices i i
ymmetrical matrices is sym
only when they are commutative. ymmetrical

1-8. Show that the following products are symmetrical:

@
(b)
(c)

a’a
aTha

bTa%cab

where b is symmetrical

where ¢ is symmetrical
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oduct, using the indicated sub-

1-9. Evaluate the following matrix pr

matrices:

rizontal partitions of ¢ correspond to

1-10. Let ¢ = ab. Show that the ho
hose of b. Hint: See

those of a and the vertical partitions of ¢ correspond to t

Eq. (1-37).
1-11. A matrix is said to be symmetr

the row and column partitions coincide.

ically partitioned if the locations of
For example,

|
apy Qa2 |‘ a3
azy G2z |} Q23
oA | ———
a3y Gdzz | @33
is symmetrically partitioned and
| |
aygy 1{ gz |l ags
dy | Q22 | @23
G2 | 22 %2
az; | Gz | 433 !

is unsymmetrically partitioned. Suppose We partition a square matrix with

N — 1 symmetrical partitions.
a = [Ay]
(a) Deduce that the diagonal submatrices are squa

the same order.
(b) Ifa=al,deduce that

Lj=12...,N
re and A, AL have

A = As

1-12. Consider the product of two square nth order matrices.

¢ =ab

ty partitioned, show that Cji, Ajk,
for the casc of one partition, €-.g.,

(a) Ifaandbare symmetrica B, are of
the same order. Illustrate

a= Al 1 A 12

A 21 A 22
(b) Suppose we symmetrically partition ¢. What restrictions are placed
on the partitions of a and b? Does it follow that we must also partition

aandb symmetrically? Hint: See Prob. 1-10.

1-13. Consider the triple product,
c=aba
matrix and a is of order r X 7. Suppose

where b is a symmetric rth-order square
fthe partitioned matrices are indicated

we symmetrically partitione. The order o
in parentheses.
(pxp) (p*a)
(nxn) __ Cl 1 C 12
C 21 C 22

(gxp) @*@

PROBLEMS a7

QS . o
(a) Show that the following partitioning of a is consistent with that of ¢

(rxn) rxpy (rxq)
a = [Al AZ ]

1(?1)4 E;;irte‘sis Clik=1,2) in terms of Ay, A,, and b
. = [Dy] be a quasi-diagonal matrix. Show that
da = [D jA jk]
. bd = [B;.D;]
when the matrices are conformably partitioned.

1-15. Determine th
- en ; : .
following sets. umber of inversions and interchanges for the

(a)
4,3,1,2)
(b) (3,4,2, 1)

1-16. How man ;
y permutat
1-17. Consider thg termsdl ions does (1, 2, 3, 4, 5) have?

e,
and s M D2 Uany (@

€p.p2psUp, 148,205, (b)

The first subscripts i i 0 We obtain (b) b angin
pts in (a) are in natural ord i ging
such tha C ipt i 1 eérl. 5 By m |
t the second SU.bSCI'lpLS are in natural order. For Eax)a jgjiza;::alr]r;ngi(a)
n F , ng

o o= (2’ 3, 1)

B=1(312

Show that if (« ; :
) . 1, 03, 003) 1S an even permutati .
permutation. Using this result, Showpthat tation, (B, Bz, fa) is also an even

. €331 0120234
we obtain 12523531

€312031 Q12 A3

Y iz A1y AaayQgs = 3
: 12a3 A a; 920,303 %.,efh/hﬂ}al’x‘aﬁzzaﬂﬂ

and, in general,

la] = [a”|
1-18. Consider the terms
Cara303010; 020,03, @
Suppose that Craan0 12,020,034, )
b, =a _
Then, (b) takes the xl"oll'm - P = e B =
Show that e G ©
{c) = —(a)

.
lt and esta h
Genelahze thlS resu bIIS that the Slgn Of a determlnant 18 ICVCISed
1"19- COI]SldeI the [hl[d-OIdeI deteﬂnmant

Ial = Zealazasal m1a2u203a3
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Suppose the second row is a multiple of the first row:
Ay = koty;

Show that| | = 0.(Hint: e,,,4, = —€,,4,,,)- Generalize this result and establish

properties S and 7 of Sec. 1-7.

1-20. Suppose all the integers of a set are in natural order except for one
integer, say n, which is located at position p. We can put the set in natural
order by successively interchanging adjacent integers. For example,

312 - 132 ->123
231 - 213 123

Show that |n — p| adjacent interchanges (called transpositions) are required.
It follows that the sign of the resulting set is changed by

(-1 )In—p!
1-21. We can write the expansion for the third-order determinant as
3 i#kj#k
& @;e"""““’%k) k=123
Using the result of the previous problem,
Cijk = (— 1)“_”61'1« = (”1)i+lejk (b)

and (a) reduces to
3

Z a(— 1My =

i=1 i

ayiAy; (9)

1

Mo

Following this approach, establish Laplace’s cofactor cxpansion formula for
an nth-order determinant.
1-22. Use Laplace’s expansion formula to show that

1 0 o 0 0 0 e 0
0 1 e 0 0 0 o 0
: ' ’ . : (rxp) (pxn)
0 0 1. 0o 0o -0 io af
——— Rt Santead Rt g = ——] = la
by by, o by, 1 Gy Qg 77T Gy, b | a
(nxp) ' (nxn)
l‘)ZJ. l')zz 'pr 1 G2 777 g,
: Do S . :
bnl an e bnp ; anl ) T arm

1-23. Consider the quasi-diagonal matrix,

(exp) (pxq)
D,
0 D,

(@gxp) (gxq)

D, 07[1, 0
d.‘.—‘_
0 I,[{0 D,

d:

By expressing d as

PROBLEMS 39
show that |d| = Dy [D,)|. Verify this result for |

1100
d = 23 00
0 0 2 1
0 0 5 3
Generalize for
d= A,»(Si-
1-24. Let (48]
(pxp) (pxq)
- 11
8 Gy Gy |
Show that @ G
lg| = |G G2,

Generalize for a quasi-triangular matrix whose diagonal submatrices are square
of various orders. ’

1-25, Supp{)se we express a as the product of a lower triangular matrix, g,
and an upper triangular matrix, b.

Ay Gy a4y, g O 0 byy by, - .
{721 ‘.’22 G 4921 G2 0 0 0 by, b,
anl anZ e ann gnl gnz e gnn 0 0 e bnn

We introduce symmetrical partitions after row (and column)-p and write the
product as
(Pxp) (pxq (xp) (pxq)_ (pxp) (pxgq)
[All AIZ — Gll 0 Bll BIZ
AZ 1 AZZ GZ 1 GZ 2 0 B22

@xp)  (gxq) @xp)  {ax@” Tgxp) (gxq)

Note that the diagonal submatrices of g and b are triangular in form.
(a) Show that

GBy = A11
GuBu = AIZ
G,,By; = Ay

G21B12 + G,B,y, = Az
(b) Show that
JAu] = [G1y] By
and
la =[G, ] G2, B,y B,
(¢) Suppose we require that
lgl #0 b %0
By taking p = 1,2, .. Sn— 1, deduce that this requirement leads to the
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following n conditions on the elements of a:

Ay Gy 777 ay;
41 G2z 20l j=1,2,....0n
L

The determinant of the array contained in the first j rows and columns 1 called

the jth-order discriminant. . ‘ o
1j426. Does the following set of equations have a unique solution?

12 3y 2
1 3 5 Xyor = 3
S

307 1] |x3
1-27. Determine the adjoint matrix for
1 2 3 - :
a=|13 5
3 7 11

Does a™ ! exist? . .
1-28. Show thatb™ "' =b"
1-29. Find the inverse of

@ 13
B
(b) | 2 4
5
© 132 4
B
@ 2 o2 4]
[o 3][1 5

Let
i
a a a3
in 42 . Ay sz]
= | a ! 23
a tal T2y 22 Ay A
Uy U3y | Has
and
a_-1__ Bll Bll
B, B,

where the order of By is the same as Aj,. Starting with the condition

aa" = 13

PROBLEMS 41

determine the four matrix equations relating B, and A (j, k = 1, 2). Use this
result to find the inverse of

— N e
Do N
- N B

1-31. " Find the inverse of

Note that A is (p x q).
1-32. Find the inverse of

_[D. 0
=lo 5]

1-33. Use the results of Probs. 1-31 and 1-32 to find the inverse of

| Bi1 Bps
b”[o BZJ

where Byy, B,, are square and nonsingular. Hint: write b as

b= By, O]fT B /'B;;B' ][I 0
1o 10 I 0 B,

1-34. Consider the 3 x 4 matrix

(NSRS I
- b

1
2
1

o
i

Dectermine the elementary row operation matrix which results in a,; = a3y =
U3y == Oand Ay = Q7 = A3z = +1.

1-35. Let
(pxp) (pxq
(nén) . All AIZ
Az Ap
qxp) (qx4q)

where |A;| # 0 and |a| # 0. Show that the following elementary operations
on the partitioned rows of a reduce a to a triangular matrix. Determine A%Y.

I, 0 L 0[AR 07[An AL [L AY
0 Cl|—-Ay LJl0 Y JlAs Al |0
C=(Ap~AnAfA) !

1-36. Suppose we want to rearrange the columns of a in the following way:

23 col1 - col 3
1 3 col2 — col |
4 5 col 3 — col 2

]
1
W N =
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(a) Show that postmultiplication byIl(which is called a permutation matrix)
results in the desired column rearrangement:

0 0 1
m=4i{1 0 0
010

Note that we just rearrange the corresponding columns of I5.
(b) Show that premultiplication by YIT rearranges the rows of a in the
same way.
(¢) Show that II"II = Is.
(d) Generalize for the case whereaisn x n.
(e) Show that
I = |
1-37. Letabeoforder2 x n,wheren > 2..Show that a is of rank 1 when
the second row is a multiple of the first row. Also, show that when r = 1, the

second, third, . . ., nth columns are multiples of the first column.
1-38. Determine the rank of
(a)
1 3 7
5 2 4
3 —4 ~10
(b)

1 2 3 —1
2 4 6 -2
-1 =2 =3 1

1-39. Let a be of order m x n and rank r. Show that a has n — r columns
which are linear combinations of r linear independent columns. Verify for

1 2 3 4
a={2 1 3 2
5 7 12 14

1-40. Using properties 3, 4, and 7 of determinants (sec Sec. 1-7), deduce
that the elementary operations do not change the rank of a matrix. For con-
venience, consider the first r rows and columns to be linearly independent.

1-41. Find the rank of a by reducing it to an echelon matrix.

-+

i
~ W N =
B N S
O W N
~ = NN

PROBLEMS 43
1-42. Show that ¢ is at most of rank 1.

ay

a
c = :Z [blbz"’bn]

am
When will r(c) = 09
1-43. Consider the product,

11 4y
_ bub e h
C = Ay ds, 12 in
: : baibyy - by,

Cy 1 Clm 2

(8) Suppose b is of rank | and by; # 0. Then, we can write

{blk}:d bll
L e U B L

Show that the second, third ¥
X ,...,1th colu i
) grst column and therefore He) < 1. Whgllnivﬁlf i(i;e=m(;l’it]ples of the
uppose 1(a) = 1 and a;; # 0. In this case, we can write‘

[ajlajz] = /{j[a“alz] ] = 2, 3,...,m
Show that the second, thifd, ..., mth rows of ¢ are multiples of the first

row and therefore #{c) < 1. il #e) =
1-44.  Consider the prod(ugt\ When will re) = 07

iy a1y - oay byy by, - by,
¢ = a.zx a,-u T Ay || by by oo b,
: : : Lo (@)
Let Gt Gnz s || by by e b

Aj = [aa;; - a;]
. B, = {blkblk e bsk} (b)
Using (b), we can write (a) as
Ay

A
€= ’ [BIBZ T Bn] (c)
A

pp a) =y = A% W
S” OSe 7 = 7 B F i
( ) as (b) : b Oor con enlence, /C assume ¢

of a and the first Fy columns of b are linearly independent. The he first r, rows

>

Aj = Zliijp j=ra+1,ra+2,.<.,m
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b
B, = ) B, k=wr+1,mn+2...,n0
g=1

(a) Show thatrowsr, + 1,r, + 2,...,m of ¢ are linear combinations of
the first r, rows.

(b) Show that columns r, + 1,1, + 2, ..., nof ¢ are linear combinations
of the first r, columns.

{c) From (a) and (b), what can you conclude about an upper bound on

rc)?
(d) To determine the actual rank of ¢, we must find the rank of
A1 ‘AlBl A132 e AIB,b
T UR R ST b
A, A B, A.B, - AB,

Suppose r, < r,. What can.you conclude about r(c) if A{ is orthogonal
to By, B;,...,B,?
{(e) Utilize these resuits to find the rank of

-1/2 12 0}t 0 1
—-1/2 12 1yt 0 1
-1 IO O I B
(f) Supposer, =, =s. Show that r(c) = 5. Verify for
i 3

1 -1 1
2 =2 [ J
3 { 1 2 4

1-45. Consider the m x nsystem

dyy Az "0 Qua | X Cy
zy Uaz 77 2| ) X2 C2
) . . =9 (a)
Amy  Om2 M ¢ Y Xn Cm
Let
Aj = [ajlajz i 'aj,,] j = 1,2,.”,"1 (b)
Using (b), we write (a) as
Ax=c¢ j=L2...,m (©)

Now, suppose a is of rank » and the first » rows are linearly independent. Then,
A, = illkpAp k=r+Lr+2,...,m
(a) Show that the :;stem is consistent only if
C = ili,q,c,, k=r+1L,r+2,...,m
[

Note that this requirement is independent of whether m < norm > n.

PROBLEMS 45

b) Ifm<nandr = m, the

. equations are consi ;
Is this also true when m usistent for an ar bibrary c.

> nandr = n? Illustrate for

[1 -1 1Y (g
1 2 4] 2= {cz}
and "
1 1 ¢y
~1 2 {xl} =40,
14|t
1-46. Consider the following system of equations:

X+ X2+ 23 4+ 2x, =4
2x,+x2+3x3+2x4=:6
3x1+4x2+2x3+x4=9

Txy + Tx; + 9x5 + Txq = 23

(@) Determine whether the above syste

operations on the augmented matrix
(b) Find the solution in terms of X4.

m is consistent using clementary



