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Introduction to 
Matrix Algebra 

1-1. DEFINITION OF A MATRIX 

An ordered set of quantities may be a one-dimensional array, such as 

al, a2, , · an 

or a two-dimensional array, such as 

all, at 2 , .·· a,,, 

a2 1 , a2 2 , · · · a2n 

am, am2, · ·, amn 

In a two-dimensional array, the first subscript defines the row location of an 
element and the second subscript its column location. 

A two-dimensional array having m rows and n columns is called a matrix 
of order m by it if certain arithmetic operations (addition, subtraction, multi­
plication) associated with it are defined. The array is usually enclosed in square 
brackets and written as* 

all a12 ." a,, 

a21 a22 - a2 a] a (1-1) 

a,,1 am2 .' amn 

Note that the first term in the order pertains to the number of rows and the 
second term to the nuniber of columns. For convenience, we refer to the order 
of a matrix as simply m x n rather than of order m by n. 

* In print, a matrix is represented by a boldfaced letter. 
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4 INTRODUCTION TO MATRIX ALGEBRA CHAP. 1 

A matrix having only one row is called a row matrix. Similarly, a matrix 
having only one column is called a column matrix or column vector.* Braces 
instead of brackets are commonly used to denote a column matrix and the 
column subscript is eliminated. Also, the elements are arranged horizontally 
instead of vertically, to save space. The various column-matrix notations are: 

C1 JC2

;1c= c, _{C{C1C2,..., == {Ci{= C (1-2) 
If the number of rows and the number of columns are equal, the matrix is said 
to be square. (Special types of square matrices are discussed in a later section.) 
Finally, if all the elements are zero, the matrix is called a null matrix, and is 
represented by 0 (boldface, as in the previous case). 

- xsm - ·- Z~ALEEEIJII~I ­

3 x 4 Matrix 

4 2 -1 2 
3 -7 1 -

2 4 -3 1 

I x 3 Row Matrix 

[3 4 2] 

3 x I Column Matrix 

{4} or 4 or{3, 4, 2} 

2 x 2 Square Matrix 

[2 7 

2 x 2 Null Matrix 

[o 01 
L0 oj 

*This is the mathematical definition of a vector. In mechanics, a vector is defined as a quantity 
having both magnitude and direction. We will denote a mechanics vector quantity, such as force 
or moment, by means of an italic letter topped by an arrow, e.g., F. A knowledge of vector algebra 
is assumed in this text. For a review, see Ref. 2 (at end of chapter, preceding Problems). 
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1-2. EQUALITY, ADDITION, AND SUBTRACTION OF MATRICES 

Two matrices, a and b, are equal if they are of the same order and if cor­
responding elements are equal: 

a = b when aij = bij (1-3) 
If a is of order m x n, the matrix equation 

a=b 
corresponds to mn equati ions: 

a.j = bj i = 1, 2...,m 
j = 1, 2,...,n 

Addition and subtraction operations are defined only for matrices ofthe same 
order. The sum of two m x n matrices, a and b, is defined to be the m x n 
matrix [aij + bj]: 

[aij] + [bii] = [aij + bij] (1-4)
Similarly, 

laij - bij] = [ - bij] (1-5)
For example, if 

a [ 2 1 b =o -1 -11 
0 -1J 3 1 01 

then 

atb= : 1­
and 

a-b= -2 -1 -1 

It is obvious from the example that addition is commutative and associative: 

a+b=b+a (1-6) 
a + (b + c) = (a + b) + c (1-7) 

1-3. MATRIX MULTIPLICATION 

The product of a scalar k and a matrix a is defined to be the matrix [kaij], 
in which each element of a is multiplied by k. For example, if 

k=5 and a = 2 

then 

a = -10 + 35 
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Scalar multiplication is commutative. That is, 

ka = ak = [kaij] (1-8) 

To establish the definition of a matrix multiplied by a column matrix, we 
consider a system of m linear algebraic equations in n unknowns, x1, x 2 , - x,: 

ajlxl + a 2 x2 + .-. + alnX = C1 

zxl + a2 2 x2 +''' + a2 nX,-:a 2 C2 
(1-9) 

at lXL + am2X2 + ''' + a,,,nx,, = Cm 

This set can be written as 

i = 1, 2,...,m (a)akXk = Ci 
k=l 

where k is a dummy index. Using column matrix notation, (1-9) takes the form 

i =1,2,...,m (1-10)
t1 aikXk =i {ci} 

Now, we write (1-9) as a matrix product: 

i= 1,2,..., n 
[aij] {xj} = {Ci} j= 1,2,...,n 

(1-11) 

Since (1-10) and (1-11) must be equivalent, it follows that the definition 
equation for a matrix multiplied by a column matrix is 

ax = [aij] {Xi = aikxk} i= 1,2....,m (1-12) 
=k1 

This product is defined only when the column order of a is equal to the row 
order of x. The result is a column matrix, the row order of which is equal to 
that of a. In general, if a is of order r x s, and x of order s x 1, the product 
ax is of order r x 1. 

- -Example 1-2 

a -] 
a = 8 -4 

3=:
0 3_ 

(1)(2) + (-1)(3) ] 1] 
ax = (8)(2) + (-4)(3) = 4 

(0)(2) + (3)(3) J 9 
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We consider next the product of two matrices. This product is associated 
with a linear transformation of variables. Suppose that the n original variables 
xl, x2, .-, , in (1-9) are expressed as a linear combination of s new variables 
Yl, Y2, · · ·, Ys: 

s 

Xk = bkjYj k= 1, 2,...,n (1-13)
j=1 

Substituting for xk in (1-10), 

{ki=1 (j bkjY)} = (ci} 
i= 1,2,...,m (a) 

Interchanging the order of summation, and letting 

i= 1,2,...,m
Pij = 

k = 1
aikbkj 

j= 1,2 ... ,s (1-14) 

the transformed equations take the form 

=1 iy ) 
i= 1,2,...,m (1-15) 

Noting (1-12), we can write (1-15) as 

py = c (1-16) 
where p is m x s and y is s x 1. Now, we also express (1-13), which defines 
the transformation of variables, in matrix form, 

x = by (1-17) 
where b is n x s. Substituting for x in (1-11), 

aby = c (1-18) 
and requiring (1-16) and (1-18) to be equivalent, results in the following
definition equation for the product, ab: 

i== 1,2,..., m 
ab = [ak] [bkj = [Pij] k= ,2,...,n (1-19) 

j= 1,2,...,s 

Pij = Z aikbkj
k=l 

This product is defined only when the column order of a is equal to the row 
order of b. In general, if a is of order r x n, and b of order n x q, the product 
ab is of order r x q. The element at the ith row and jth column of the product 
is obtained by multiplying corresponding elements in the ith row of the first 
matrix and the jth column of the second matrix. 
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IN4 tlUU I II-/- I V vira,.-- .--8 a = [a/']: 

Example 1-3 

a= -1 i b= I0 1 -1 3] 
0 2 

(1)(1) + (0)(0) + (0)(1) (1)(0) + ()(- ) ()( -1) + (0)(3)j(1)(1) J 
[ 1 0 -11 

(- 1)(0) + ()(- 1) (- 1)(- 1) + (1)(3)ab = (-1)(1) + (1)(0) (-1)(1) + (1)(1) 
(0)(1) + (2)(0) (0)(1) + (2)(1) (0)(0) + (2)(- 1) ()(- ) + (2)(3) 3 

+1 + 1 0 -11 

ab= -1 0 -1 +4 
0 +2 -2 6 

If the product ab is defined, a and b are said to be conJbrmablein the order 

stated. One should note that a and b will be conformable in either order only 
In the previous example, a and b are con­when a is mi x n and b is n x in. 

formable but b and a are not since the product ba is not defined. 
When the relevant products are defined, multiplication of matrices is as­

sociative, Ii -' 
a(bc) = (ab)c t -/uV) 

and distributive, 
a(b + c) = ab + ac (1-21) 
(b + c)a = ba + ca 

but, in general, not commutative, 

ab : ba (1-22) 

Therefore, in multiplying b by a, one should distinguish premnultiplication,ab, 

from postmultiplicationba. For example, if a and b are square matrices of order 

2, the products are 

ra11 a1l211b b;1 alb 1 a + aazb22 

La 21 a2 2 jLb2i b22J La2 lbll + a22b21 a21b12 + a22b22 

bll b12 [a1 a,21 Fbllall + b 2a2 l bl1a 12 + bl 2a2 2 

+ b22a22 jLb2 1 b22J La2l a2 2J Lb2 ta ll + b22 a21 b21 a12 

ha, the matrices are said to commute or to be permutable.When ab = 

1-4. TRANSPOSE OF A MATRIX 

The transpose of a = [aij] is defined as the matrix obtained from a by 
We shall indicate the transpose of a byinterchanging rows and columns. 

all 2 .'aln 

a =[aij] 
(m x n) 

a aia21 a22 . a2n 
(1-23) 

Lai alm2 amn 

-al a2 l ... am 

aT= a1 2 al2 2 . 2 
(n x m) 

Lain a2 . . amn 

The element, aiT, at the ith row and jth column of aT, where now i varies from 1 
to n and j from 1 to m, is given by 

T
a j = ai (1-24) 

where aji is the element at the jth row and ith column of a. For example, 

a= ]7 a T1= 

Since the transpose of a column matrix is a row matrix, an alternate notation 

for a row matrix is 

[al, a2, ,an] = li}T (1-25) 

We consider next the transpose matrix associated with the product of two 
matrices. Let 

p = ab (a) 

where a is m x n and b is n x s. The product, p, is m x s and the element, 
Pu, is 

n i = 1,2,...,m 
(b)Pij = E aikbkj j= 1,2,...,sk=l 

The transpose of p will be of order s x m and the typical element is 

Py = Pji (c) 

where now i = 1, 2,...,s and j = 1, 2,...,in. Using (1-24) and (b), we can 
write (c) as 

n n = 1,2,..., s 
(d)PT = 

k=l 
ajkbki = 

k=1 
bkakj 

j = 1,2,...,m 

It follows from (d) that ' 
pT = (ab)T = bTaT (1-26) 

Equation (1-26) states that the transpose of a product is the product of the 
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transposed matrices in reversed order. This rule is also applicable to multiple We introduce the Kronecker delta notation: 

products. For example, the transpose of abc is 6i = 0 i j 

(abc)T = cT(ab)T = cTbTaT (1-27) ci = +1 i =j 
(1-28) 

E5. ± 
With this notation, the unit matrix can be written as 

Example 1-4 
I = [abij] i,j = 1, 2, . . , n (1-29) 

a = 7 1 b ={} Also, the diagonal matrix, d, takes the form 

-5 4- d = [dibij] (1-30) 

where dj, d2, ... , d are the principal elements. If the principal diagonal elements 
ab= 13} (ab) T = [4 13 6] are all equal to k, the matrix reduces to 

Alternatively, [kbij] = k[lij] = kI (1-31) 

aT = 3 1 bT =[2 -1] and is called a scalarmatrix. 
Let a be of order m x n. One can easily show that multiplication of a by a 

(ab)T = bla T =[2 -1L2 ] = [4 3 6] 
conformable unit matrix does not change a: 

aIn = a 
(I -2)

Ima = a 

1-5. SPECIAL SQUARE MATRICES A unit matrix is commutative with any square matrix of the same order. 
Similarly, two diagonal matrices of order are commutative and the product 

If the numbers of rows and of columns are equal, the matrix is said to be square 
is a diagonal matrix of order n. Premultiplication of a by a conformable 

and of order n, where n is the number of rows. The elements aii (i = 1, 2 .. , n) 
diagonal matrix d multiplies the ith row of a by dli and postmultiplication

lie on the principal diagonal. If all the elements except the principal-diagonal 
multiplies the jth column by dj.

elements are zero, the matrix is called a diagonal matrix. We will use d for 
r_diagonal matrices. If the elements of a diagonal matrix are all unity, the diagonal 

. -
��r��l��l�o v --�� 

I __ - - - ­
matrix is referred to as a unit matrix. A unit matrix is usually indicated by I,, 

where n is the order of the matrix. r2 _0] 0 = 3 0] 2 _0 = 6 0 

Example 1-5 ][2 0 [3 1] 2[6 ] 
1-I 2 72 2 _7

Square Matrix, Order 2 

[3 2] 0 70][ -1]=[4 -7 

Diagonal Matrix, Order 3 A square matrix a for which ai = aj, is called symmetrical and has the 
property that a = aT. If ai = -aji (i # j) and the principal diagonal elements 

00500 all equal zero, the matrix is said to be skew-symmetrical. In this case, a = -a. 
003j Any square matrix can be reduced to the sum of a symmetrical matrix and a 

skew-symmetrical matrix: 

Unit Matrix, Order2 a = b + c 

12:[I 0] bij = ( aij + a i) 
I2=° 1 (1-33) 

Cij = (aij - ai) 



13 1r2 INTRODUCTION TO MATRIX ALGEBRA CHAP. 1 

The product of two symmetrical matrices is symmetrical only when the matrices 
are commutative.* Finally, one can easily show that products of the type 

(aTa) (aaT) (aTba) 

where a is an arbitrary matrix and b a symmetrical matrix, result in symmetrical 
matrices. 

A square matrix having zero elements to the left (right) of the principal 
diagonal is called an upper (lower) triangular matrix. Examples are: 

Upper TriangularMatrix 

3 5 2 
07 f 

0 4 

Lower TriangularMatrix 

-3 0 0 
7 
12 4 

Triangular matrices are encountered in many of the computational procedures 
developed for linear systems. Some important properties of triangular matrices 
are: 

1. The transpose of an upper triangular matrix is a lower triangular matrix 
and Vice versa. 

2. The product of two triangular matrices of like structure is a triangular 
matrix of the same structure. 

all 0 1bl 0 1[ablbJ _ 0 1 
b2a2 l a2 2 b2 i b2 2 j L 21b1 a22 b 2 1 a2 2 2 2 

1-6. OPERATIONS ON PARTITIONED MATRICES 

Onerations. on matrix of high order can he imnlified hv considerino the 

matrix to be divided into smaller matrices, called submatrices or cells. The 
partitioning is usually indicated by dashed lines. A matrix can be partitioned 
in a number of ways. For example, 

alt a1t2 a, 3 a,, aI2 1 a1 3 all a1 2 a13 
a = a2 a2 2 a2 3 = 2 a a2 2 a2 3 = a2 l a2 2 a23 

a31 a32 a3 3 a3 a3 2 a3 3 31 a32 a13 3 

Note that the partition lines are always straight and extend across the entire 
matrix. To reduce the amount of writing, the submatrices are represented by 

* See Prob. 1-7. 
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a single symbol. We will use upper case letters to denote the submatrices 
whenever possible and omit the partition lines. 

Example 1-7 

We represent 

fall a12 I al1 3 

a al a22 a23 

a3 a32 , a33j 
as 

ta = FAll A2] or [A A_ ]
A 22121 A22

1 
or _ a= A1 A21

where k=Cat A,2 A2 2 

A = :all a12 A12 = [ 13 
La2 3la23 1 a2 A 

A21 = a3l a32] A22 = [a33] 

If two matrices of the same order are identically partitioned, the rules of 
matrix addition are applicable to the submatrices. Let 

IB11 B1a= All A12 b LB 1 2 (1-34)LA21 A22 j 2 1 B2 2 

where Bj and A,, are of the same order. The sum is 

All + 31 A1 2 + 2 -
a+b 1+ B21 I A2 2 + B22 (1-35) 

The rules of matrix multiplication are applicable to partitioned matrices 
provided that the partitioned matrices are conformable for multiplication. In 
general, two partitioned matrices are conformable for multiplication if the 
partitioning of the rows of the second matrix is identical to the partitioning of 
the columns of the first matrix. This restriction allows us to treat the various 
submatrices as single elements provided that we preserve the order of mul­
tiplication. Let a and b be two partitioned matrices: 

a = [A]i =1,2...N
b =,] j= 1, 2,...,M 

b = [Bjk] ,/ = 1,2. M (1-36) 
k= 1,2,...,S 

We can write the product as 
c = ab = [Cik] 

M i= 1,2,...,N
Cik = E AijBk

j=1 k= 1,2,...,S - (1-37) 

when the row partitions of b are consistent with the column partitions of a. 
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As an illustration, we consider the product order of a, no partitioning of a is necessary and the product has the form 

all a a b, ab = a[B,,B, 2] = [aB 1, ' aB 12] 
ab =a21 a22 a2 3 b2 To transpose a partitioned matrix, one first interchanges the off-diagonal 

a31 a3 2 a133 (b3J submatrices and then transposes each submatrix. If 

Suppose we partition a with a vertical partition between the second and third [A1 1 A12 · A1 ,
columns. 

all a12 a 13 A2 1 A2 2 ... A2n 

a = a21 a22 a23 = [A 11A1 2 ] 
Am Arn2 n.n 

a31 a3 2 a33 then (1-38) 
For the rules of matrix multiplication to be applicable to the submatrices of a, [AT A21 Arm

ATAT ... A;2we must partition b with a horizontal partition between the second and third A r 2 a = 
rows. Taking 

Aln ;2n ... Amn 

b = b2 B2 A particular type of matrix encountered frequently is the quasi-diagonal 
matrix. This is a partitioned matrix whose diagonal submatrices are squareof 

the product has the form various orders, and whose off-diagonal submatrices are null matrices. An 

ab = [A,1 A 2 ] {B J= A1 B1 , 
example is+ A1 2 B21 

The conformability of two partitioned matrices does not depend on the 
a= 0 a22 a2 3 

horizontal partitioning of the first matrix or the vertical partitioning of the a3 2 a3 3 

second matrix. To show this, we consider the product which can be written in partitioned form as 

ab= a2, a22 a23 b, I b22 
a = = [Ai 1 J] 

a31 a3 2 a3 b3l b32 where 

Suppose we partition a with a horizontal partition between the second and Al = [a,,] A2 = 22 a23 
third rows: a32 a3 3 

al, ,2 a,3 Ai11 and 0 denotes a null matrix. The product of two quasi-diagonal matrices of 
a- a21 a22 a2 3 I A2 l like structure (corresponding diagonal submatrices are of the same order) is 

a quasi-diagonal matrix of the same structure.La3 a32 a3 3 

0Since the column order of A11 and A21 is equal to the row order of b, no A, 0 OB 0 O 1 AB, O * ''' *· O \ 
partitioning of b is required. The product is A2 .. 00 B2 .0' O A2B2 * '".0-· O 

(1-39) 
ab = IAll b = Allb O .. A ... B, o- 0 '" AnBnLA21 A21b 

where Ai and Bi are of the same order. ]
As an alternative, we partition b with a vertical partition. We use the term quasi to distinguish between partitioned and unpartitioned 

bll | b1 2 
matrices having the sameform. For example, we call 

b= b2,1 b22 = [B11B12] LA0A211 
b31 b32 A21 A22 

(1-40) 

In this case, since the row order of B,, and B12 is the same as the column a lower quasi-triangular matrix. 



- -

17 

16 INTRODUCTION TO MATRIX ALGEBRA CHAP. 1 

1-7. DEFINITION AND PROPERTIES OF A DETERMINANT 

The concept of a determinant was originally developed in connection with 
the solution of square systems of linear algebraic equations. To illustrate how 
this concept evolved, we consider the simple case of two equations: 

allX1 + a12 X2 = C1 (a) 
a2 1x 1 + a2 2X2 = C2 

Solving (a) for x1 and x 2, we obtain 

(a1 1a2 2 - al2a 2 1)x 1 = Cia 2 2 - C2a 2
 (b)
(al 1a2 2 - al2 a21 )x 2 = -Cla21 + c2all 

The scalar quantity, at la 22 - a21 a2 1, is defined as the determinant of the second­
order square array aij (i,j = 1, 2). The determinant of an array (or matrix) is 
usually indicated by enclosing the array (or matrix) with vertical lines: 

al 1 a12 -lal = aa 2 2 -al2a2 (1-41) 
a2 1 a2 2 

We use the terms array and matrix interchangeably, since they are synony­
mous. Also, we refer to the determinant of an nth-order array as an nth-order 
determinant. It should be noted that determinants are associated only with 
square arrays, that is, with square matrices. 

The determinant of a third-order array is defined as 

all a1 2 a1 3 +a1 la2 2 a3 3 - aa 2 3 a3 2 

a21 a2 2 a2 3 = -al 2 2a a33 + at 2a2 3 a31 (1-42) 
a ­a31 a32 a3 3 +a1 32a1 23 a1 3a2 2a 3 1 

This number is the coefficient of x1 , x2, and x 3, obtained when the third-order 
system ax = c is solved successively for xl , x2, and x3. Comparing (1-41) and 
(1-42), we see that both expansions involve products which have the following 
properties: 

1. Each product contains only one element from any row or column and 
no element occurs twice in the same product. The products differ only 

I in - the column subscripts.-̂ - _r - _ ___- - -1 -_ __ L1_ -_ _1"L I . 
z. I ne sign o a product depends on me order oI me column suoscnpts, 

e.g., +a,,a 2 2 a33 and -a,,a 2 3a 3 2, 

These properties are associated with the arrangement of the column subscripts 
and can be conveniently described using the concept of a permutation, which 
is discussed below. 

A set of distinct integers is considered to be in natural order if each integer 
is followed only by larger integers. A rearrangement of the natural order is 
called a permutation of the set. For example, (1, 3, 5) is in natural order and 
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(1, 5, 3) is a permutation of(1, 3,5). If an integer is followed by a smaller integer,
the pair is said to form an inversion. The number of inversions for a set is defined 
as the sum of the inversions for each integer. As an illustration, we consider 
the set (3, 1,4, 2). Working from left to right, the integer inversions are: 

Integer Inversions Total 
3 (3, 1)(3, 2) 2 
1 None 04 (4, 2) 1 
2 None 

3 

This set has three inversions. A permutation is classified as even (odd) if the 
total number of inversions for the set is an even (odd) integer. According to 
this convention, (1, 2, 3) and (3, 1, 2) are even permutations and (1, 3, 2) is an 
odd permutation. Instead of counting the inversions, we can determine the 
number of integer interchanges required to rearrange the set in its natural order 
since an even (odd) number of interchanges corresponds to an even (odd)
number of inversions. For example, (3, 2, 1)has three inversions and requires 
one interchange. Working with interchanges rather than inversions is practical
only when the set is small. 

Referring back to (1-41) and (1-42), we see that each product is a permutation 
of the set of column subscripts and the sign is negative when the permutation 
is odd. The number of products is equal to the number of possible permutations 
of the column subscripts that can be formed. One can easily show that there 
are n-factorial* possible permutations for a set of n distinct integers. 

We let (al, a2 ... a, ) be a permutation of the set (1, 2 .. , n) and define 
el2 .. a as 

e 12 ... , = + I when (at, a2, . .., ,,) is an even permutation 

e,-...~,, O= -1 when (a, c2 ... , ) is an odd permutation 
(1-43) 

Using (1-43), the definition equation for an nth-order determinant can be 
written as 

a1 1 a12 -.. 

a21 a2 2 '' 
(1-44) 

an a2 ... 

where the summation is taken over all possible permutations of (1, 2, .. , n). 

* Factorial n = n! = n(n - )(n - 2) . .(2)(1). 



19 
18 INTRODUCTION TO MATRIX ALGEBRA CHAP. 1 

Example 1-8 

The permutations for n = 3 are 

al = 1 a2 = 2 C3 = 3 e12 3 = +1 

C = 1 a2 = 3 C3 = 2 e13 2 = -11 

al = 2 X2 = 1 3 = 3 e2 1 3 = -1 

al = 2 2 = 3 C3 = 1 e2 3 1 = +1 

a, = 3 = I C2 = 2 e3 12 = +1 

al = 3 C = 2 X3 = 1 e3 2 1 = -I2 

Using (1-44), we obtain 

all a12 a13 alla22a3 3 - aa 23 a32 

a21 a2 2 a23 = -a2a2a33 a2a23a3 

a3 l a3 2 a33 +a13a21a32 -'a3a22a31 

This result coincides with (1-42). 

The following properties of determinants can be established* from (1-44): 

1. If all elements of any row (or column) are zero, the determinant is zero. 
2. The value of the determinant is unchanged if the rows and columns are 

interchanged; that is, aT = al. 
3. If two successive rows (or two successive columns) are interchanged, the 

sign of the determinant is changed. 
4. If all elements of one row (or one column) are multiplied by a number k, 

the determinant is multiplied by k. 
5. If corresponding elements of two rows (or two columns) are equal or in 

a constant ratio, then the determinant is zero. 
6. If each element in one row (or one column) is expressed as the sum of 

two terms, then the determinant is equal to the sum of two determinants, 
in each of which one of the two terms is deleted in each element of that 
row (or column). 

7. If to the elements of any row (column) are added k times the cor­
responding elements of any other row (column), the determinant is 
unchanged. 

We demonstrate these properties for the case of a second-order matrix. Let 

a = at Xal 2 
a21 a22 

The determinant is 
la = alla22 - al2a2 

Properties 1 and 2 are obvious. It follows from property 2 that aTi = al. We 

*See Probs. 1-17, 1-18, 1-19. 
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illustrate the third by interchanging the rows of a: 

= a,2 1 a2 2 

La11 a 1 2 j 

la'l = a2,a 1 2 - aj a1 2 2 = -a 

Property 4 is also obvious from (b). To demonstrate the fifth, we take 

a21 = kall a2 2 = ka 12 Then 

Ja = all(ka1 2) - al2(kal) = 0 
Next, let 

all = bll + c 1 at2 = b1 2 + c12 
According to property 6, 

fat = Ibl + ice
where 

Jbl = b1, bl 2 Il = c1 1 c122 
a21 a2 2 a21 a2 2 

This result can be obtained by substituting for a,,ll and a1 2 in (b). Finally, to 
illustrate property 7, we take 

bl = a,, + ka 21 

bl 2 = a 2 + ka 2 2 

b2 l = a21 

b22 = a2 1 
Then, 

tb = (a,, + ka 2 )a22 -(a 12 + ka 2 2)a2l = fat 

1-8. COFACTOR EXPANSION FORMULA 

If the row and column containing an element, aij, in the square matrix, a, 
are deleted, the determinant of the remaining square array is called the minor 
of aij, and is denoted by M. The cofactor of aij, denoted by A, is related to 
the minor of Mij by 

Aj = (- 1)i'+jMi (1-45)
As an illustration, we take 

a= 1 7 4 
5 3 1 

The values of Mij and Aj associated with a23 and a 22 are 

53= -1 A2 3 = (- 1) 5M 23 = + 1 

3 811= -37 A2 2 = (--1) 4M 2 2 = -37 
:5·=8 
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Cofactors occur naturally when (1-44) is expanded* in terms of the elements 
of a row or column. This leads to the following expansion formula, called 
Laplace's expansion by cofactors or simply Laplace's expansion:? 

|al = Z aikAik = Z akjAkj (1-46) 
k= k=l 

Equation (1-46) states that the determinant is equal to the sum of the products 
of the elements of any single row or column by their cofactors. 

Since the determinant is zero if two rows or columns are identical, if follows 
that 

E arkAik = 0 r i 
k=l 

(1-47) 

Y akAkj = 0 S j 
k=l 

The above identities are used to establish Cramer's rule in the following section. 

Example 1-9 

(1) We apply (1-46) to a third-order array and expand with respect to the first row: 

all a1 2 a1 3 

a2 1 a2 2 a2 3 

a3 1 a3 2 a3 3 

= a 1(_1) 
2 

a2 2 a2 3 + a2(-1)3 a21 a2 3 + a1 3 (- )4 21 a2 2 

l132 a3 3 a3 1 a33 a31 a3 2 

= al(a22a33 ­ a2 3 a3 2) + a 2 (-a 2 ta 3 3 + a2 3 a31 ) + a1 3 (a21 a3 2 - a2 2 a3 1 ) 

To illustrate (1-47), we take the cofactors for the first row and the elements of the second 
row: 

A a2 kAlk 
k=l 

= a21(a22a33 - a23a32) a22(--a21a33 - a23a3 ) + a23(a2a32 - a22a31) = 0 

(2) Suppose the array is triangular in form, for example, lower triangular. Expanding 
with respect to the first row, we have 

a11 0 0 
(22 0 

a21 a2 2 0 a,, = (a1 1 )(a22 a ) = 110a22a333 3 
a3 2 a33 

a3l a32 a3 3 

Generalizing this result, we find that the determinant of a triangular matrix is equal to 
the product of the diagonal elements. This result is quite useful. 

*See Probs. 1-20, 1-21. 
t See Ref. 4, sect. 3-15, for a discussion of the general Laplace expansion method. The expansion 

in terms of cofactors for a row or a column is a special case of the general method. 

SEC. 1-9. CRAMER'S RULE 

The evaluation of a determinant, using the definition equation (1-44) or the 
cofactor expansion formula (1-46) is quite tedious, particularly when the array 
is large. A number of alternate and more efficient numerical procedures for 
evaluating determinants have been developed. These procedures are described 
in References 9-13. 

Suppose a square matrix, say c, is expressed as the product of two square 
matrices, 

c = ab (a) 

and we want Icl. It can be shown* that the determinant of the product of two 
square matrices is equal to the product of the determinants: 

Ic = al bl (1-48) 

Whether we use (1-48) or first multiply a and band then determine ab depends 
on the form and order of a and b. If they are diagonal or triangular, (1-48) 
is quite efficient. t 

Example 1-10 

(1) 

3al:5 b= 1 40 

lal = -4 |b = 5 |c = -20 
Alternatively, 

c =[5 15 and clJ= -20 
c= l1 29 

(2) 

= [ ] b= [ 4] 

lal =5 Ibl= 8 cl = +40 

Determining c first, we obtain 

c= 12] and CI= +40 
5 20 

1-9. CRAMER'S RULE 

We consider next a set of n equations in n unknowns: 

Z ajkXk = Cjj = 1, 2,..., (a) 
k=l 

* See Ref. 4, section 3-16. 
t See Prob. 1-25 for an important theoretical application of Eq. 1-48. 
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Multiplying both sides of (a) by Ajr, where r is an arbitrary integer from 1 to n,
and summing with respect to j, we obtain (after interchanging the order of 
summation) 

(b) 
k= =Xk aA) = Ajrj
k=l j=l / j=l 

Now, the inner sum vanishes when r k and equals tat when r = k. This 
follows from (1-47). Then, (b) reduces to 

alx r = E Ajrcj (c)
j=1 

The expansion on the right side of (c) differs from the expansion 

la = Z a,.Aj. (d)
j=l1 

only in that the rth column of a is replaced by c. Equation (c) leads to Cramer's 
rule, which can be stated as follows: 

A set of n linear algebraic equations in niunknowns, ax = c, has a 
unique solution when lal 0. The expression for Xr (r = 1, 2,..., n) is 
the ratio of two determinants; the denominator is lal and the numerator 
is the determinant of the matrix obtained from a by replacing the rth 
column by c. 

If ta = 0, a is said to be singular. Whether a solution exists in this case will 
depend on c. All we can conclude from Cramer's rule is that the solution, if 
it exists, will not be unique. Singular matrices and the question of solvability 
are discussed in Sec. 1-13. 

1-10. ADJOINT AND INVERSE MATRICES 

We have shown in the previous section that the solution to a system of n 
equations in n unknowns, 

[aij] {Xj = {ci} i,j= 1,2,...,n (a) 

can be expressed as 
I n 

Xi= - Ajici i=1,2,...,n (b) 
tatj1= 

(note that we have taken r = i in Eq. c of Sec. 1-9). Using matrix notation, 
(b) takes the form 

I 
xi=- [Ai~l {cj} (c) 

Equation (c) leads naturally to the definition of adjoint and inverse matrices. 

SEC. ~1-10. ADJOINT AND INVERSE MATRICES 

We define the adjoint and inverse matrices for the square matrix a of order n as 

adjoint a = Adj a = [Aij]T (1-49) 

inverse a = a - = . Adj a (1-50)
lai 

Note that the inverse matrix is defined only for a nonsingular square matrix. 

Example 1-11 

We determine the adjoint and inverse matrices for 

a= 2 3 3 
4 1 2 

The matrix of cofactors is 
5 0 -10 

[Aij]= -1 -o10 +7 
7 +5 -l 

Also, al = -25. Then 
5 -- I -7 

Adj a = [Aij]T = 0 -10 +5 
-10 +7 -1 

--1/5 + 1/25 /251 
a1= --Adj a = O +2/5 -1/5 

al +2/5 -7/25 +1/25J 

Using the inverse-matrix notation, we can write the solution of (a) as 

X = a-lc (d) 
Substituting for x in (a) and c in (d), we see that a- 1 has the property that 

ala = aa-I = (1--51) 
Equation (1-51) is frequently taken as the definition of the inverse matrix 
instead of (1-50). Applying (1-48) to (1-51), we obtain 

la-' lal = I i 
It follows that (1-51) is valid only when tlat # 0. Multiplication by the inverse 
matrix is analogous to division in ordinary algebra. 

If a is symmetrical,. then a- is also symmetrical. To show this, we take the 
transpose of (1-51), and use the fact that a - aT: 

(a- a)r = aa- r = In 
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Premultiplication by a- results in 

and therefore a-' is also symmetrical. One can also show* that, for any 

nonsingular square matrix, the inverse and transpose operations can be inter­

changed: . . - r (1-52T
\- E_,b', = ,- ( 2) 

We consider next the inverse matrix associated with the product of two square 

matrices. Let 
c = ab 

where a and b are both of order n x n and nonsingular. Premultiplication 

by a-' and then b- results in 
a-'c = b 

(b-'a-')c = I 

It follows from the definition of the inverse matrix that 

(ab)-1 = b-'a-1 (1-53) 

In general, the inverse of a multiple matrix product is equal to the product of 

the inverse matrices in reverse order. For example, 

(abcd)-' = d-'c-'b- a-' 

The determination of the inverse matrix using the definition equation (1-50) 
A number of inversion proceduresis too laborious when the order is large. 

based on (1-51) have been developed. These methods are described in Ref. 9-13. 

1-11. ELEMENTARY OPERATIONS ON A MATRIX 

The elementary operations on a matrix are: 

1. The interchange of two rows or of two columns. 
2. The multiplication of the elements of a row or a column by a number 

other than zero. 
3. The addition, to the elements of a row or column, of k times the cor­

responding element of another row or column. 

These operations can be effected by premultiplying (for row operation) or 

postmultiplying (for column operation) the matrix by an appropriate matrix, 

called an elementary operation matrix. 
n. Suppose that we want to interchangeWe consider a matrix a of order m x 

rowsj and k. Then, we premultiplya by an n x mmatrix obtained by modifying 

the mth-order unit matrix, I., in the following way: 

1. Interchange 6ij and Sjk­
2. Interchange kk andskj 

* See Prob. 1-28. 

SEC. 1-11. ELEMENTARY OPERATIONS ON A MATRIX 

For example, if a is 3 x 4, premultiplication by 

0 1 0 

1 0 0 

interchanges rows 1 and 3 and postmultiplication by 

1 0 00 
0 0 0 1 

0 0 1 0[ I
0 1 0 00100 

interchanges columns 2 and 4. This simple example shows that to interchange 
rows, we first interchange the rows of the conformable unit matrix and pre­

multiply. Similarly, to interchange columns, we interchange columns of the 

conformable unit matrix and postmultiply. 
The elementary operation matrices for operations (2) and (3)are also obtained 

by operating on the correspondingconformable unit matrix. The matrix which 
I for i # jmultiplies row j by c(is an mth order diagonal matrix having di = 

and dj = . Similarly, postmultiplication by an nth order diagonal matrix 
will multiply the jth column by a. Supposehaving di = 1 for i j and dj = 

that we want to add actimes row j to row k. Then, we insert a in the kth row 

and jth column of I, and premultiply. To add actimes column j to column k, 

we put ccin the jth row and kth column of I, and postmultiply. 

We let e denote an elementary operation matrix. Then, ea represents the 

result of applying a set of elementary operations to the rows of a. Similarly, 

ae represents the result ofapplying a set of elementary operations to the columns 

of a. In general, we obtain e by applying the same operations to the conformable 

unit matrix. Since we start with a unit matrix and since the elementary opera­

tions, at most, change the value of the determinant by a nonzero scalar factor,* 

it follows that e will always be nonsingular. 

cAuIJV.
rs:;mo 

I -I}. 

We illustrate these operations on a third matrix: 

1 1/2 1/5 
a= 3 7 2 

-2 5 

We first: 

1. Add (-3) times the first row to the second row. 
2. Add (2)times the first row to the third row. 

* See properties of determinants (page 18). 
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These operations are carried out by premultiplying by 1 0 0J[ 1 0 01 

-6/11 2/11 0 -6/11 2/11 
+ 34/11 - 4/11 0 + 1870/2959 -220/2959 55/2691-3 1 0 

2 0 1 

Two matrices are said to be equivalent if one can be derived from the other 
and the result is 1 1/2 1/51 by any finite number of elementary operations. Referring to Example 1-12, the 

0 11/2 7/5 matrices 
0 2 27/5 1 1/2 1/5 1 1/2 1/5 

3 7 2 and 0 1 14/55 
Continuing, we multiply the second row by 2/1 1: 

-2 1 5 0 1 
01 O \1 1/2 1/51 l 1/2 1/5 1 

11/2 7/5 = 0 1 14/55 are equivalent. In general, a and b are equivalent if 
2'11 

o ( 1 0 2 27/5_1 2 27/51 
b = paq (1-54) 

Next, we add (-2) times the second row to the third row: where p and q are nonsingular. This follows from the fact that the elementary 

1/2 1/5 1 1I1/2 1/5 operation matrices are nonsingular.I 0 
0 1 1 14/55 = 0 14/55 

0 -2 1 0 2 27/5 0 0 269/55 
1-12. RANK OF A MATRIX 

Finally, we multiply the third row by 55/269. The complete set of operations is The rank, r, of a matrix is defined as the order of the largest square array, 

0 0 1 1 F I 0 0111 l2j 1/5 formed by deleting certain rows and columns, which has a nonvanishing deter­

o1t 2/11 0 -3 1 3 7 2 minant. The concept of rank is quite important since, as we shall see in the 
0 1 next section, the solvability of a set of linear algebraic equations is dependent 

0 55/269 L0 -2 I 0 l 2 0 1 -2 1 5 
on the rank of certain matrices associated with the set. 

1/2 1/5 Let a be of order mnx n. Suppose the rank of a is r. Then a has r rows 
=-_ 1 14/55 =b which are linearly independent, that is, which contain a nonvanishing deter­

0 1 minant of order r, and the remaining n - r rows are linear combinations of 

these r rows. Also, it has n - r columns which are linear combinations of r 
This example illustrates the reduction of a square matrix to a triangular matrix using linearly independent columns. 

elementary operations on rows, and is the basis for the Gauss elimination soluion scheme 
To establish this result, we suppose the determinant associated with the first r 

(Refs. 9, 11, 13). We write the result as 
ea== b rows and columns does not vanish. If a is of rank r, one can always rearrange 

the rows and columns such that this condition is satisfied. We consider the 

where e is the product of the four operation matrices listed above: (r + I)th-order determinant associated with the first r rows and columns, row 
m1 0 0 p, and column q where ri <p in, r < q < In. 

e = 6/11 2/11 
air a. 

L+ 1870/2959 - 220/2959 55/269 a1 1 
at 2 

. 2 a2qa2 a2 2 

We obtain e by applying successive operations, starting with a unit matrix. This is more Ar |,Ii - apl (1-55) 
convenient than listing and then multiplying the operation matrices for the various steps. ar2 '''arr arq 

The form of e after each step is listed below: ar ap 2 ap a 

Initial Step 1 Step 2 
We multiply the elements in rowj by 2pj (j = 1, 2,...,r) and subtract the result 

-1 0 0 [ 0 01 1 0 01O from the last row. This operation will not change the magnitude of A,r+ (see 
0 1 0 -3-1 0 -6 /11 2/ll 0 Sec. 1-7). In particular, we determine the constants such that the first r elements 

2 0 10 0 1 2 0 1 
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28 IN 
We see that a is at least of rank 2 since the determinant associated with the first two rows 

in the last row vanish: and columns is finite. Then, the first two rows are linearly independent. We consider the 

determinant of the third-order array consisting of columns 1,2, and q:
all a2 1 . I ar \ 5p r = ap,) I I~~~~ a, 

, 

.112 a22 '' a,r2 P2 _= p2 (1-56) 2 alq 

A3 = 2 1 a2q 

air a2r 5 7 (13q 

matrix is non- Solving the system, 
Equation (1-56) has a unique solution since the coefficient 

_.^ h....,n 1- re.Cduces to 21 + 222 = 5 

slngulal. 1nlh t -J 
al1 a,2 * a,,. ialq 221 + 22 = 7 

we obtain 
a2 l a2 2 -a2r -2qa 

(1-57) 
2, = 3 A2 = 1 

Ar+ , I If a is of rank 2, A3 must vanish. This requires
6

arn ar2 a,- CtIq 
a3q = ,lalq + A2a2q = 3alq + a2q 

q= 3,4 
where 

Since a33 and a34 satisfy this requirement, we conclude that a is of rank 2. The rows are 

related by
a aa0)- [a aq· rq (1-58) 

(third row) = + 3 (first row) + (second row) 
pq - pq aa . 

A,+ vanishes One can show* that the elementary operations do not change the rank of 

Applying Laplace's expansion formula to (1-57), we see that a matrix. This fact can be used to determine the rank of a matrix. Suppose b 

when a(") = 0. ofp and q. It defined by (1-61) is obtained by applying elementary operations to a. We know 

Now, if a is of rank r, A,+ 1 vanishes for all combinations that b and a have the same rank. It follows that a is of rank p. A matrix having 

the form of b is called an echelon matrix. When a is large, it is more efficientfollows that 
to reduce it to an echelon matrix rather than try to find the largest nonvanishing 

(1-59) determinant:apq =al, p = r + 1, r + 2,...,intl2q,- ,rq] Ipj q = r + 1, .. .,n 

(P X ) (p x (n--p)) 

ipr al a1 2 ... ain I b12 ... blp I 

0 1 - - bp21 1 B12 
6121 a2 2 .C12nCombining (1-56) and (1-59), we have 

= b- : : : I (1-61)b 
0 0 .- 1 _ 

'a.1. a.2 *=-r i (-apl60) C[at am2 . aln 

a1 2 a 2 ... r2 aII, ra , 
(011 - p) x p) I ((- p) x (n-p)) 

a n,, a2,n arn .pr j b 
Example 1-14 

- r rows of a are linear combinations 1 2 3 4Equation (1-60) states that the last min 
of the first 1-rows. One can also show* that the last n - r columns of a are a= 2 1 3 2 
linear combinations of the first r columns. 5 7 12 12 

Example 1-13 First, we eliminate a2, and a3l, using the first row: 

Consider the 3 x 4 matrix 1 2 34
Tr 2 3 4 

3 -6 
a =j2 1 3 2 

0 -3 -3 -8
5s 7 t2 t4 

*See Prob. 1-40. 

*See Prob. 1-39. 
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Next, we eliminate ail), using the second row: If a is of rank 2, we can always renumber the rows and columns such that (1-65) 

-I 2 3 4 
is satisfied. We partition a and x, 

a(2) = 0 -3 -3 -6 
0 0 0 2 a = [alia 2 a23 1 = [Aia 3 A2] (1-66)k21 a22 I 1a23At this point, we see that r = 3.To obtain b,we multiply the second row by - 1/3, the third 

row by - 1/2, and interchange the third and fourth columns: XI 

3={2} { IX 
b= 1 2 1 

0 1 0 and write (1-64) as AIX 1 + A2X2 = c. Next, we transfer the term involvingX2 to the right-hand side: 

Suppose a is expressed as the product of two rectangular matrices: AIX = - A2X2 (1-67)
(m x s) (nt x n) (n x s) 

a = b c (1-62) 
Since JIAI 0, it follows from Cramer's rule that (1-67) has a unique solutionfor X1. Finally, we can write the solution as

One can show* that the rank of a cannot be greater than the minimum value 
of r associated with b and c: X = A '( - A,X,) (1-68) 

r(a) < min [r(b), r(c)] (1-63) Since X2 is arbitrary, the system does not have a unique solution for a given c.The order of X2 is generally called the defect of the system. The defect for thisAs an illustration, consider the product system is 1. 
If a is of rank 1, the second row is a scalar multiple, say , of the first row. 

a= [1/2 +1/2 01[ 
Multiplying the second equation in (1-64) by 1/,, we have 

Since each matrix is of rank 2, the rank of a will be < 2. Evaluating the product, 
allX 1 + a12X2 + a13 x 3 = C, 
a, X + a2X2 + a3X3 = C2/1 (1-69) 

we obtain 
If c2 Ac, , the equations are inconsistent and no solution exists. Then, when1

a=[0 1 a is of rank 1,(1-64) has a solution only if the rows of c are related in the same 
It follows that a is of rank 1. manner as the rows ofa. If this condition is satisfied, the two equations in (1-69)are identical and one can be disregarded. Assuming that a 1 0, the solution is 
1-13. SOLVABILITY OF LINEAR ALGEBRAIC EQUATIONS X = Olai)(C - aj2X2 - a3X3)

We consider first a system of two equations in three unknowns: The defect of this system is 2. 
(1-70) 

The procedure followed for the simple case of 2 equations in 3 unknowns is al l a 2 al3x l CIt (1-64) 
also applicable to the general case of m equations in n unknowns: 

a21 a22 a23 c2 
Fail a12 . a,, C 

ax = c 
Suppose a is of rank 2 and 21 a22 a,, X C2 

(1-71) 
al l a0 21 # 0 

(1-65) aml a2 ... a,,,J n J Cn 
a2 t a22 

If a is of rank in, there exists an mth order array which has a nonvanishing* See Prob. 1-44. determinant. We rearrange the columns such that the first m columns are 
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linearly independent. Partitioning a and x, 
a l l 

a1 2 * aim i al, m+ * aln 

a2l a22 .' a2,n a2 m+l '*' a2n= A2 ] 
(xn m) (m x (n- m)) 

am 1 am2 *' am,, am, m + ... amn (1-72) 

{XI X2 ' X I Cn+i1 . . Xn} { Xl x 2
(mx 1) ((n-m)x 1) 

we write (I-71) as 
AIX1 = c - A2X2 (1-73) 

Since AlI I 0, (1-73) can be solved for X1 in terms of c and X2. The defect 
of the set is n - m, that is, the solution involves n - in arbitrary constants

I represented by X2. 
Suppose a is of rank r where r < m. Then, a has r rows which contain anrth-order array having a nonvanishing determinant. The remaining m - r rows 

are linear combinations of these r rows. For (1-71) to be consistent, that is,
have a solution, the relations between the rows of c must be the same as those 
for a. The defect for this case is n - r. 

""m"'^ " 
._AQtII I JIJ I_-- 4i _ 

As an illustration, consider the third-order system 

altx 1 + a12X2 + a1 3X 3 = C1 

a2 1 X1 + a2 2X2 + a2 3 x3 = C2 
(a) 

= C3 
a3 1x 1 + a3 2 X2 + a3 3 X3 

Suppose that r = 2 and the rows of a are related by 

(third row) = A1 (first row) + 22 (second row) (b) 

For (a) to be consistent, the elements of c must satisfy the requirement, 

C '= IC 1 +3 2 C2 
(c) 

To show this, we multiply the first equation in (a) by -2/, the second by - 2 , and add to
these equations the third equation. Using (b), we obtain 

0 = C3 -- 1lC1 - A2C 2 (d) 

Unless the right-hand side vanishes, the equations are contradictory or inconsistent and nosolution exists. When c = 0, (c) is identically satisfied and we see that (a) has a nontrivial
solution (x # 0) only when r < 3. The general case is handled in the same manner.* 

* See Prob. 1-45. 

REFERENCES 

In general, (1 -71) can be solved when r < m if the relations between the rows
of a and c are identical. We define the augmented matrix, a, for (1-71) as 

all a1 2 .. al,, 

2 1 a2 2 ' a2,, C2 
= [a c] (1-74). . . I 

am a,,m2 . an i 

When the rows of a and c are related in the same way, the rank of CXis equal to
the rank of a. It follows that (1-71) has a solution only if the rank of the aug-.
mented matrix is equal to the rank of the coefficient matrix: 

r(ot) = r(a) (1-75) 
Note that (1-75) is always satisfied when r(a) = m for arbitraryc. 

We can determine r(a) and r(a) simultaneously using elementary operations
on provided that we do not interchange the elements in the last column. The
reduction can be represented as 

Ia=[a C] |AI L C) (1-76) 

where A is of rank r(a). If C ) has a nonvanishing element, r(a) > r(a) and no solution exists. 
When r(a) = r(a), (1-71) contains r independent equations involving n un­

knowns. The remaining m ­ r equations are linear combinations of these r equations and can be disregarded. Thus, the problem reduces to first finding
r(a) and then solving a set of I- independent equations in n unknowns. The
complete problem can be efficiently handled by using the Gauss elimination 
procedure (Refs. 9, 11, 13). 
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PROBLEMS 

1-1. Carry out the indicated operations: 

(a) 

3 2 1 + 7 1 3 
5 1 0 0 5 6 

(b) 
E1-2.) d7 fli4 31 1 51 

*5 1 6 - 3 -1 2J 

(e 21 11 2 3 

[2 3 2 -3] 

1-2. Expand the following products: 

(a) 
[al, a2 ,..., . , a] b,, · b,,} 

(b) 
{al, a2, .. , an} [b, b2, . , ,] 

(c) 
'a, a1 21c1 p0K C a2 1 a2 2]2 
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(d) 

[a 1 
a22J o C2j 

1-3. Show that the product of 
3 

S1 = al + a2 + a3 = E ak 
k=1 

3 

S2 = bl + b b3 = bk 
k=1 

can be written as 
3 3 

S1S2 _ E akbj 
k=l j=l 

Generalize this result for the sum of n elements. 
1-4. Suppose the elements of a and b are functions of y. Let 

d=Ldaik db_ db k 
dy Ldv dy l 6dy 

Using (1-19), show that if 
c = ab 

then 
dc db da 

-= a-+ -- b 
dy dy dy 

1-5. Consider the triple product, abc. When is this product defined? Let 

p = abe 

Determine an expression for Pij. What is the order of p? Determine Pii for the 
case where c = aT. 

1-6. Evaluate the following products: 

(a) 

(b) 

(a + b)(a + b) where a is a square matrix. 

1-7. Show that the product of two symmetrical matrices is symmetrical 
only when they are commutative. 

1-8. Show that the following products are symmetrical: 

(a) 
aTa 

(b) 
arba where b is symmetricala Tba 

(c) 
bTa Tcab where c is symmetrical 
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1-9. Evaluate the following matrix product, using the indicated sub­

matrices: 3 2 

2 [1 3 1_13 
| t '~ 2 5 1 

ab. Show that the horizontal partitions of c correspond to
1-10. Let c = 

those of a and the vertical partitions of c correspond to those of b. Hint: See 

Eq. (1-37). 
1-11. A matrix is said to be symmetrically partitioned if the locations of 

the row and column partitions coincide. For example, 

all al2 1 a31 
a21 a22 a23 
.......-- I .....

a3 1 a3 2 a3 3 

is symmetrically partitioned and 

al i2 a13 a1
23a2 a2 2 1 

_ __ __-- ---­2
a31 ! a32 I a33 

is unsymmetrically partitioed. Suppose we pa n a square matrix with 

N - 1 symmetrical partitions. 
a-Aijl i,j = 1,2, .. ., N 

have
(a) Deduce that the diagonal submatrices are square and Ars, Asr 

the same order. 
(b) If a = aT, deduce that Ars = TA 

1-12. Consider the product of two square nth order matrices. 
c = ab 

(a) If a and b are symmetrically partitioned, show that Cjk, Ajk, Bjk are of 
the same order. Illustrate for the case of one partition, e.g., 

All A1 2 1a A21 A22 

(b) Suppose we symmetrically partition c. What restrictions are placed 

on the partitions of a and b? Does it follow that we must also partition 

a and b symmetrically? Hint: See Prob. 1-10. 

1-13. Consider the triple product, 
c = aTba 

x n. Supposewhere b is a symmetric rth-order square matrix and a is of order r 

we symmetrically partition c. The order of the partitioned matrices are indicated 

in parentheses. (pxp) (pxq) 

(nxn)_ C11 C 12 ] 

l C2 1 C2 2 1 
(qxp) (q x q) 

PROBLEMS 

(a) Show that the following partitioning of a is consistent with that of c. 

(r x n) (rxp) (r x q) 

a = [ A A2 ] 

(b) Express Cjk (j, k = 1, 2) in terms of Al, A2, and b. 
1-14. Let d = [Dj] be a quasi-diagonal matrix. Show that 

da = [DjAjk ] 
bd = [BjkDk] 

when the matrices are conformably partitioned. 
1-15. Determine the number of inversions and interchanges for the 

following sets. 

(a) (4, 3, 1, 2) 
(b) (3,4,2, 1) 

1-16. How many permutations does (1, 2, 3, 4, 5)have? 
1-17. Consider the terms 

and 
eala2 3 ala a2 2 a3a3 (a) 

eflf 2fl3 fl, laf 22af 33 (b) 
The first subscripts in (a) are in natural order. We obtain (b) by rearranging (a)

For example, rearrangingsuch that the second subscripts are in natural order. 

e23 1 a12 a23 a31 = (2, 3, 1) 
we obtain 

e312 a3 a2 a23 8 = (3, 1, 2) 

Show that if (a1, x2, a3) is an even permutation, (l, f2, ,3) is also an even 
permutation. Using this result, show that 

Eexlx2-3alaa2a32.3 = £ e#Pl3 apa2all22al,3 

and, in general, 
lal =afl 

1-18. Consider the terms 

ela2a3aloa2,2 a323 (a) 

exlb 1 blalb2.ab3a3 (b)
Suppose that 

be = a2l b2a2 = al,,a2 b33 = a3a3 

Then, (b) takes the form 
(c)

Show that 
(c) = -(a) 

Generalize this result and establish that the sign of a determinant is reversed 

when two rows are interchanged. 
1-19. Consider the third-order determinant 

la = e,, 23lalla2.2a33 
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Suppose the second row is a multiple of the first row: show that dl = ID,11 ID2. Verify this result for 

O2j = kclj I 0 01 
Show that I = 0. (Hint: e,,,,, = -e,l,23). Generalize this result and establish d -2 3 0 0properties 5 and 7 of Sec. 1-7. 

1-20. Suppose all the integers of a set are in natural order except for one 
0 2 1 

integer, say n, which is located at position p. We can put the set in natural Generalize for 
0 0 5 3 

order by successively interchanging adjacent integers. For example, 
d = A, 6,jl

3 1 2 1 3 2 1 2 3 1-24. Let 
2 3 1 - 2 1 3 1 2 3 (pxp) (pxq) 

g= Gil GShow that n - P1adjacent interchanges (called transpositions) are required. (G2q G22 _It follows that the sign of the resulting set is changed by 
Show that 

(q X p) (q X q 

(_ 1)In-pl Igl = IG,,I G2211-21. We can write the expansion for the third-order determinant as 
Generalize for a quasi-triangular matrix whose diagonal submatrices are square, 

i j k of various orders. 
ai (Eeijka2ja3k) i,j,k = 1,2, 3 1-25. Suppose we express a as the product of a lower triangular matrix, g,

and an upper triangular matrix, b. 
Using the result of the previous problem, 

eijk = (-1)1 ' lejk = (1)+ 1ejk (b) a11 a12 a1,1 q11 0 ... 0 bl,,b 2 b 
''. a2 g 2 22 ''and (a) reduces to 72 1 a2 2 92 2 b2 2 ... b2n 

3 3 

E ali(- 1)i+Mli = aiiAli (c) an a 2 az. Ji=l i=l ,,,,J L,1 2 ../.nn 0O . nn 
Following this approach, establish Laplace's cofactor expansion formula for We introduce symmetrical partitions after row (and column) p and write the 
an nth-order determinant. product as 

1-22. Use Laplace's expansion formula to show that (pxp) (p x q) (pxp) (pxq) (pxp) (pxq) 

All A121 G 0[B,, B12 
1 0 '- O0 A21 A2 2 G2 1 G2 2 L O RB j22
0 1 ... 0 0 0 ... 0 (qxp) (qxq) (qXp) (qxq) (qxp) (qxq) 

(pxp) (pxn) Note that the diagonal submatrices of g and b are triangular in form. 
o o ... i (a) Show that 

= ---- 1---- = lal GllBll = Allbll b,2 ... blp al a12 ... aln (nxp) (nxn)a 
(nx p) ' (nxn)

b2 l b2 2 ... b2p a2 1 a22 ... a2, GliB12 = A12 

G2lBl = A21 

bn b,,2 b P anI aan2 ann G2 1B12 + G2 2B2 2 = A2 2 
(b) Show that

1-23. Consider the quasi-diagonal matrix, IA,11 = IG,,1 1B,,I 
(pxp) (pxq) and 
D1 0

d= 0 D2I lal = IG,, I G22 1 B,,I IB22 
(q x p) (qxq) 

By expressing d as (c) Suppose we require that 

d = [ D ' OlrIp 0 1 Igf 0 IbN0L° I[eIq D2j By taking p = 1, 2, ... , n - 1, deduce that this requirement leads to the 
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40c t esna: n . 

following n conditions on the elements of a: 

a2, a2 aj j = 1,2,. .. n 

jl aj 2 -'- a ii 

The determinant of the array contained in the first j rows and columns is called 
the jth-order discriminant. 

1-26. Does the following set of equations have a unique solution? 

[ 3 x12} = 5 

1-27. Determine the adjoint matrix for 
2 3 
3 5 

7 l 

Does a-' exist? 
1-28. Show that b- 1 T = bT, -
1--29. Find the inverse of 
(a) 

i1 3] 
13 21 

(b) 

(c) [1 3 4 
13 21 Lt 5 1 

(d) 

Let 
illIa12a,3 

,,1 a,a, 2 Ii 131 l3 AL,, Al2a = aI 2 A2, A,2j2


CL1[a,2 ia33 
and 

"Ia - pB, B,221- LBI 1 322j 

where the order of Bjk is the same as Ajk. Starting with the condition 

aa-1 = 13 

PROBLEMS 

determine the four matrix equations relating Bjk and Ajk (j, k = 1, 2). Use this 
result to find the inverse of 

1 2 4 
2 1 2 

1-31. 'Find the inverse of 

01F,(tq 

Note that A is (p x q). 
1-32. Find the inverse of 

d-r: 1 0
D2 

1-33. Use the results of Probs. 1-31 and 1-32 to find the inverse of 

b= F 1 B121 
LO B2 2 

where B,1, B2 2 are square and nonsingular. Hint: write b as 

L I[ LO I Lo B22 

1-34. Consider the 3 x 4 matrix 

1 1 2 1 
a= 1 3 2 

1 2 1 1 

Determine the elementary row operation matrix which results in a2l = a31 = 

a32 = and al l = a22 = a33 = +1. 
1-35. Let 

(pX p) (px q) 

(itn) _ All A1 2 1 
LA21 A2 2 J 

(q p) (qxq) 

where A1,1 # 0 and ja1 0. Show that the following elementary operations 
on the partitioned rows of a reduce a to a triangular matrix. Determine A(U. 

o I OlAt' OlrA1A,, A _I A) 
L cJ l-A21 IqjL IqJLA 21 A2 2J LO Iq J 

-C = (A2 2-A 2 1AlllA12) 1 

1-36. Suppose we want to rearrange the columns of a in the following way: 

-- col 3col 1
a=1 2 3 col 2 - col 1 

col 3 -- col 2
3 4 5 
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PROBLEMS 

(a) Show that postmultiplicationbyn(which is called a permutation matrix) 1-42. Show that c is at most of rank 1. 
43 

results in the desired column rearrangement: 

0 1 c = t 2 [bb 2 ... b,] 

Note that we just rearrange the corresponding columns of I3. 
When will r(c) = 0? 

(b) Show that premultiplication by T rearranges the rows of a in the 
1-43. Consider the product,

11
same way. 

(c) Show that IT II = 13. a 2 l1 b . .lbil(d) Generalize for the case where a is n x n. c 
c =al 

/21 a, 
(e) Show that Lb21 b2 2 .. b2, 

InTan = al a a,, am21-37. Let a be of order 2 x n, where n > 2.. Show that a is of rank I when (a) Suppose b is of rank I and b,the second row is a multiple of the first row. Also, show that when r = 
0. Then, we can write 

, the
second, third, ... , nth columns are multiples of the first column.

1-38. Determine the rank of bI=2kl= (I 
k = 2, 3_ .. , n 

(a) Show that the second, third,.. ., nth columns of c are multiples of the 
1 3 7 first column and therefore r(c) < I. When will r(c) = O?

(b) Suppose r(a) = and a 0. In this case, we can write5 2 4 
3 -4 -10 [ajilaj2] = j[ala2] j- 2, 3 . ., m 

(b) Show that the second, third ... , th rows ofec are multiples of the first-

L 1 2 3 -1 row and therefore r(c) < 1. When will r(c) = 0? 
1-44. Consider the product

2 4 6 -2 
-1 - 2 -3 1 al, a2 lb, h 2 b,, 

C= a21 a22 '1 h22 ... b2,1-39. Let a be of order m x n and rank r. Show that a has n - r columns
which are linear combinations of r linear independent columns. Verify for (a) 

a2,,a,n,I anal~~~ ~ale [mh5 b.s2 bsnXLet
1 2 3 4 

a= 2 1 3 2 Aj = [ajla 2 ... ajj ] 

5 7 12 14_ Bk = {blkb 2k' bsk} (b) 
Using (b), we can write (a) as 

1-40. Using properties 3, 4, and 7 of determinants (see Sec. 1-7), deducethat the elementary operations do not change the rank of a matrix. For con­venience, consider the first r rows and columns to be linearly independent. c = 2 [B1B2 ... B,,]1-41. Find the rank of a by reducing it to an echelon matrix. (c) 
mA, 

Suppose r(a) = r, r(b) = rb. For convenience, we assume the first r 
a= 2 2l 

of a and the first rb columns of b are linearly independent. Then, 
rows 

a-= 3 41 2 

7 7 9 7 Aj = jAp J =Zr + 1, a + 2,..., m 
p ~I 
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rb 

Bk = E kqBq k = b + 1, rb + 2,..., n 
q=l 

(a) Show that rows r, + 1, r, + 2 . .. m of c are linear combinations of 
the first r rows. 

(b) Show that columns rb + , r + 2,..., n of c are linear combinations 
of the first rb columns. 

(c) From (a) and (b), what can you conclude about an upper bound on 
r(c)? 

(d) To determine the actual rank of c, we must find the rank of 

1 A1B 1 A1B . A1rb{A
BbA -,BB A2B1 A2 B2 ... A2Brb 

,ArJ ArB.= Ar.B2 Ara'Brb 

Suppose r, < rb. What can you conclude about r(c) if Af is orthogonal 
to B1, B2 ... , B ? 

(e) Utilize these resuts to find the rank of 

-1/2 1/2 0 l 0 l 
- 1/2 1/2 1 1 0 l 
-I 1 L 1 2j 

(f) Suppose ra = rb = s. Show that r(c) s. Verify for 

2 -22L3
i 1 24 
1-45. Consider the m x n system 

al 12 * a X 1 C1 

21 a22 j{a2X2 C2 (a) 

al. 1 aml 2 . Ct n Cn 
Let 

Aj = [ajlaj2 . ajn] j = 1, 2 .... ,in (b) 

Using (b), we write (a) as 

Ajx = cj j = 1, 2,...,in (c) 
Now, suppose a is of rank r and the first r rows are linearly independent. Then, 

kAk = i,,A, k = r + 1, r + 2,.. ,m
p=l 

(a) Show that the system is consistent only if 

Ck = Z kpCP k = r + 1, r + 2 .. ,m 
p=I 

Note that this requirement is independent of whether m < n or im > n. 

PROBLEMS 

(b) If m < n and r m, the equations are consistent for an arbibrary c. 
Is this also true when ml > n and r = n? Illustrate for 

r -1 IC 

i%2 4 = 

and 

1 4 2} iC3, 
1-46. Consider the following system of equations: 

xI + x2 + 2x 3 + 2x 4 = 4 
2x + x2 + 3X3 + 2 4 = 
3X1 + 4x 2 + 2X 3 + X4 = 9 

7x + 7 2 + 9 3 7 4 23 

(a) Determine whether the above system is consistent using elementary 
operations on the augmented matrix. 

(b) Find the solution in terms of 4. 


