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Governing Equations for

10-1.

a Deformable Solid

GENERAL

The formulation of the governing equations for the behavior of a deformable
solid involves the following threc steps:

1

Study of deformation. We analyze the change in shape of a differential
volume element due to displacement of the body. The quantities re-
quired to specify the deformation (change in shape) are conveuntionally
called strains. This step leads to a sct of equations relating the strains
and derivatives of the displacement components at a peint. Note that
the analysis of strain is purely a geometrical problem.

Study of forces. We visualize the body to consist of a set of differential
volume elements. The forces due to the interactions of adjacent volume
elements are called internal forces. Also, the internal force per unit
area acting on a differential arca, say dA;, is defined as the stress vector,
;. In this step, we analyze the state of stress at a point, that is, we
investigate how the stress vector varies with orientation of the area
element. We also apply the conditions of static equilibrium to the
volume elements. This leads to a set of differential equations (called
stress equilibrium equations) which must be satisfied at each point in
the interior of the body and a set of algebraic equations (called stress
boundary conditions) which must be satisficd at each point on the
surface of the body. Note that the study of forces is purely an equilibrium
problem.

Relate forces and displacements. In this step, we first relate the stress
and strain components at a point. The form of these equations depends
on the material behavior (linear elastic, nonlinear elastic, inelastic, etc.).
Substitution of the strain-displacement relations in the stress-strain
relations leads to a set of equations relating the stress components
and derivatives of the displacement components. We refer to this
system as the stress-displacement relations.
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230 GOVERNING EQUATIONS FOR A DEFORMABLE SOLID CHAP. 10

The governing equations for a deformable solid consist of the stress equilib-
rium equations, stress-displacement relations, and the stress and displacement
boundary conditions.

In this chapter, we develop the governing equations for a linearly elastic solid
following the steps outlined above. We also extend the variational principles
developed in Chapter 7 for an ideal truss to a three-dimensional solid.

In Chapter 11, we present St. Venant’s theory of torsion-flexure of prismatic
members and apply the theory to some simple cross sections. St. Venant’s
theory provides us with considerable insight as to the nature of the behavior
and also as to how we can simplify the corresponding mathematical problem
by introducing certain assumptions. The conventional engineering theory of
prismatic members is developed in Chapter 12 and a more refined theory
for thin walled prismatic members which includes the cffect of warping of the
cross section is discussed in Chapter 13. In Chapter 14, we develop the cngi-
neering theory for an arbitrary planar member. Finally, in Chapter 15, we
present the engineering theory for an arbitrary space member.

10-2. SUMMATION CONVENTION; CARTESIAN TENSORS
Let a and b represent nth-order column matrices:

a = {a17a29--~9an}

b = {bl, bz, ey bn} (10—1)
Their scalar (inner) product is defined as
aTb = bTa = albl + azbz + o+ Cl,,b,, = Z aib,- (a)

i=1

To avoid having to write the summation sign, we introduce the convention
that when an index is repeated in a term, it is understood the term is summed
over the range of the index. According to this convention

n

Y oabi=ab;  (i=1,2....n) (10-2)
i=1
and we write the scalar product as
a™ = ab; (10-3)

The summation convention allows us to represent operations on multi-
dimensional arrays in compact form. It is particularly convenient for formu-
lation, i.e., establishing the governing equations. We illustrate its application
below.

Example 101
1. Consider the product of a rectangular matrix, a, and a column vector, x.

c=ax aismxn (a)
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SEC. 10-2.
The typical term is
=) A% = 4 (b)
ji=1

2. Let a, b be square matrices, x a column vector, and f, g scalars defined by

f = xTax
g = x'bx (©)
The matrix form of the product, fg, is
fg =(xTax)(x"bx) {d)
One could expand (d) but it is more convenient to utilize (b) and write (c) as
[ = aypxx; ‘
g = bueXixs Q)

Then,
Jg = abiexixixix,

= DyjeXiXXe ()
3. Wercturn to part 1. The inner product of ¢ is a scalar, H,

H = c'c = xT(aTa)x (g)
Using (b), )
H = ¢;¢; = XX, (h)

The outer product is a second-order array, d,

d = cc” = axx’a” B
and can be expressed as
dij = €€ = QuldjpXyXe ‘
= A;jxeXiXe ()
According to the summation convention,
dy = dyy + dyy + -+ = trace of d (i3]
Then, we can write (h) as
H = dy = AueiXe m

4. Let oy e, represent square second-order arrays. The inner product is defined as the
sum of the products of corresponding elements:

Inner product (o7, &) = Y. 5. 0;;¢;;
i
= 011811 + 02263, + 7+ 01,85 + 021631 + 0 = 056 (m)

In order to represent this product as a matrix product, we must convert oy, ¢; over to
one-dimensional arrays.

Let bV, BV, BY) represent a one-dimensional set of elements associated
with an orthogonal reference frame having directions X{, XV, X{. If the
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corresponding set for a second reference frame is related to the first set by
2 1
b = o b
Tje = COS (X‘(iz), XM
N

(10-4)

we say that the elements of b comprise a first-order cartesian tensor. Noting
(5-5), we can write (10—4) as

b = RV (10-5)

and it follows that the set of orthogonal components of a vector are a first-order
cartesian tensor. We know that the magnitude of a vector is invariant. Then,
the sum of the squares of the elements of a first-order tensor is invariant.

bOBY = bR (10-6)

A second-order cartesian tensor is defined as a set of doubly subscripted
elements which transform according to
bg';(“ = ajm"'zkn bfnlr: (10-—7)

Jok.omon
=1.2,3

An alternate form is
b = RIZpIHRIHT (10-8)

The transformation (10-8) is orthogonal and the trace, sum of the principal
second-order minors; and the determinant are invariant.}

AR = po

pE = By (10-9)
. B = By
where
By = bjj
Bs = ’bl
By = byi b1y byz by bir bis
bay bas b3z D33 b1 bis

In the cases we encounter, b will be symmetrical.

10-3. ANALYSIS OF DEFORMATION; CARTESIAN STRAINS

Let P denote an arbitrary point in the undeformed state of a body and 7 the
position vector for P with respect to 0, the origin of an orthogonal cartesian
reference frame. The corresponding point and position vector in the deformed
state are taken as P'; p and the movement from P to P’ is represented by the
displacement vector, . By definition,

p=F+1i (10-10)
This notation is shown in Fig. 10-1.

T See Prob. 2-5.
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Excluding rigid body motion, the displacement from the initial undeformed
position will be small for a solid, and it is reasonable to take the initial cartesian
coordinates (x;) as the independent variables. This is known as the Lagrange

X3
Undeformed ds
)
dar
u | P' {Deformed)
y |
! |
= -~ ]
7 p
| I
| | m3
i3 A | |
o |
T 7%
7 / d
! by | 7/
,,,,, V b
| /m
e
___________ _J/
n2

Xy

Fig. 10—-1. Geometric notation.

approach. Also, to simplify the derivation, we work with cartesian components
for &i. Then,

it = iix;) = u;i;
p = plx;)

We consider a differential line element at P represented by the vector dF.

(See Fig. 10—1). The initial length and direction cosines are ds and «;. We are
using the subscript notation for partial differentiation.

(10-11)

I

J
1= 5

0xX;

(10-12)

dr = T ;dx; = dx;ji; = ds{o;i;)

The corresponding line element in the deformed state is dp. Since we are
following the Lagrange approach, p = p(x;), and we can write
dp = p.jdx; = ds(x;p. ;) (10-13)

The extensional strain, ¢, is defined as the relative change in length with respect
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to the initial length.t
ldp|] = (1 + ) |d7| (10-14)
Using the dot product, (10—14) becomes
r .
(1 +e = o (dp - dp) = ojoup, ;i p.x (a)
Finally, we write (a) as ’
el + 3e) = ajone;
(L2 = ame (10-15)

€k = ‘if(ﬁ; Pk — 5jk)
One can readily establish that (e;) is a second-order symmetrical cartesian
tensor.} :
Taking the line element to be initially parallel to the X; direction and letting
& represent the extensional strain, we sece that

&l + %&) = ez  (nosum)

=3, pi— 1)

To interpret the off-diagonal terms, ey, we consider 2 initially orthogonal
line elements represented by d7y, d7, (see Fig. 10-2) and having direction cosines

(10-16)

, -
an g2
X3 T
/2 T12
P r -
dr dpy

Xy
Fig. 10—-2. Notation for shearing strain.

T This is the definition of Lagrangian strain. In the Eulerian approach, the cartesian coordinates

(n;) for the deformed state are taken as the independent variables,

dth in s defined u; = um) X; = X1
and the strain 1s defined as o =
[dF| = (1 — ¢)|dp|

1 See Prob. 10-4. It is known as Green's strain tensor. The elements, ey, are also called the
components of finite strain. They relate the difference between the square of the initial and deformed
lengths of the line element, i.¢., an alternate definition of e is

|dp|> — ds? = 2ey dx; dx,
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0y, tzj. We define § — 72 as the angle between the lines in the deformed
state. The expression for y),, which is called the shearing strain, follows by
taking the dot product of the deformed vectors.

x N dpy e dpy
COS{== — ) = 8iN = T3S TTTS a
(2 YlZ) P12 ]dpll |d,02| ( )

Substituting for dp},

dﬁ} = (%P, 1)ds}

]clﬁ}[ — (0 + &)ds; (sum on % only) b)

and noting that the lines are initially orthogonal,
Ojels = O (0
(a) takes the form
(1 + &)1 + &3)sin y1, = 20y 0085 (10-17)
Specializing (10—-17) for lines parallel to X;, X; shows that e;; is related to the
shearing strain, y;;.

(l -+ 8[)(1 -+ Sj)sin Vij = 2251' = [),i . f)yj (10“18)

Equations (10—15) and (10-17) are actually transformation laws for exten-
sional and shearing strain. The state of strain is completely defined once the
strain tensor is specified for a particular set of directions. To generalize these
expressions, we consider two orthogonal frames defined by the unit vectors
{; and 1} (see Fig. 10-3), take the initial frame parallel to the global frame
(t; = i;), and let o = 7} - 7,. With this notation:

U
€ij == Oy jeCre

el + &) = e
/

(1 + &)1 + gj)sinyy; = 2e (10-19)

It

} (no sum)
ij

The strain measures (g, y) are small with respect to unity for engineering
materials such as metals and concrete. For example, ¢ ~ 0(1073) for steel.
Therefore, it is quite reasonable (aside from the fact that it simplifies the
expressions) to assume &,y « 1 in the strain expressions. The relations for
“small” strain are:

& R ey
' (10-20)
Vi & 2e;
It remains to expand ej,. Now,
ﬁ : i: + a = (xm + “m)im (a)
Differentiating p with respect to x;, ‘
. op .
p.i= ’5’" = (5m1 + um,j)lm (b)
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and substituting into the definition of ey, (Equation (10—15)) leads to
e = 3y x + t ;) + Sty jlhn x (sum on m only) {10-21)

In order to simplify (10-21), we must establish the geometrical significance of
the various terms.

X3
3
1
2]
=
31
i
.
I8 o
3
X

X1

Fig. 10-3. Unit vectors defining transformation of orthogonal directions.

With this objective, we consider a line element initially parallel to the X,
axis. Figure 10-4 shows the initial and deformed positions, and the angles
812, 813 which define the rotation of the line toward the X,, X5 directions.
The geometrical relations of interest to us are

Uy 1

sin 913 = -1—:;-';1' (a)
. Uz, 1
B = ——T—— (b)
MO = T g )cos 0rs
(I+e)=04u ) +ud; +ud, (o)
Also, by definition, -
el + 3g) = egy = up 1 + g + ll%,l + u%, 1) (d)

We solve (a), (b) for u,, ; and u, 4,

us, 1 = (1 + &)sin 043

10-22
Uz, 1 = (1 + 81)Sin 912 CcOos 913 ( )
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and then solve {c) for u, ;.

Ugj 1 = (1 + 81) {1 - A}”Z -1
A = sin? 0,5 + cos® 0,5 sin? 0, (10-23)
Applying the binomial expansion,

(1 =% =1~ $x(1 + 4x + ) , (10-24)

to (1 — A)Y?, we can write (10-23) as

A 1 A 1
lll’l=81{1“'*2-<1+ZA+"'>}—'2—<1+ZA+“') (10_25)

In what follows, we assume small strain and express the derivatives and exten-
sional strain (see Equation (d)) as

us, 1 = 0(6;3) uz 1 = 0012, 635) ©
uy, 1 = Oey, 612, 0%3)
& & ey = uy (1 + Oey, 07,, 033)) + 0(0%,, 613) 48]

The various approximate theories are obtained by specializing (f).

X3,u3
X E\de
O T lug,ldxl
|
9 | R.ERT)
VI
o 012 ~ ' s
N : //(1 + uy)dxg
\;i//
Ugydx;

Xl,l[]
Fig. 10-4. Initial and deformed positions of a line element,

In the linear geometric case, the rotations are neglected with respect to strain.
Formally, onesets §,, = 6,5 = Qin (f) and the result is a linear relation between
strain and displacement, C

&1 X €11 T Uy (2

Note that, according to this approximation, the deformed orientation coincides
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with'the initial orientation. The general rclations {or the linear geometric case
(small strain and infinitesimal rotation) are
& = e€; = u,;  (nosum)  (10-26)
Vi = 2e; = Uy, + Uy
The next level of approximation is to consider 6% to be of the same order

as strain.
6% = 0e) <« 1

sinf =~ 6 (10-27)
cos 0 =~ 1
We can neglect u; | with respect to 1 in (f), but we must retain u3 ; and uj ,
since they are of 0(62).
g~ e Ay + 303+ udy) (h)

The complete set of strain-displacement relations for small strain and small-
finite rotation are listed below for reference.

& = e; = u; + 3wl +u2)  (nosum) (10-28)
yij = Zeij = ui,j + uj,i + Uk‘ iukAj
i#j#k

We utilize these expressions to develop a geometrically nonlinear formulation
for a member in Chapter 18.

Lastly, if no restrictions are imposed on the magnitude of the rotations,
one must use (10-21). The relations for finite rotation and small strain are

& = e; =t ; + Wi + vl + uf, no sum
, 7( . Je I.‘z) ( ) (10”29)
vij = 2ey; = wy (1 4+ w ) + up (b 4wy ) + e it

i#j#k

Note that the truss formulation presented in Chapter 6 allows for arbitrary
magnitude of the rotations.
We have shown that linear strain-displacement rclations are based on the

following restrictions:

1. The strains are negligible with respect to unity, and
2. Products of the rotations are negligible with respect to the strains.

The first condition will always be satisfied for engineering materials such as
metals, concrete, etc. Whether the second restriction is satisfied depends on
the configuration of the body and the applied loading. If the body is massive
in all three directions, the rotations are negligible with respect to the strains
for an arbitrary loading. We have to include the nonlinear rotation terms in
the strain displacement relations only if the body is thin (e.g., a thin plate or
slender member) and the applied loading results in a significant change in the
geometry. As an illustration, consider the simply supported member shown
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i.n Fig. 10-5. We can neglect the change in geometry if only a transverse loading
is applied (case 1). However, if both axial and transverse loads are applied
(case 2), the change in geometry is no longer negligible and we must include the
nonlinear rotation terms in the strain-displacement relations.

Case 2 (Q.,P) Case 1 (Q)

Fig. 10-5. Exampie of linear and geometrically nonlinear behavior.

To treat a geometrically nonlinear problem, we must work with the deformed
geometry rather than the initial gcometry. This can be defined by tracking
the movement of a triad of line elements initially parallel to the global directions.
Welet dF; be the initial set and dp; the deformed set (see Fig. 10-6). By definition,

di; = dx;i; {(no sum)
dp; = p ;dx; (no sum)

|d,5j| = (1 + ¢)dx;

(a)

The unit vector pointing in the direction of dp; is denoted by ¥;. Using (a),
Wwe can write

- |
V; = ]Tf‘:/ i
~ p;  for small strain (b)
Finally, we express 7; in terms of the unit vectors for the initial frame.
ij = ﬁjkik
1 . -
Bjk = l_.f_—;; (éﬂc o+ uk.j) (10 30)
J

I

Op + Uy for small strain

We wjll utilize (10-30) in the next section to establish the stress equilibrium
cquations for the geometrically nonlinear case.
Equations (10-30) reduce to
v, X (10-31)

for the geometrically linear case and to

Vi & Ty + Bude + B, {no sum)
J#Ek AL

for the case of small strain and small-finite rotations.

(10-32)
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X3 R
dp3

- dp>

ISR )
il - dpy = (1 + ey )dxy vy
dry =dxyiy

izA

X2

A

Xy

Fig. 10-6. Initial and deformed geometries.

10-4. ANALYSIS OF STRESS

The effects of the surroundings on a body such as contact pressure, gravita-
tional attraction, etc., result in internal forces. In this section, we establish the
equilibrium conditions for the internal forces in a body. This step is gencrally
called the analysis of stress.

Consider a body subjected to some effect which results in internal forces.
We pass a cutting plane through the deformed body and separate the two
segments as shown in Fig. 10-7. We let m denote the outward normal direction
for the internal face of body and refer to this face as the +m face. In general,
the subscript, m, is used for quantities associated with the +m face. Now, we
consider a differential area element A4, and let AF,, be the resultant internal
force vector acting on this element. The stress vector, 6, is defined as

AF,
G, = lim -2 (10-33)
A4, ~ O(AAm>

Note that ¢, has the units of force/area. Also, it depends on the orientation
of the area element, ie., on the direction of the outward normal. We do not
allow for the possibility of the existence of a moment acting on a differential

area element. One can include this effect by defining a couple-stress vectort -

in addition to a stress vector.

T See Ref. 6, p. 68.
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We consider next the corresponding area element in the —m face. From
Newton’s law, ‘ »

AF_, = —AF, a

and it follows that ) " @

Gom = —0Op (10-34)

The stress vector has the same magnitude and line of action but it’s sense is
reversed.

—m face
AF,
T
— /
7 —m
m
AF—M
+m face
Body 1 Body 2

Note: Deformed state

Fig. 10-7. Notation for internal force.

In order to analyze the state of stress at a point, say 0, we need an expression
for. thc? stress vector associated with an arbitrary plane through Q. With this
ObjCCUYC, we consider the tetrahedron shown in Fig: 10-8. The orientation of
the arbitrary plane is defined by g, the outward normal direction. The outward
normals for the other three faces are parallel to the reference axes (X ;; j=1
2,‘3). To simplify the notation, we use a subscript j for quantities asg:)ciated,
with the X face, that is, the face whose outward normal points in the + X
direction. For example, we write ’

6Xj =0j -
G-x,=0-;= =0 (10-35)
AAXJ' = AAJ

etc.

The force vectors acting at the centroids of the faces are shown in Fig. 10-8.
The term A6, represents the change in d(, due to translation from Q to the
centroid. :

. F or equilibrium, the resultant force and moment vectors must vanish. In the
limit (as P — Q), the force system is concurrent and therefore we have to
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consider only the force equilibrium condition. From Fig. 10-8, we have
. A4; L .
+ 87, = {516, + 03) @

6‘1
Now, AA4, is the projection of A4, on the X ,-X ; plane. Noting that the projec-
tion of A4, on a plane is equal to A4, times the scalar product of 7, and the
unit normal vector for the plane, and letting «,; be the direction cosine for the
q direction with respect to the X ; direction, we can write

AA;
=a, =cos{qg, X) =1,°7; {10-36)
AAq “1./ J; q J
Finally, in the limit, Equation (a) reduces to
Gg = 0qi0; (10-37)

Once the stress vectors for three orthogonal planes at Q arec known, we can detet-
mine the stress vector for an arbitrary plane through @ with (10-37).

X,
(—gq + AB\‘I)AAQ
1% R IR
(0—3 + Ao_3)AA;
X

(o1 + AT-1)AA
X3

(5p + A02)AA,
Fig. 10-8. Differential tetrahedral element.

Equation (10-37) is the transformation law for the stress vector. The com-
ponent of ¢, in a particular direction is equal to the scalar product of ¢, and
a unit vector pointing in the desired direction. Now, we express the stress
vectors in terms of their components with respect to the coordinate axes X
(=123

fj = Oyl i=123 (10-38)
a, :

Il

O—qklk
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Note that the first subscript on a stress component always refers to the face
an@ the second to the direction. For example, ¢,, acts on the X, face and7
points in the X, direction. The positive sense of the components for a negative
face is reversed since 6_; = —G;. The normal (¢;;) and in-plane (o) com-
ponents are generally called normal and shearing stresses. This notjation is
illustrated in Fig. 10--9.

X, 022
—_— 1
o1
e - (11
‘l
/Yl
Fig. 10—9. Notation for stress components.
Substituting for the stress vectors in (10-37) results in
O = Ugi0 (10-39)

The component of 6, with respect to an arbitrary direction, m, is determined from

o = Gq Sl {a)

qm
Letting
im = amkik (b)

and noting (10-38), (a) expands to
Tgm = Lgqi%mk0 jx (©

_ We generalize (c) for two orthogonal frames specified by the unit vectors
t; t;(see Fig. 10-3) where

+

= T,i .
(10-40)

= Uyely

~ ot

i
i
Deﬁqing o 7 as th§ component acting on the {} face in the { direction and
identifying t;, t’; with i, 7,,, (c) takes the form

O'Ej = O(ikocj,()'k( (10—41)

This result shows that the set (0;;) is a second-order cartesian tensor.
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It remains to establish the equilibrium equations for a differential volume
element. The equilibrium equations relate to the deformed state, ie., we must
consider a differential element on the deformed body. Since we have defined
the stress components with respect to the global cartesian directions, it is natural
to work with a rectangular parallelepiped having sides parallel to the global
directions. Thisis shown in Fig. 10-10. Point 0 is at the centroid of the element.

-~

'iz

i | Bldmy, dma, dns)
] dny
!
i3 — - —f ~  doyd
g - /)‘, (01 + gt Gy dny
prd y O(ny, m2.m3)
— /
=~ 8o dmy dns
(0 + 35, =3 Ndmdns //
dm

Fig. 10—-10. Differential volume element in Eulerian representation.
The stress vectors are considered to be functions of the deformedt coordinates
(). We obtain the forces acting on the faces by expanding the stress vectors

about 0 and retaining only the first two terms.] Letting b denote the external
force per unit volume and enforcing the equilibrium conditions leads to

SF

ZMO=6=>

| <
I

5
m,

% 6;=0 (10-43)

+b=0 (10-42)

=

i
<
N

and

~}
«.

The scalar force equilibrium equations are obtained by expanding the vector
equations using (10-38). '

Ao .
Force equilibrium fai;& Ab=0 k=123 (10-44)
J
o k#j
Moment equilibrium Gy = Oy k=123 (10-45)

Moment equilibrium requires the shearing stress components to be symmetrical.
Then, the stress tensor is symmetrical and there are only six independent stress
measures for the three-dimensional case and three for the two-dimensional case.

+ Weare following the Eulerian approach here. Later we will shift back to the Lagrange approach.
t Second- and higher-order terms will vanish in the limit, i.e., when the element is shrunk to a

point.
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Alsiqu:ttl?}?: (ligufg) mui; be satisfied at each point in the interior of the body
, ary, o :
surface forces, Y. the stress components must equilibrate the applied

we de.ﬁ“e V" as lhe Olttwald nox nldl vector at a pol
\ p nt on the defoi nled Smface

T Vo = ﬁnjij (10—46)
he external force per unit deformed surface area is denoted by p
pplying (10~37) leads to the stress-boundary force-equilibrium relations:
ﬁn = ﬁnk61( |
Y (10-48)

Poj = Buoy  j=1,23

When p, . is prescri i p
when p;,J is grcscubed, L8 Puj = Pyj, (10-48) represent boundary conditions
e sdress components. If u; is prescribed, Puj is a reaction.
apprl(l); Cherinéatlon of s‘tdramédxsplacement relations employed the Lagrange
» 1.6, we considered the displacements {and strai ion
of the initial coordinates {x;). Th i 1655 dostnibut sboce o oloS
X;). 1he analysis of stress described ab i
on the Eulerian approach Lwhe‘ \ are tken oo it
. s re the deformed coordinat
independent variables. This pos i i andstross o e
S. poses a problem since the strain and stre
: : SS measures
are referred to different volume elements. Figure 10-11 shows the initial and

—

X} )
Initial / Deformed

(1 + €))dxs

dx .
: AN et Uy Lagrange

d.\'z (} * €1 )dxl

022
?—'—-& 012
(I —e)dny dny T —- O]y
Euler
d
(L~ ey )dn "

—_—
————
X,
Fig. 10— i i .
g. 10—11. Comparison of Eulerian and Lagrangian representations for a volume

element.

7See Prob. 10-12.
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deformed area elements corresponding to the two viewpoints. To be consistent
with the Lagrange strains, we must work with a nonorthogonal parallelepiped
whose sides are parallel to the deformed line elements in the analysis of stress.
Conversely, to be consistent with the Eulerian stresses, we have to refer the
strain measures to nonorthogonal directions in the initial state.

In the linear geometric case, we assume small strain and neglect the change
in orientation due to rotation. The two approaches coalesce and we just have
to replace #; with x; and f,, with o, where 2, is the direction cosine for the
initial direction of the exterior normal. The linear equilibrium equations are:

A

fjk + bk = 0
X (10-49)

pnj = OCnk('rkj

For the geometrically nonlinear case, we work with stress measures referred
to the deformed directions (see Fig. 10-6) defined by the unit vectors, ;. We
define 6% as the stress vector per unit initial area acting on the face which
initially is normal to the X dircction, b* as the force per unit initial volume, and
p¥ as the force per unit initial surface area. Figure 10-12 shows this notation
for the two-dimensional case. The stress and force vectors are considered to be
functions of the initial coordinates (x;).

The equilibrium equations at an interior point are

2 b =0 (10-50)
(x’

0

I

We express the body force and stress vectors as

5* = bk-ik

6’; = 0?{(1 + Si)ﬁi

(10-51)
The set, of, is called the Kirchhoff stress tensor. Substituting for v,, using
(10-30), results in the following scalar equations, which correspond to (10-44)
and (10-45):

~

é% (OJJ(( -+ J?ill(‘ 1‘) -+ b;k = 0 ( = L 2, 3 (10"52)
X;
j#1
Ge=oh a3 (10-53)
The boundary equilibrium equations are obtained by expanding
by = WeGf = p:jlj (10-54)

and have the form
Pl = anlof; + ot ) (10-55)
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These equations apply for arbitrary strain and finite rotation. For small
strain, we neglect the change in dimensions and shape of the volume element.
This assumption is introduced by taking

b*~b prxp xdy (10-56)

Since the deformed unit vectors are orthogonal (to ¢ « 1), the Kirchhoff stresses
of; now comprise a second-order cartesian tensor and they transform according

X2

= -~
Iy = Qyj lj

d)CQ ds

(] + éz)dX2
dX2

dx, (1 + € Xdx;

77“ d.‘f[ dXZ

Xy
Fig. 10—12. Definition of stress components in Lagrangian representation.

to (10-41). The equations simplify somewhat if we assume small-finite
rotationf For infinitesimal rotation (linear geometry), o, ~ j,, ¥; &~ i}, and
the equations reduce to (10-49), (10-50).

In what follows, we will work with the Kirchhoff stress components to keep
the treatment general. However, we will assume small strain.

+ See Prob. 10-16.
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10-5. ELASTIC STRESS-STRAIN RELATIONS

A body is said to be elastic if it returns to its initial dimensions and shgpe
when the applied forces are removed. The work doue dpring the deformation
process is independent of the order in which the body is deformed. We treat
first an arbitrary elastic material and then specialize the results for a linearly

elastic material. A
Our starting point is the first law of thermodynamics:
oW = oV, + 60 (a)
where 0W = first-order work done by the forces acting on the body ’
oV = first-order change in the total strain energy (also called internal
energy)
6Q = first-order change in the total heat content.
When the deformation process is isothermal or adiabatic, 5Q = 0, and (a) re-
duces to
oW = oVy (b)
Now, we apply (b) to a differential volume clement in the deformed state

(see, e.g., Fig. 10-12). We define V as the strain cnergy per unit initial volume.
In general, V is a function of the deformation measures.

V="Ve;)=Vie,...,72 .

The material is said to be hyperelastic (Green-type) when V is a continuous
function. This requires

(10-37)

a2 ~2
oy _ &V (10-58)
Oeye dey;  Ceyj Gey,
By definition,
SVy = SV (dx, dx, dx;)
v
OV = — be;; (10-59)
Cey;

" where de;; is the first-order changet in e;; due to an incremental displacement,
Ail. Also, one can show that the first order work done by the force vectors

acting on the element is

SW = ((6% * Al),, + (6% - Adl),, + (65 Ail) 5 + b - Ail)dx, dx, dx, (10-60)
= (of; Oe;j)dx, dx, dx,

Equating 6V and 6 W leads to the general form of the stress-strain rclation for

a Green-type material,

A
koo
Gij = =
cey;

(10-61)

+ See Prob. 10-11. o . )
I Sce Prob. 10-18. The forces are in equilibrium, ie, they satisfy (10-50).
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This definition applies for arbitrary strain. Once V is specified, we can obtain
expressions for the stresses in terms of the strains by differentiating V. Since V
is continuous, the stress-strain relations must satisfy (10-58), which requires

a k Ak

o0 ga.

= (10-62)
O€pn aeij

In what follows, we restrict the discussion to small strain and a linearly elas-
tic material, i.e., where the stress-strain relations are linear. We also shift from
indicial notation to matrix notation, which is more convenient for this phase.

We list the stress and strain components in column matrices and drop the
superscript k on the Kirchhoff stress components:

— (kK kK &k k&
G = {Uua022,033»‘712»023>031}

€ = {ey, €9, €33, 2¢,,, 2¢,3, 2e3,} (10-63)
= {8'1&233)’12)’23?31}
With this notation,
OV = of; be;; = o7 O (10-64)
The matrix transformation laws aret
¢ =T
¢ = Te (10-65)

Since 8V is invariant under a transformation of reference frames, the trans-
formation matrices are related by

(T)'T, = I

The total strain, ¢, is expressed as

(10-66)

(10;67)

where €° contains the initial strains not associated with stress, e.g., strain due
o a temperature increment, and A is called the material compliance matrix.
We write the inverted relations as

¢ =D ~ g% (10-68)

where D = A~ ! is the material rigidity matrix. Equation (10~62) requires D
(and A) to be symmetrical. The elements of A are determined from material
tests, and D is generated by inverting A. Substituting for ¢ in (10-64), we
obtain the form of the strain energy density for the linear case,

V =3 - &)™D( — &% (10-69)

Since V' > 0 for arbitrary (¢ — £°), D and A are positive definite matrices.
There are 21 material constants for a linearly elastic Green-type material.
The number of independent constants is reduced if the material structure

¢ =28" + Ao

+ See Prob. 10-6, 10-13.
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exhibits symmetry.¥ In what follows, we describe the transition from an aniso-
tropic material to an isotropic material.

A material whose structure has three orthogonal axes of symmetry is called
orthotropic. The structure of an orthotropic material appears identical after a
180° rotation about a symmetry axis. To determine the number of indepen-
dent constants for this case, we suppose X, X ,, X5 are axes of symmetry and
consider a 180° rotation about X,. We use a prime superscript to indicate the
rotated axes. From Fig. 10-13,

Xi=-X,
X, = -X, (a)
X5 =X,

The stress and deformation quantities are related by (we replace | by —1 and
3 by —3 in the shear terms)

o = 0y & = ¢ i=123
’ ! 1
012 = —0yq 023 = — 0323 Gy13 = 043 (b)
7 / , 4 —
Yiz = —V12 Y23 = —VYa3 Vi3 = Y13

Now, the stress-strain relations must be identical in form. We expand € =
Ao, &’ = Ac’, and substitute for ¢’ using (b). Equating the expressions for ¢;

x>

X3

Fig. 10—13. Rotation of axes for symmetry with respect to the X,-X, plane.

1 A material whose structure has no symmetry is said to be anisotropic.
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and ¢; leads to the following relations between the elements of A,

Q14012 + Q15033 = —d40,, — 15033
U240 17 ~+ Q35033 = —d3401, — (3503 (©
3401, + A35023 = —a3401; — (3503

For (c) to be satisfied, the coefficients must vanish identically. This requires
aia = ay5 =0
e = 35 =0 (d)
A3q = d3s5 =0
We consider next the expansions for 7{;- The symmetry conditions require
@46 = ds¢ = 0. By rotating 180° about X,, we find
die = dae = 36 = g5 = 0 (e)
A rotation about the X, axis will not result in any additional conditions.

Finally, when the strains are referred to the structural symmetry axes, the
stress-strain relations for an orthotropic material reduce to

N

&y [ayr a; ags f T11
&2 iz daz dy; s 0 T2
Dol G G| 72l (10-70)
hzr ! age 0 0 012
723 0 | 0 ass 0 G323
V31 N g 0 0 oo | | T31

We see that A is quasi-diagonal and involves 9 independent constants. There
is no interaction between extension and shecar. Also, the shearing effect is
uncoupled, ie., ¢, leads only to y,,.

An alternate form of the orthotropic stress-strain relations is

1 v v
&= i AT + =~ 0y, — - 0,, — -2t
L= E "L, 022 E, 033
= 1, AT _%_ ‘12 Viz
b2 = Ha + E. %22 T 700 T 033
12 vE‘ Es (10-71)
62 = U AT 4 —gan — 243 V23
3= U3 + E, G33 E, o1y E, G332
. 1 - . 1 1
= — = — 0, = ——
12 G, 12 723 Cnl Y31 Gs, 031

Where E; are extensional moduli, G;; are shear moduli, vy are coupling coefhi-
cients, and AT is the temperature increment. The coupling terms are related by

Va1
E,

Nz Vsi_ Viz Vi Vas
E, E, E, E, E, (10-72)



252 GOVERNING EQUATIONS FOR A DEFORMABLE SOLID CHAP. 10

It is relatively straightforward to invert these relations.f One should note that
(10-71) apply only when X coincide with the material symmetry directions.}
If the stress-strain relations are invariant for arbitrary directions in a plane,
the material is said to be transversely orthotropic or isotropic with respect to
the plane. We consider the case where the X ; direction is the preferred direc-
tion, i.c., where the material is isotropic with respect to the X ,-X; plane. By
definition, A is invariant when we transform from X -X,-X; to X -X5-X5.
This requires§
Yar Va1 _ W

E,=E;=E Gy =Gay =G 2L 3t 2
2 3 12 31 E«g s E
g _va v L _2xwo 0 U0
E, E, E G E Ho = Hs = H
and the relations reduce to
1 v,
&y = g AT + “E;(Tu - 'E(Uzz + 033)
1
62 = HAT + (022 = V1611 = vo33) (10-74)

i 1
&3 = pAT + ‘1'5(0'33 — V{03 — VO3,)

= -0 '3y = = O V23 = =0
Y12 G, 12 Va1 G, 31 723 15 23
There are five independent constants (E, v, E, vy, G4).

Lastly, the material is called isotropic when the stress-strain rclations are
invariant for arbitrary directions, X'{-X5-X4. For this case, A = A’ for arbi-
trary X1-X3-X5. The relations are obtained by specializing (10-74):

1
& = ulAT + -E((Tii = ¥oj; + o))
21+

V=TT %

(10-75)

Note that now there are only two independent constants (E, v). The coupling
coefficient, v, is called Poisson’s ratio.
The inverted form of (10-75) is written as

0y = 6 + (A + 2G); + Mg; + &)
ij = G)’ij
6% = —(34 + 2Q)u AT

Q

(10-76)

t See Prob. 10-19 for the inverted form of (10-71).
I See Prob. 10--21.
§ See Prob. 10-22.
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where 4, G are called Lamé constants and are related to E, v by

G = shear modulus = E—IL
T+ (10-77)
-~ vE

S+ v -2

Since D must be positive definite, v is restricted to —1 < v < 1/2. The limiting
case where v = +1/2 is discussed in Problem 10-24.

10-6. PRINCIPLE OF VIRTUAL DISPLACEMENTS; PRINCIPLE OF
STATIONARY POTENTIAL ENERGY; CLASSICAL STABILITY
CRITERIA

Chapter 7 dealt with variational principles for an ideal truss. For com-
pleteness, we derive here the 3-dimensional form of the principle of virtual
displacements, principle of stationary potential cnergy, and the classical stability
criterion. The principle of virtual forces and stationary complementary energy
are treated in the next section.

The principle of virtual displacements states that the first-order work done
by the external forces (0 W) is equal to the first order work done by the internal
forces (6W),) acting on the restraints for an arbitrary virtual displacement of
the body from an equilibrium position. In the continuous case, the external
loading consists of body (b} and surface (p) loads and the internal forces are
represented by the stress vectors.

We follow the Lagrange approach,] ic., we work with Lagrange finite
strain components (), Kirchhoff stresses (6*). and external force measures per
unit initial volume or area (b*, p*). This is consistent with our derivation of
the equilibrium equations. Let Au denote the virtual displacement. The first-
order external work is

Wy = [[[b* + Aii dx, dx, dxs + (B - Al dQ
= {[[bF Au; dx, dx, dx; + [[pk Au; dQ
where Q is the initial surface area. The total internal deformation work is

obtained by summing the first-order work done by the stress vectors acting on
a differential volume element. §

Wy, = {{[é% - Au_; dx, dx, dxs
= {[{a%; de;; dx, dx, dx;

Equating (a) and (b), we obtain the 3-dimensional form of the principle of

(10-78)

(10-79)

1 See Sec. 7-2.
1 See Fig. 10-12.
§ See (10-60).
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virtual displacements,
(5WD = (SWE
b
5”()"’; - Afljdxy dxy dxs = fp* - Audx, dx, dx; + fj[‘?j - A dQ  (10-80)
U

[{fo%; be;; dxy dxy dxs = [[1b¥ Au; dx, dx; dxs + [fpi Au dQ

Requiring (10-80) to be satisfied for arbitrary (continuous) Aii is equivalent to
enforcing the equilibrium equations.

To-show this, we work with the vector form and utilize the following inte-
gration by parts formula:t

Y . o
jjjf . %dx\ dx, dx; = J‘ij * Gty dQ — J‘JJ g- (:\J dxy dx, dx;  (10-81)

where «,; is the direction cosine for the initial outward normal (n) with respect
to the X ; direction. Operating on the left-hand term and equating coeflicients
of Ail in the volume and surface integrals leads directly to (10-50) and (10-54).
The principle of virtual displacements applics for arbitrary loading (static
or dynamic) and material behavior. When the behavior is elastic and the loading
is independent of time, it can be interpreted as a variational priunciple for the
displacements. The essential steps required for the truss formulation are de-
scribed in Sec. 7—4. Their extension to a continuous body is straightforward.
When the behavior is elastic,

=g @
Letting V; denote the total strain energy, the left-hand side of (10-80) reduces to
oW, = [ffof; de;; dx; dx, dxz = [{f oV dx; dx; dxy = dVr )
We consider the surface area to consist of 2 zoncs as shown in Fig. 10-14.
Q=Q,+Q,

where displacements are prescribed on €y,
u; = U on Q, (10-82)
and surface force intensities are prescribed on Q,,
Pui = Dai on Q,
The displacement variation, Au;, is admissible if it is continuous and satisfies
Au, =0 on Q (10-83)

‘We also consider the surface and body forces to be independent of the displace-
ments. With these definitions, the principle of virtual displacements is trans-

1 See Prob. 10-25.
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formed to .
oll, =0 for arbitrary admissible Au;

- 10-84
n, =V, — jﬁb?‘ui dxy dxy dxs — [ P u; dQ ( )
Q.

i

where I1, is the total potential energy functional. According to (10-84), the
displacements defining an equilibrium position correspond to a stationary
value of the total potential energy functional. Note that this result applies for
arbitrary strain and finite rotations. The only restrictions are elastic behavior
and static loading.

Q,

pn

Q= 1)

Fig. 10—14. Classification of boundary zones.

Example 10-2

Dircct methods of variational calculus such as Rayleigh-Ritz, Galerkin, weighted resid-
uals, and others are applied to IT, to determinc approximatce solutions for the displacements.
In the Rayleigh-Ritz method, one cxpresses the displacements in terms of unknown param-
eters, g, and prescribed functions, ¢(x, X4, X3),

. N
w=ud + 3 o4 @
i=1

where
u:) =T

4 =0

The displacement boundary conditions on £y are called “essential” boundary conditions.
Substituting for u; transforms II, to a function of the ¢’s. When the material is linearly
elastic, V is a quadratic function of the strains. Then, ¥ will involve up to fourth-degree
terms for the geometrically nonlinear case. If the behavior is completely linear, I, reduces
to:

forj=12..., N} on £ ®)

I, = Const. + q"Q + 34"Kq
q = {g"q qq? - g} BN x 1) ©
K is symmetrical
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Finally, requiring IT, to be stationary for arbitrary S5q leads (for linear behavior) to
Kq=Q (d)
The strains are evaluated by operating on (a) and the stresses are determined from the

stress-strain relations. "
Polynomials and trigonometric functions are generally used to construct the spatia

distribution functions. The mathematical basis for direct methods is treated in numerous
texts (see Refs. 9, 10).

The “classical” stability criterion for a stable equilibrium position ist
5°W, — 6*Wy > 0 for arbitrary Aii

where 62W; = 8(6W;) is the second-order work done by the external forces
during the incremental displacement, Aii, and: 6*W,, = §(6W),) is the second-
order work done by the internal forces acting on the restraints during the
incremental deformation resulting from A#. The form of the work terms for
a continuous body are obtained by operating on (10-78) and (10-79):1

Wy = [[[ 6b* - Aii dxy dx, dx; + [[ 5p* - Al dQ
= {[] 0bF Au; dxy dx, dxs + || 6pf Au; dQ
Wy = [[f 66* + Aii; dx, dx, dx;
= [[[(6ck; Se;; + of; 6%e;)dxy dx, dx,

(10-85)

If *Wy, = 6*Wj for a particular Ad, the equilibrium position is neutral. The
position is unstable if 6°W, < 6*W;. Note that 6b, 6p are null vectors when
the forces are prescribed.

For elastic behavior, the incremental deformation work is equal to the
increment in strain energy (W, = §V;), and (10--84) can be written as

61, = §(5T1,) > 0 for arbitrary Al (10-86)

It follows that a stable equilibrium position corresponds to a relative minimum
value of the total potential energy. Bifurcation (neutral equilibrium) occurs
when 6°I1, = 0 for some Aii, say Aiip. If the loading is prescribed, §°I1, =2V,
and 6?V; = 0 at bifurcation.

The governing equations for bifurcation can be obtained by expanding
6?W;, = 8°W. This involves transforming the integrand of §2W,, by applying
(10-81). Since bifurcation corresponds to the existence of an alternate equili-
brium position, it is more convenient to form the incremental equations directly.
The equations for the case of linearly elastic material and prescribed external
forces are listed below.

T See Sec. 7-6 for a derivation of the classical stability criterion.
i See Probs. 10~-11, 10-18.
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1. Equilibrium Equation in the Interior
¢
oy (Oal + ue; 60% + of A ) =0 £=1,23
N

2. Stress-Boundary Force Equations on O,
% {00f; + uj 00 + ol Au, ) =0 j=1,23 - (10-87)
3. Stress-Strain Relations

o6 = D ¢

4. Strain-Displacement Relations

58‘7 = %(Aui,j + Auj,i + um,i Aum,j + um,j Am, i)
Au; = { on Q‘,'

10-7. PRINCIPLE OF VIRTUAL FORCES; PRINCIPLE OF STATIONARY
COMPLEMENTARY ENERGY

Let u; be the actual displacements in a body due to some loading and ¢; ; the
geometrically linear strain measures corresponding to ;. The strain and
displacement measures are related by

eij = 3w ; + u;) (a)
Also,
w=1ua ongy (b)

Once the strains are known, we can find the displacements by solving (a) and
enforcing (b). The principle of virtual forces is basically a procedure for deter-
mining displacements without having to operatc on (a). It applies only for
linear geometry. We developed its form for an ideal truss in Sec. 7-3. We will
follow the same approach herc to establish the threc-dimensional form.

The essential step involves selecting a statically permissible force system,
ie., a force system which satisfies the linear equilibrium equations. For the
continuous case, the force system consists of stresses, Aay;; surface forces,
APy, on Q,; and reactions, Ap,;, on Q. Static permissibility requires

AO’ji,j =0
Ap,; = ay; Aoy on Q, (10-88)
Apni = oan Aaji on Qd

If we multiply ¢;; by Aoy, integrate over the volume using (10-81), and note the
static relations, we obtain the following identity,

5}5@0‘ AO‘,'J- Xm dX2 dX3 = j{ U; Aﬁni dQ + j‘ U; Apm' aQ (10"89)

Qg Q

t See Prob. 10-26.
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which is referred to as the principle of virtual forces (or stresses). This result is
applicable for arbitrary material behavior. However, the geometry must be
linear. . o .

Suppose the translation at a point @ on Q, in the direction defined py i, is
desired (see Fig. 10-15). Let d, be the displacement: We apply a unit force
at Q in the 7, direction and generate a statically permissible stress field.

(Vi atpoint Q = Ag{®  and  ApP

The integral on Q, reduces to (1)dy, and it follows that

do = [[fe; Ac® dxy dx; dxs — [[m Apl dO (10-90)
] )

ij

A second application is in the force method, where one reduces the goverping
equations (stress equilibrium and stress displacement) to a set of equations

Fig. 10—15. Notation for determination of the translation at point Q.

involving only force unknowns. We start by expressing the stress field in terms
of a prescribed distribution (¢°) and a “corrective” field (¢9),

0ij = o) + 0 (10-91)
where o} is a particular solution of the equilibrium equations which satisfies
the boundary conditions on Q,,

ohj+bi=0 (10-92)
anjdj')i = Ppi on Qa
and of; satisfies
0%, =0
0,05 = 0 on Q, (10-93)
0yj05 = Dni on Qy

Stress fields satisfying (10-93) are called self-equilibrating stress fields. For the
ideal truss, ¢° corresponds to the forces in the primary structure due to the
prescribed loading and ¢¢ represents the contribution of the force redundants.
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The governing equations for the force redundants were obtained by enforcing
geometric compatibility, i.e., the bar elongations are constrained by the require-
ment that the deformed bar lengths fit in the assembled structure.

Geometric compatibility for a continuum requires the strains to lead to
continuous displacements. One can establish the strain compatibility equations
by operating on the strain- displacement relations. This approach is described
in Prob. 10-10. One can also obtain these equations with the principle of
virtual forces by taking a self-equilibrating force system. Letting Ac*®, Ap® denote
the virtual stress system, (10-89) reduces to

{{fei; Actj dxy dx, dxsy = {J 1 Ap; A& {10-94)
Qy .
The compatibility equations are determined by expressing of; in terms of stress
functions and integrating the left-hand term by parts. We illustrate its applica-
tion to the plane stress problem.

Example 10-3

If the stress components associated with the normal direction 1o a plane are zero, the
stress state is called planar. We consider the case where 013 = 033 = 033 = 0. The
equilibrium equations and stress-boundary force relations reduce to

O11,1 + 0212 + by =0
G121+ Gaz 3 + by =0

(@

Py = Uy Opy + 2,00,

P2 = 1015 + 2,50,,

(b)

The stress field, of;, must satisfy (a) with by = b, = 0 and also Puy = Pz = 0 0n Q,.
We can satisfy the equilibrium equations by expressing ¢f; in terms of a function, , as
follows: T

051 =¥, 2 052 =Y. 14 )
0%2 =65 = ~Y 1, ©

The boundary forces corresponding to oy; are

A

. .
Pnt = 5=V Prz = =¥y (d)
as Js

where s is the arc length on the boundary (sense is from X, — X 2)-
Substituting for ¢¢, p* in terms of y, (10-94) expands to

j (61 AY 25 + 8, AY 4y — vy, A 15)dx; dx,

5 a ©
- f (m LAy, - nerw.l)ds =0
54 és s
There is no loss in generalitil by taking Ay = Oon S. Then, integrating (e) by parts,
Her, 20 + €2, 11— Yiz, 1200 dxy dx; = 0 ()

T See Prob. 10-14.
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and requiring (f) to be satisfied for arbitrary Ay results in the strain compatibility equation,
er,22 F 8,00 — 712,12 =0 (8)

Whiéh is actually a continuity requirement
Uy 122 F U a0y — (U 210 + U3, 412) =0 (h)

We express (g) in terms of i by substituting for the strains in terins of the stresses.t

The principle of virtual forces is also employed to generate appro?(imate
solutions for the stresses. It is convenient to shift over to matrix notation for
this discussion, and we write (10-94) as

{ieT Ao® dx, dx, dx; = |[ u’ Ap* dQ
Qr‘

We express the stress matrix in terms of prescribed stress states and unknown
parameters, a;,
o =o¢% + 6° (10-95)
=06 + a;d; + ard, + - + a,d,
where ¢° satisfies (10-92) and &; (i = 1, 2,. .., r) are self-equilibrating stress
states, i.e., they satisfy the homogenous equilibrium equations and boundary
conditions on ,. The corresponding surface forces arc

p=p0+0161+a282+"’+ar9r

V]
} on Q,

p’ =p (10-96)
0, =0 (i=12...,7

Taking virtual-force systems corresponding to Aq; (i = 1,2,..., r) results in r
equations for the parameters.

(e dxy dxy dxs = [[ 070,42 i=1,2,...,r  (10-97)

o

In order to proceed, we need to introduce the material properties. When the
material is linearly elastic,

£ =2’ + Ao = ¥ + Ac® + q;Ad; (@)

and the equations expand to
foay=di  Bj=1,2....¢

fii = fi = {0 Ad; dx, dx; dx; (10-98)
di = [Ju70:dQ — [[[$7(=" + Ac")dx, dx; dxs
O(l

Il

One should note that (10-97) are weighted compatibil.it.y conditions. The
true stresses must satisfy both equilibrium and compatibility throughout the

t See Prob. 10-27.
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domain. We call o the corrective stress field since it is required to correct the
compatibility error due to ¢°.

For completeness, we describe here how one establishes a variational principle
for ¢f;. Our starting point is (10-94) restricted to elastic behavior. We define
V* = V* (o) according to

SV* = ey Ay = €7 A (10-99)

and call V* the complementary energy density. The form of V* for a linearly
elastic material is

V¥ = 6"¢% + i6TAc (10~100)
By definition, V* complements ¥, ie., _
|4 + V* = 0;i€;; (10*101)
Then, letting
Vi = [{{V*dx, dx, dx, (10-102)

we can write (10~94) as

ST, =0  for arbitrary Ag{;
Hc =V — ” ;P dQ = nc(a fj)

Q,

(10~103)

This form is called the principle of stationary complementary energy and shows
that the frue stresses correspond to a stationary value of IT,.
Since p,; is linear in ¢; j» the second variation of IT, reduces to

O = 8*VE = [[f de;; Aos; dxy dx, dx, (10-104)
We shift over to matrix notation and express dg as
0z = A, Ac¢ (10-105)

where A, represents the tangent compliance matrix. Now, A, must be positive
definite in order for the material to be stable.t Then, §2TT, > 0 for arbitrary
Ao and we see that the solution actually corresponds to a relative minimum
value of I1..

The approximate method described earlier can be applied to I1,. Substituting
for ¢ given by (10-95) converts I1, to a function of the stress parameters
{ay, dz, ..., a,). When the material is linearly elastic,

II. = 4a"fa — a”d + const (10-106)

The equations for the stress parameters follow by requiring I1, to be stationary
for arbitrary Ag;:
oI, = AaT(fa —dy=0
' U (10-107)
fa=4d
f The classical stability criterion specialized for elastic material and linear geometry requires

T
*V = 3e™D, 6¢ > 0 for arbitrary d¢ which, in turn, requires D, to be positive definite. Since
A; = D, it follows that A, must be positive definite for a stable material.
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Operating on JI1,,
6201, = Aa"f Aa (10-108)

and noting that §°I1, > 0, we conclude that f is positive definite.
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PROBLEMS

10-1. Write out the expanded form of the following products. Consider
the repeated indices to range from 1 to 2.
(a) al]kxjxk
(b) %oij(us,; + u; ) where 0;; = 0
(C) (6m} + Upn, J)(amk + U, k) - (S]k
10-2. Let f be a continuous function of x1, x,, x3. Establish the trans-
formation laws for ¢f/0x; and 8//0x; éx.
10-3. Establish the transformatlon law for a;;b, Where ay;, by are cartesian
tensors.
10-4. Prove that
= 3(p.;" b.x — Op)
is a second-order cartesian tensor. Hint: Expand
I op . 0p
Py P = F?x, 8%
10-5. Equations (10-19) are the strain transformation laws. Since e;; is
a symmetrical second-order cartcsxdn tensor, there exists a particular set of
directions, say X?, for which ef} is a diagonal array. What are the strain com-
ponents for the X » frame? Consider a rectangular parallelepiped having sides
dX? in the undeformed state. What is its deformed shape and relative change
in Volume €2, with respect to its initial volume? Specialize the expression for
¢? for small strain. Then determine ¢, for the initial (X)) directions and small
strain. Finally, show that ¢, is invariant.
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19-6.
(a) Spemahze (10— 19) for small strain and write out the expressions for
&, yij in terms of ey, &3, . . . Yy3.

(b) Let & = {g1, &2, €3, Y12, V23, Y31} W6 can express the strain trans-
formation (small strain) as

g =Te

Develop the form of T, using the results of part a.
(¢) Evaluate T, in terms of cos 0, sin 0 for the rotation shown below.
Comment on the transformation law for the out-of-plane shear strains

! ’
7315 V32-

Prob. 106

X
Xy

10-7. 1In the Eulerian approach, the cartesian coordinates (;) for the
deformed state are taken to be the independent variables, i.e.,

wp = wlm)  x; = X
Almansi’s strain tensor is defined as
ldp|* — (ds)* = 2Ej dy; dn,
Determine the expression for Ej in terms of the displacements. Compare the
result with (10-21).
10-8. Cousider the case of two-dimensional deformation in the X,-X,

plane (83 = y13 = y23 = 0). Let g, &, & be the extensions in the a, b, ¢ direc-
tions defined below and let gy = {s,, &, &.;. We can write

&y = B£
¢ = B lgy

(@) Determine the general form of B.

() Determine B™! for 8, = 0, 6, = 45°, 6, = 90°.

(c) Determine B~ for 8, = 0,8, = 60°, 6, = 120°.

(d) Extend (a) to the three- dlmensmnal case. Consider six dlrectlons
having direction cosines «;y, o2, o3 With respect to X, X,, X5. Can
we select the six directions arbitrarily?
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Prob. 10-8
X,

Ay

10—-9. For small strain, the volumetric strain is
€ = & + &2 + &3 = €1 + €22 + €33
Rather than work with e;;, onc can express it as the sum of two tensors,
ey = eff + eff
where ¢? is called the spherical strain tensor,
oS = §6;j60 = Oijem

and e/ is the deviator strain tensor.
(a) Write out the expanded form for e # and ¢!
(b) Determine the first invariant of ef, el and compare with the invariant
of e;;.
10-10. This question concerns strain compatibility equations.
(a) Show that

(d\

A 32 A2
(jzenk azem( . 0 €nr CT €k
T lxm O X, OXg

@'x,, (’/1.\'.,(

1 /¢Cu, + Cuy
2 (?xk Py\n

and k, £, m, n range from [ to 3. This expression leads to six indepen-
dent conditions, called ¢ Jeomen ic compatibility relations, on the strain
measures.

(b) Show that for two-dimensional deformation in the X;- -X, plane
(65 = €13 = &3 = 0; this called plane strain) there is only one com-
patibility equation, and it has the following form:

CXm CX¢
where

€n = €rn

€1,22 + €211 = Y12.12

Is the following strain state permissible?
&1 = ]\’(\% + Xz)
&y = k‘(%
Y12 & 2](.\71.‘(2

k

il

constant
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16-11. Equation (10-21) defines the strain measures due to displacements,
u;. To analyze geometrically nonlinear behavior, one can employ an incre-
mental formulation. Let Au; represent the displacement increment and Aejy
the incremental strain. We write

Aejk = 581‘]( + %‘526"%
where e contains linear terms (Au;) and 5%, involves quadratic terms. The
d-symbol denotes the first-order change in a functional and is called the varia-
tional operator (see Ref. 8). We refer to de as the first variation of e. Determine
the expressions for de, §2e.

10-12. Let i, be the unit vector defining the initial orientation of the
differential line element 47, at a point.

dry, = dsi, i, = tyj1;

The unit vector defining the orientation in the deformed state is ¥,.

dp, = (1 + e)ds¥,

i.'n = /?njij

Determine the general expression for f,;. Then specialize it for small strain.
10-13. The several parts of this question concerns stress transformation.
(a) Starting with (10--41). write out the expressions for ¢}, of; in terms of
011,022, --.,013. :
(b) Lete = {g11, 022, 033, T12, 023, 031} = stress matrix. We express the
stress transformation as a matrix product.
¢ =T,o

Develop the form of T, using the results of part a.
(¢) Evaluate T, in terms of cos 6, sin 6 for the axes shown.

x, % Prob. 10-13

Xy

X

(d) Plane stress refers to the case wherc 013 = 0,3 = 033 = 0. We work
with reduced stress and strain matrices,

G = {O'Jh U322, 012}
& = {81’ €2, yll}

and write the transformations in the same form as the three-dimensional
case:

;

o = T,6
I
g =Te
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Evaluate T, from part ¢ above and T, from Prob. 10-6. Verify that
TIT, = I

10-14. This question develops a procedure for generating self-equilibrating
stress fields.
(a) Expand the linear equilibrium equations, (10--49) and (10-50).
(b) Specialize the equilibrium equations for plane stress (o3 = 0,3 =
U033 = 0)
(c) Suppose we express the two-dimensional stress components in terms
of a function ¢ = (x;, x,), as follows:

Ci1 =W 22 — j'.‘q by dx;
022 = Y 11 — sz by dx,
G12 = 031 = — ¥,z

The notation for body and surface forces is defined in the following
sketch.

Prob. 10-14
X

Xy

Verify that this definition satisfies the equilibrium equations in the
interior. Show that the expressions for p; and p, in terms of derivatives
with respect to x;, x,, and s are

é
Dy = 75 Yy — Ong jxl by dxy

A
¢
P2 = "(»\\; w’l — Oz j‘xz bZ dxz

10-15. The mean stress, ¢, is defined as
Om = $o11 + 022 + 033)
Rather than work with ¢;;, we can express it as the sum of two tensors,

d
O_ij = O'S') -+ 0'§j)
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where ¢ff is called the spherical stress tensor,
Ug) = (Sijaﬁn

and {7 is the deviator stress tensor.
(a) Write out the expanded forms for off and ¢f.
(b) Determine the first invariant of ¢f?, ¢/

10-16. Establish the stress-equilibrium equations for small-finite rotation
and small strain.

10-17. Starting with (10-52), (10-55) specialized for small strain, establish
the incremental equilibrium equations in terms of Ad®, Au, Ab*, and Ap*.
Group according to linear and quadratic terms. Specialize these equations
for the case where the initial position is geometrically linear, i.e., where we can
approximate 8 with oy in the incremental equations.

10-18. Prove (10-60). Hint:

dep =3P 0p.i + P 0P, )
0p.; = AiL;

10-19. Verify that the inverted form of (10-71) is

¢ =D — %
where
Dyy = E4/Cs Dy, = (C3/Cy)Dyy Dis = CiDyy
Dy = Ep/Cy + (C2/C1)Dy2
Dy3 = v3,E,/Cy + (C2/Cy)Dys
D33 = E3 + v3 Dya + vaaDos
and

Ci=1- "%2(52/53)
Cy = vy + varvaaEy/E3)

Ey f, Es (C,
C —— V] = Cyp
3 =1 E, {V.n + A <C1> Cz}
C,
Cio=v3; +|=1}v
4 31 <C1> 32

Specialize for plane strain (¢3 = 313 = y23 = 0)
10-20. Consider 2 sets of orthogonal directions defined by the unit vectors
{;and 1. The stress-strain relations for the two {rames are

1

Il

£ =¢8"+ Ao
¢ = (% + Ao
Express A’ in terms of A and T,. Also determine D", .
10-21. Consider the three-dimensional stress-strain relations defined by
(10-71).
(a) Specialize for plane stress (633 = 0,3 = 0,3 = 0).
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{b) Let
o = {0'11702% 0‘12}
g = {61,862 712}
g =¢" +Ac

Verify that D has the following form:

1 Vai 0
E, 1
=t w0
b 1 — mviy L
G
0 0 (1 -m3)
Ey
here n — =
where n = &

(c) Assuming X;-X, in the sketch are material symmetry directions,
determine D’ for the X'-X, frame. Use the results of Prob: 10-13,
10-20. What relations between the properties are required in order
for D’ to be identical to D?

Prob. 10-21

X

Xy

10-22. Verify (10-73). Start by requiring cqﬁal proper_ties for the X, and
X, directions. Then introduce a rotation about the X, axis and consider the
expression for y33. Isotropy in the X»-X5 plane requires

’

/
V23 = 5023
G

10-23. Verify that the directions of principal stress and straiq coincide for
an isotropic material. Is this also true for an orthotropic material?
10-24. Equations (10-76) can be written as

Ggij = O'O(ng + le, (Sij + 2Ge,-j

where ¢, is the volumetric strain. Using the notation introduced in Probs. 10-9

and 10-15—
(a) Show that
on = Ke, + 0°
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where K is the bulk modulus = (E/3(1 — 2v)).. Discuss the case where
1

- 2
{b) Show that
o = 2Geld

(c) Verify that the strain-energy density can be written as

Vv

i

1 0

Taij(eij - ‘jijeii

1 0 1 (d) (d
- Tam(gv - 81:) + '2‘0'%})63-)
=y + y@

Determine V® and V@ for the isotropic case. .

(d) When v =4, ¢, = ¢. We must work with 7 stress measures (0, 0,,)
and the mean stress has to be determined from an equilibrium con-
sideration. Summarize the governing equations for the incompressible
case.

10-25. Prove (10-81) for the two-dimensional case. Is this formula re-
stricted to a specific dircction of integration on the boundary? Does it apply
for a multi-connected region, such as shown in the figure below?

Prob. 10-25

10-26. Verify Equation (10-89).

10-27. Refer to Example 10-3. Express (g) in terms of . Consider the
material to be orthotropic.

10-28. Verify that the stationary requirement

oz =0 for arbitrary Aw;, Act;, Apw
where
g = [[{(e;;0 — V* — Bfu)dxy dx, dx,
= [[pru; dQ — || pulis — T)dQ
ol = Kir%hhoff stress -
e;; = Lagrange strain = 3(u; ; + Uj ; + Un, itim, ;)
V* = complementary energy density (initial volume)
b* p* = prescribed force measures (initial dimensions)

leads to the complete set of governing equations for an elastic solid, i.e.,
stress equilibrium equations

stress-displacement relations

stress boundary conditions on Q,

displacement boundary conditions on

expressions for the reaction surface forces on Q,

Rl adi S e
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This variational statement is called Reissner’s principle (see Ref. 8).

(a) Transform Iz to II, by requiring the stresses to satisfy the stress
displacement relations. Hint: Note (10-101).

(b) Transform Ilg to —T1, by restricting the geometry to be linear (¢* = ¢
and e; = (u; ; + u;, ;)/2) and requiring the stresses to satisfy the stress
equilibrium equations and stress boundary conditions on Q,. Hint:
Integrate o;;e;; by parts, using (10-81).

10-29. Interpret (10-90) as

¢

dg = —=

¢P M.

where Py is a force applied at Q in the direction of the displacement measure, dy.

11

St.l Venant Theory of
Torsion-Flexure of
Prismatic Members

11-1. INTRODUCTION AND NOTATION

A body whose cross-sectional dimensions are small in comparison with its
axial dimension is called a member. If the centroidal axis is straight and the
shape and orientation of the normal cross section arc constant, the member
is said to be prismatic. We definc the member geometry with respect to a
global reference frame (X, X,, X3), as shown in Fig. 11-1. The X, axis is
taken to coincide with the centroidal axis and X ,, X ; are taken as the principal
inertia directions. We employ the following notation for the cross-sectional
properties:

A = [[dx,dxy = || d4
I, = {[(x3)* dA (11-1)
Iy = [{(x,)? dA

Since X,, X5 pass through the centroid and are principal inertia directions,
the centroidal coordinates and product of inertia vanish:

L[ 1 '
Xy o= — d4 =0 X3 .=— || Xx3dA4 =
X, Y “ X, X3, . Y Jj Xx3d4d =0 (11-2)
123 = ‘”‘X2X3 dA = O
One can work with an arbitrary orientation of the reference axes, but this will
complicate the derivation.

St. Venant’s theory of torsion-flexure is restricted to linear behavior. It is an
exact linear formulation for a prismatic member subjected to a prescribed

t The case where the cross-sectional shape is constant but the orientation varies along the
centroidal axis is treated in Chapter 15.
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