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Governing Equations for

a Deformable Solid


10-1. GENERAL 

The formulation of the governing equations for the behavior of a deformable 
solid involves the following three steps: 

1. Study of deformation. We analyze the change in shape of a differential 
volume element due to displacement of the body. The quantities re­
quired to specify the deformation (change in shape) are conventionally 
called strains. This step leads to a set of equations relating the strains 
and derivatives of the displacement components at a point. Note that 
the analysis of strain is purely a geomnetricul problem. 

2. Study of forces. We visualize the body to consist of a set of differential 
volume elements. The forces due to the interactions of adjacent volume 
elements are called internal forces. Also, the internal force per unit 
area acting on a differential area, say dAj, is defined as the stress vector, 
6j. In this step, we analyze the state of stress at a point, that is, we 
investigate how the stress vector varies with orientation of the area 
element. We also apply the conditions of static equilibrium to the 
volume elements. This leads to a set of differential equations (called 
stress equilibrium equations) which must be satisfied at each point in 
the interior of the body and a set of algebraic equations (called stress 
boundary conditions) which must be satisfied at each point on the 
surface of the body. Note that the study of forces is purely an equilibrium 
problem. 

3. Relate forces and displacements. In this step, we first relate the stress 
and strain components at a point. The form of these equations depends 
on the material behavior (linear elastic, nonlinear elastic, inelastic, etc.). 
Substitution of the strain-displacement relations in the stress-strain 
relations leads to a set of equations relating the stress componentfs 
and derivatives of the displacement components. We refer to this 
system as the stress-displacement relations. 
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The governing equations for a deformable solid consist of the stress equilib­
rium equations, stress-displacement relations, and the stress and displacement 
boundary conditions. 

In this chapter, we develop the governing equations for a linearly elastic solid 
following the steps outlined above. We also extend the variational principles 
developed in Chapter 7 for an ideal truss to a three-dimensional solid. 

In Chapter 11, we present St. Venant's theory of torsion-flexure of prismatic 
members and apply the theory to some simple cross sections. St. Venant's 
theory provides us with considerable insight as to the nature of the behavior 
and also as to how we can simplify the corresponding mathematical problem 
by introducing certain assumptions. The conventional engineering theory of 
prismatic members is developed in Chapter 12 and a more refined theory 
for thin walled prismatic members which includes the effect of warping of the 
cross section is discussed in Chapter 13. In Chapter 14, we develop the engi­
neering theory for an arbitrary planar member. Finally, in Chapter 15, we 
present the engineering theory for an arbitrary space member. 

10-2. SUMMATION CONVENTION; CARTESIAN TENSORS 

Let a and b.represent nth-order column matrices: 

a - {al, a2 ., an} ti 
b = {b, b2,..., b} 

ti-A1) 

Their scalar (inner) product is defined as 

aTb = bTa = alb + a2b2 + + a,,b = aibi (a) 
i=1 

To avoid having to write the summation sign, we introduce the convention 
that when an index is repeated in a term, it is understood the term is summed 
over the range of the index. According to this convention 

aibi = aibi (i = 1,2.., n) (10-2) 
i=I 

and we write the scalar product as 

aTb = aibi (10-3) 

The summation convention allows us to represent operations on multi­
dimensional arrays in compact form. It is particularly convenient for formu­
lation, i.e., establishing the governing equations. We illustrate its application 
below. 

Example 10-1 

1. Consider the product of a rectangular matrix, a, and a column vector, x. 

c = ax a is 11 x n (a) 

SEC. 10-2. SUMMATION CONVENTION; CARTESIAN TENSORS 

The typical term is 

Ci = E ijxj axj (b) 
j=1 

2. Let a, b be square matrices, x a column vector, and f, g scalars defined by 

f = xTax 

g = xTbx (c) 

The matrix form of the product, fg, is 

fg =(xax)(xTbx) (d) 

One could expand (d) but it is more convenient to utilize (b) and write (c) as 

f = aijxixj 

g = bk(-xkxt (e) 
Then, 

fg = aijbkrtxfxjXkX( 

= Dijk(XiXjXkX- (f) 

3. We return to part 1. The inner product of c is a scalar, IH, 

II = xr(aTa)x (g) 
Using (b), 

H = CiCi = aikaitxkxf (h) 

The outer product is a second-order array, d, 

d = CCT _aX aT (i) 
and can be expressed as 

dij = CiCj = aikajtXkXt 

(j)= Aijk(XkX( 

According to the summation convention, 

dii = dl + d22 + = trace ofd (k) 

Then, we can write (h) as 
H = dii = Aiik(XkX( (1) 

4. Let ij, eij represent square second-order arrays. The inner product is defined as the 
sum of the products of corresponding elements: 

Inner product (aij, eij) = oijeij 
i j 

1let 1 + 2 2 e2 2 + + 1l2 e12 + U2 1 e21 +... ajjej j (m)= (T

In order to represent this product as a matrix product, we must convert aij, eij over to 
one-dimensional arrays. 

Let b), b ), b ) represent a one-dimensional set of elements associated 
with an orthogonal reference frame having directions X1 ), X(2), X( ). If the 
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corresponding set for a second reference frame is related to the first set by 

b( 
2 ) 

= .k bW) 
(10-4)

Ojk = COS (X(2) X))
j, k = 
1,2,3 

we say that the elements of b comprise a first-order cartesian tensor. Noting 
(5-5), we can write (10-4) as 

b(2 ) = Rt2b(1) (10-5) 

and it follows that the set of orthogonal components of a vector are a first-order 
cartesian tensor. We know that the magnitude of a vector is invariant. Then, 
the sum of the squares of the elements of a first-order tensor is invariant. 

bi)bj)-b2b2 (10-6) 

A second-order cartesian tensor is defined as a set of doubly subscripted 
elements which transform according to 

jk j,nJk T (10-7) 
j. k. ,m. 
= 1.2,3 

An alternate form is 
b(2) = R 2b(1)(R 12)T (10-8) 

The transformation (10-8) is orthogonal and the trace, sum of the principal 
second-order minors, and the determinant are invariant.t 

3(t2 = (Il) 

p(22 = pi) (10-9) 
fliZ = fly) 

where 
P = hjj 

l3 = ibl 

A2 = bl + b23 + bil b1 3 
2= b2 l 

b1 2 ±b3 
b22 b33 33b22 2 1 Ib3 1 

In the cases we encounter, b will be symmetrical. 

10-3. ANALYSIS OF DEFORMATION; CARTESIAN STRAINS 

Let P denote an arbitrary point in the undeformed state of a body and r the 
position vector for P with respect to 0, the origin of an orthogonal cartesian 
reference frame. The corresponding point and position vector in the deformed 
state are taken as P'; p and the movement from P to P' is represented by the 
displacement vector, i. By definition, 

5= + (10-10) 

This notation is shown in Fig. 10-1. 

t See Prob. 2-5. 

SEC. 10-3. ANALYSIS OF DEFORMATION; CARTESIAN STRAINS 

Excluding rigid body motion, the displacement from the initial undeformed 
position will be small for a solid, and it is reasonable to take the initial cartesian 
coordinates (xj) as the independent variables. This is known as the Lagrange 

X3 

Undeformed dp 

P' (Deformed) 

173 

13 

o 
~7: /
I I / I / 

/_____/ 
/771 

/ 
/1 

.72 
A1 

Fig. 10-1. Geometric notation. 

approach. Also, to simplify the derivation, we work with cartesian components 
for ft. Then, 

)i = l(xj) = lujYj 
(10-11)

[ = P(xj) 

We consider a differential line element at P represented by the vector dS. 
(See Fig. 10-1). The initial length and direction cosines are ds and cj. We are 
using the subscript notation for partial differentiation. 

a 
Cox. 

d = i:jdxj = dx.7i j = ds(XjJi) (10-12) 

The corresponding line element in the deformed state is dp. Since we are 
following the Lagrange approach, p = 3(xj), and we can write 

dp = ,j dx; = ds(xji. i) (10-13) 

The extensional strain, , is defined as the relative change in length with respect 
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to the initiallength.t 

jdlj = (1 + ) Idd (10-14) 

Using the dot product, (10-14) becomes

(1 + )2 = -(d d) = ja,, ' P.k (a) 

Finally, we write (a) as 
8(1 + C) = cajakejk 

(10-15)
ejk = (). ji. - - 6jk) 

One can readily establish that (ejk) is a second-order symmetrical cartesian 
tensor.S 

Taking the line element to be initially parallel to the Xi direction and letting 
e represent the extensional strain, we see that 

el(l + rE) = e (no sum) 
(f n_-I\ 

(T(= P,i - 1) '. .-. 
To interpret the off-diagonal terms, ejk, we consider 2 initially orthogonal 

line elements represented by d?'y, dF' (see Fig. 10-2) and having direction cosines 

dpI.
[d , 

X3 
-712 

idpj 

Fig. 10-2. Notation for shearing strain. 

t This is the definition of Lagrangian strain. In the Eulerian approach, the cartesian coordinates 
(q.i)for the deformed state are taken as the independent variables, 

ut = Uj(l0k xj = Xi(01
and the strain is defined as 

ldr| = (I - C)4dp 

t See Prob. 10-4. It is known as Green's strain tensor. The elements, ek, are also called the 
components of finite strain. They relate the difference between the square of the initial and deformed 
lengths of the line element, i.e., an alternate definition of ejk is 

2dp 2
- ds = 2ejk dxj dxk 

SEC. 10-3. ANALYSIS OF DEFORMATION; CARTESIAN STRAINS 

Clj, C2j We define - '12 as the angle between the lines in the deformed 
state. The expression for y12, which is called the shearing strain, follows by 
taking the dot product of the deformed vectors. 

cos 2 - 712) sin 2== d2- 2 (a)' Id't Id~'1 
Substituting for dpj, 

d (ck, k)dSJ (sum on k only) (b)
Idlr = (1 + ej)ds9 

and noting that the lines are initially orthogonal, 

j((Xk = (bjk (c) 
(a) takes the form 

(1 + e;)( ++ )sin Yt2 = 2 1C(i2keJk (10-17) 

Specializing (10-17) for lines parallel to Xi, Xj shows that eij is related to the 
shearing strain, ij. 

(1 + ei)(l + j)sin ij = 2ei = p,i ), (10-18) 

Equations (10-15) and (10-17) are actually transformation laws for exten­
sional and shearing strain. The state of strain is completely defined once the 
strain tensor is specified for a particular set of directions. To generalize these 
expressions, we consider two orthogonal frames defined by the unit vectors 
tj and 1j (see Fig. 10-3), take the initial frame parallel to the global frame 

(t = ij), and let ak = tj- k. With this notation: 

eij == cikajrek! 

(1 + e') = eii (no sum) 
(10-19)

(1 + ei)(1 + ej)sin )ij= 2eJ (nosum) 

The strain measures (e,y) are small with respect to unity for engineering 
materials such as metals and concrete. For example, er 0(10- 3 ) for steel. 
Therefore, it is quite reasonable (aside from the fact that it simplifies the 
expressions) to assume E,y << 1 in the strain expressions. The relations for 
"small" strain are: 

CeiiEi 

Yi eii 1 (10-20)
'ij 2eij 

It remains to expand ejk. Now, 

i = + i (x,, + Lt,)i,, (a) 

Differentiating ) with respect to xj, 

Pj = - = (Amj + tlnlm,j) (b)maXi 
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and substituting into the definition of ejk (Equation (10-15)) leads to 

k =j, k + Uk. j) + Um jrm, k (sum on in only) (10-21)jk Tjtkt kj+ZU7~,~ 

In order to simplify (10-21), we must establish the geometrical significance of 
the various terms. 

X3 

t3 

ti 

tI2 

Z7 

7 
t3 

~T 

-A 2 

/i 
Xl 

Fig. 10-3. Unit vectors defining transformation of orthogonal directions. 

With this objective, we consider a line element initially parallel to the X1
axis. Figure 10-4 shows the initial and deformed positions, and the angles 
012, 013 which define the rotation of the line toward the X2 , X3 directions. 
The geometrical relations of interest to us are 

sin 013 = 
l3, 1 

1 (a) 

U2,in 012 (1 + ,)cos 013 (b) 

(1 + 81)2 = (1 + U1, 1)2 + U2, 1 + U2 (c) 
Also, by definition, 

8e(1 + 81) = ell e,, = 'L11 i ++ 7 (tl, 2 1 ±+ 23 1) (d)U ,1 + 

We solve (a), (b) for u2, and 3, 1, 

U3, 1 = (1 +- )sin 013 
(10-22)

U2, 1 = (1 + )sin 012 COS 013 

SEC. 10-3. ANALYSIS OF DEFORMATION; CARTESIAN STRAINS 

and then solve (c) for u, 1. 

A}1/2U1. 1 = (1 + e) {1 - - 1 

A = sin2 013 + COS 2 013 sin2 012 
(10-23) 

Applying the binomial expansion, 

(t - ) 1' 2 = 1 - x(1 + X + -) (10-24) 
to - A)1/ 2 , we can write (10-23) as 

11,1 = {1l (10-25)2 4 ~2 4+a 

In what follows, we assume small strain and express the derivatives and exten­
sional strain (see Equation (d)) as 

3, 1 = 0(013) It2. 1 = 0(012, 01 3 ) 

U1, 1 = 0(El, 0 2, 0 3) (e) 

81 el = u l, l(1 + 0(81, 02 , 3 )) ± 0(02, 02 3 ) (f) 
The various approximate theories are obtained by specializing (f). 

X3 ,t3 

L13jdX l 

013 X2 ,tl 2 

/ 

N I I /(t + )dxI 

tU2J dX1 

Xl,l I 

Fig. 10-4. Initial and deformed positions of a line element. 

In the lineargeometric case, the rotations are neglected with respect to strain. 
Formally, one sets 02 = 013 = Oin (f) and the result is a linear relation between 
strain and displacement, 

81 Ul, (g) 
Note that, according to this approximation, the deformed orientation coincides 
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with' the initial orientation. The general relations for the linear geometric case in Fig. 10-5. We can neglect the change in geometry if only a transverse loading 
(small strain and infinitesimal rotation) are is applied (case 1). However, if both axial and transverse loads are applied 

'i = 

ij = 
eii = li, i (no sum) 

2eij = ui,j + Uj i 
(10-26) 

(case 2), the change in geometry is no longer negligible and we must include the 
nonlinear rotation terms in the strain-displacement relations. 

The next level of approximation 
as strain. 

is to consider 02 to be of the same order 
i 
I 

IQ 

02 = 0() << 1 I 

sin 0 00 (10-27) 
cos 0 I 

We can neglect u1, with respect to 1 in (f), but we must retain u,, 
since they are of 0(02). 

and u3, 1 

I 

I Fig. 10-5. 

Case 2 (Q,P) Case 1 (Q) 

Example of linear and geometrically nonlinear behavior. 

,1 e 1 + -(u1,2 + u. ) (h) To treat a geometrically nonlinear problem, we must work with the deformed 

The complete set of strain-displacement relations for small strain and small­ geometry rather than the initial geometry. This can be defined by tracking 

finite rotation are listed below for reference. the movement ofa triad of line elements initially parallel to the global directions. 

i 

Yij 

= eii = 

2ei = 

i, i + Z(uji + 4 ) 

lii. j + ,j.i + lk, illk. 

i j k 

(no sum) 
(10-28) 

We let dj be the initial set and dij the deformed set (see Fig. 10-6). By definition, 

dij = dxjij (no sum) 
difj = ji,dxj (no sum) 

(a) 

We utilize these expressions to develop a geometrically nonlinear formulation 
for a member in Chapter 18. 

Lastly, if no restrictions are imposed on the magnitude of the rotations, 

Idjl = (1 + -,j)dxj 
The unit vector pointing in the direction of dj is denoted 
we can write 

by ij. Using (a), 

one must use (10-21). The relations for finite rotation and small strain are 1 + e 

i 

yij 
= 

= 

eii = l±i,i + . (Uii +I + Uk. i) (no sum) 

2ej = ui,j(l + uli, i) + u, i(l + Ui, j) + lk. illk, j 
(10--29) fi j for small strain (b) 

iTj#k Finally, we express vj in terms of the unit vectors for the initial frame. 

Note that the truss formulation presented in Chapter 6 allows for arbitrary 
magnitude of the rotations. 

We have shown that linear strain-displacement relations are based on the fik = 1 
1 

( ++ Ilk, ) 
(10-30) 

following restrictions: 

1. The strains are negligible with respect to unity, and 
(6jk + Uk, j for small strain 

2. Products of the rotations are negligible with respect to the strains. We will utilize (10-30) in the next section to establish the stress equilibrium 

The first condition will always be satisfied for engineering materials such as 
metals, concrete, etc. Whether the second restriction is satisfied depends on 
the configuration of the body and the applied loading. If the body is massive 

equations for the geometrically 
Equations (10-30) reduce to 

nonlinear case. 

jforthegeometricallylcaseandto (10-31) 
in all three directions, the rotations are negligible with respect to the strains for the geometrically linearcase and to 
for an arbitrary loading. We have to include the nonlinear rotation terms in 
the strain displacement relations only if the body is thin (e.g., a thin plate or 
slender member) and the applied loading results in a significant change in the 

j 

j 
; ij + jkik 

=Ak == 
+ fiji (no sum) 

(1-0-32) 

geometry. As an illustration, consider the simply supported member shown for the case of small strain and small-finite rotations. 
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X3 --
Jt, 

- Ed' 

I4El )dxl vi 

i3 

I 

X1 

Fig. 10-6. Initial and deformed geometries. 

10-4. ANALYSIS OF STRESS 

The effects of the surroundings on a body such as contact pressure, gravita­
tional attraction, etc.,result in internal forces. In this section, we establish the 
equilibrium conditions for the internal forces in a body. This step is generally 
called the analysis of stress. 

Consider a body subjected to some effect which results in internal forces. 
We pass a cutting plane through the deformed body and separate the two 
segments as shown in Fig. 10-7. We let in denote the outward normal direction 
for the internal face of body and refer to this face as the + n face. In general, 
the subscript, m, is used for quantities associated with the -t-m face. Now, we 
consider a differential area element AA,,,, and let A Fi, be the resultant internal 
force vector acting on this element. The stress vector, r,,, is defined as 

/AF,,\ 
-,= lim -AF ) (10-33) 

AA - O\ AAml/ 
Note that (m has the units of force/area. Also, it depends on the orientation 
of the area element, i.e., on the direction of the outward normal. We do not 
allow for the possibility of the existence of a moment acting on a differential 
area element. One can include this effect by defining a couple-stress vectort 
in addition to a stress vector. 

t See Ref. 6, p. 68. 
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We consider next the corresponding area element in the -m face. From 
Newton's law, 

and it follows that 
AF_,, = -AFm (a) 

a - n - , (10-34) 
The stress vector has the same magnitude and line of action but it's sense is
reversed. 

.. _ 

AF 

AF-m 

ir -air 

Body I Body 2 

Note: Deformed state 

Fig. 10-7. Notation for internal force. 

In order to analyze the state of stress at a point, say Q, we need an expression
for the stress vector associated with an arbitrary plane through Q. With this 
objective, we consider the tetrahedron shown in Fig. 10-8. The orientation of 
the arbitrary plane is defined by q,the outward normal direction. The outward 
normals for the other three faces are parallel to the reference axes (Xj = 1, 
2, 3). To simplify the notation, we use a subscript j for quantities associated 
with the X; face, that is, the face whose outward normal points in the +-X 
direction. For example, we write 

(Xj = Cj 

C6-X = ffj = - cj (10-35) 
AAxj = AAj 

etc. 

The force vectors acting at the centroids of the faces are shown in Fig. 10-8. 
The term AO() represents the change in O()due to translation from Q to the 
centroid. 

For equilibrium, the resultant force and moment vectors must vanish. In the 
limit (as P - Q), the force system is concurrent and therefore we have to 
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consider only the force equilibrium condition. From Fig. 10-8, we have 

AAj (a)q + Aq = Ž-A ( j + Ad) 
AA 

Now, AA, is the projection of AAq on the X2-X3 plane. Noting that the projec­
tion of AAq on a plane is equal to AAq times the scalar product of iq and the 

unit normal vector for the plane, and letting cqj be the direction cosine for the 
q direction with respect to the Xj direction, we can write 

AA s - c = cos(q, X) = i, IX (10-36) 
AAq 

Finally, in the limit, Equation (a) reduces to 

jq = Cqjj 
(10-37) 

Once the stress vectors for three orthogonal planes at Qare known, we can deter­
mine the stress vector for an arbitrary plane through Q with (10-37). 

x2 
(- + A;q)aAq 

12 + Af- 3 )AA 3 

il 

a-Z 

('-2 4. A - z)AA22

Fig. 10-8. Differential tetrahedral element. 

Equation (10-37) is the transformation law for the stress vector. The com­

ponent of fq in a particular direction is equal to the scalar product of 6 q and 
a unit vector pointing in the desired direction. Now, we express the stress 
vectors in terms of their components with respect to the coordinate axes Xj 

(j = 1, 2, 3). - . 
Jj = jklk .1= 1, , . (10-38) 

6 t 
= qk k 

SEC. 10-4. ANALYSIS OF STRESS 

Note that the first subscript on a stress component always refers to the fice, 
and the second to the direction. For example, 12 acts on the X, face and 
points in the X2 direction. The positive sense of the components for a negative 
face is reversed since a_j = -. The normal (h) and in-plane (ajk) com­

ponents are generally called normal and shearing stresses. This notation is 
illustrated in Fig. 10-9. 

X2 
t 22 

- 0 (2 1 

ii12 
*- 01 I 

-- j 

X1 

Fig. 10-9. Notation for stress components. 

Substituting for the stress vectors in (10-37) results in 

'qk = qj(jjk (10-39) 

The component of dq with respect to an arbitrary direction, m, is determined from 

aqn = 7q' in. (a) 
Letting 

1 
m -= Xmzklk (b) 

and noting (10-38), (a) expands to 

'qn = 0CqjmnlkO'jk (c) 

We generalize (c) for two orthogonal frames specified by the unit vectors 
tj, t' (see Fig. 10-3) where 

tj = ij 
(10-40) 

t i = ajlk 

Defining oU, as the component acting on the ft face in the tj direction and 
identifying t, t with iq, m,,(c) takes the form 

ij = ikOjf(k( (10-41) 

This result shows that the set (ij) is a second-order cartesian tensor. 
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It remains to establish the equilibrium equations for a differential volume
element. The equilibrium equations relate to the deformed state, i.e., we must 
consider a differential element on the deformed body. Since we have defined 
the stress components with respect to the global cartesian directions, it is natural 
to work with a rectangular parallelepiped having sides parallel to the global
directions. This is shown in Fig. 10-10. Point 0 is at the centroid ofthe element. 

12 

isI1)(d77 1 , ( d773) 

I X 
/ 

t 
/O(O7b 

- -f-

2,73) 

, au, d . 
f f /(rl+ a31 2 )72 

(1+- -

. 
d3 

-a
(o-1 + 

a 1 (_ dL))dpq2 dI- 2 773 
/

/ 
/ 

/ _ 

d1Xx 

Fig. 10-10. Differential volume element in Eulerian representation. 

The stress vectors are considered to be functions of the deformedt coordinates 
(qij). We obtain the forces acting on the faces by expanding the stress vectors 
about 0 and retaining only the first two terms.1 Letting h denote the external 
force per unit volume and enforcing the equilibrium conditions leads to 

F = - ' = (10-42)
8r/j 

and 
ZMO = 0 > _i x 7j = 0 (10-43) 

The scalar force equilibrium equations are obtained by expanding the vector 
equations using (10-38). 

Force equilibrium eajk + bk = O k = 1,2, 3 (10-44)
arj 

k - 1i 
6Moment equilibrium jk = kj j, k = 1,2,3 (10-45) 

Moment equilibrium requires the shearing stress components to be symmetrical.
Then, the stress tensor is symmetrical and there are only six independent stress 
measures for the three-dimensional case and three for the two-dimensional case. 

t We are following the Eulerian approach here. Later we will shift back to the Lagrange approach.
i Second- and higher-order terms will vanish in the limit, i.e., when the element is shrunk to a 

point. 
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Equations ( 0-44) must be satisfied at each point in the interior of the body.
Also, at the boundary, the stress components must equilibrate the applied 
surface forces.or at a point on the deormed surface 

We define ~, as the outward normal vector at a point on the de/brined surface
and write 

= #jj (10-46)
The external force per unit deformed surface area is denoted by p,. 

P,, = p,,fj ( _,7/ 
Applying (10-37) leads to the stress-boundary force-equilibrium relations: 'I 

Pn = lkAik 

(10-48)
P' = nk(Ckj = 1,2,3 

When p,j is prescribed, i.e., pr= e ij(10-48) represent boundary conditions, 
on the stress components. If uj is prescribed, Pnj is a reaction. 

Our derivation of strain-displacement relations employed the Lagrange 
approach, i.e., we considered the displacements (and strains) to be functions 
of the initial coordinates (). The analysis of stress described above is based 
on the Eulerian approach, where the deformed coordinates are taken as the
independent variables. This poses a problem since the strain and stress measures 
are referred to different volume elements. Figure 10-1 shows the initial and 

xl /2
Initial Deformed 

.i(I + e2 2 
i,v---VI Lagran !ge 

dxl (I (el )dx 

t 22 

O 12 

(I - E2 )di < d72 rI 

(1--el )drl 

X2 

Fig. 10-11. Comparison of Eulerian and Lagrangian representations for a volumeelement. 

tSee Prob. 10-12. 
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deformed area elements corresponding to the two viewpoints. To be consistent 
with the Lagrange strains, we must work with a nonorthogonal parallelepiped 
whose sides are parallel to the deformed line elements in the analysis of stress. 
Conversely, to be consistent with the Eulerian stresses, we have to refer the 
strain measures to nonorthogonal directions in the initial state. 

In the linear geometric case, we assume small strain and neglect the change 
in orientation due to rotation. The two approaches coalesce and we just have 
to replace ilj with xj and ,,kwith c,k where k,,is the direction cosine for the 
initial direction of the exterior normal. The linear equilibrium equations are: 

* -+.b, =0 
.Xj (10-49) 

Pnj = (nkkkj 

For the geometrically nonlinear case, we work with stress measures referred 
to the deformed directions (see Fig. 10-6) defined by the unit vectors, ~ij. We 
define ji as the stress vector per unit initial area acting on the face which 
initially is normal to the Xj direction, b* as the force per unit initial volume, and 
p,* as the force per unit initial surface area. Figure 10-12 shows this notation 
for the two-dimensional case. The stress and force vectors are considered to be 
functions of the initial coordinates (xi). 

The equilibrium equations at an interior point are 

0 - _
-d + b* = 0 (10-50) 

(1 + j)ij x = 0 

We express the body force and stress vectors as 

b* = bk*ik 
(10-51)

C, = afj + i)vij 

The set, a<, is called the Kirchhoff stress tensor. Substituting for i, using 
(10-30), results in the following scalar equations, which correspond to (10-44) 
and (10-45): 

a 
Oxj 

( C + t,, i) + b = 0 = 1, 2, 3 (10-52) 

ikcrj kfj j, 
j 

= 
, 
1, 2, 3 

(10-53) 

The boundary equilibrium equations are obtained by expanding 

,*
=it = 

Ck = * 
Pnj (10-54) 

and have the form 

P = oc,,,(7j + kiuj, i) (10-'55) 
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These equations apply for arbitrary strain and finite rotation. For small 
strain, we neglect the change in dimensions and shape of the volume element. 
This assumption is introduced by taking 

b * ~ P p* jZz::rk (10-56) 

Since the deformed unit vectors are orthogonal (to e << 1), the Kirchhoffstresses 
aij now comprise a second-order cartesian tensor and they transform according 

X2 
p ds/ 

i1 = n1i / 
v = ,, Oj 

-o dclx2 

dx 2 

dx I 
k - 2dx I 

2 2 aokdx 1 

/ //// /12/ j 4 
x2 

(1 + eZ)d 

dx 2 zz4 

dx1 
(1 + el)dx I 

b dxldx 2 

I 
1

4

-A 

Fig. 10-12. Definition of stress components in Lagrangian representation. 

to (10-41). The equations simplify somewhat if we assume small-finite 
rotation.t For infinitesimal rotation (linear geometry), <jt . aj, j j, and 
the equations reduce to (10-49), (10-50). 

In what follows, we will work with the Kirchhoff stress components to keep 
the treatment general. However, we will assume small strain. 

(ISee Prob. 10-16. 
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10-5. ELASTIC STRESS-STRAIN RELATIONS 

A body is said to be elastic if it returns to its initial dimensions and shape 
when the applied forces are removed. The work done during the deformation 
process is independent of the order in which the body is deformed. We treat 
first an arbitrary elastic material and then specialize the results for a linearly 
elastic material. 

Our starting point is the first law of thermodynamics: 

8W = <(VT + Q (a) 

where 6W = first-order work done by the forces acting on the body 
6VT = first-order change in the total strain energy (also called internal 

energy) 
6Q = first-order change in the total heat content. 

When the deformation process is isothermal or' adiabatic, Q = 0, and (a) re­
duces to 

6W = VT (b) 

Now, we apply (b) to a differential volume element in the deformed state 
(see, e.g., Fig. 10-12). We define V as the strain energy per unit initial volume. 
In general, Vis a function of the deformation measures. 

V = V(ei)= V(, ..... ,.12 .) (10-57) 

The material is said to be hyperelastic (Green-type) when V is a continuous 
function. This requires 

( 2vd2 V 
(10-58) 

Oekt 8e ii 8eO eijeij ekk 
By definition, 

llVT = V(dx tx 2 dx3) 

8V -'V=6e% (10-59)
eieij 

where eij is the first-order changet in ej due to an incremental displacement, 
Aft. Also, one can show that the first order work done by the force vectors 
acting on the element is + 

W = ((Di AU), 1 + (5' Afi), 2 + ( At),3 + Afi)dx, dx2 dx 3 (10-60) 
= (u-% eij)dx, dx2 dx 3 

Equating 6 VT and 8 W leads to the general form of the stress-strain relation for 
a Green-type material, 

IcVl 
(10-61)13 ce= 

t See Prob. 10-11. 
+See Prob. 10-18. The forces are in equilibrium, ie, they satisfy (10-50). 
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This definition applies for arbitrary strain. Once V is specified, we can obtain 
expressions for the stresses in terms of the strains by differentiating V. Since V 
is continuous, the stress-strain relations must satisfy (10-58), which requires 

Oenn aOeij (10-62) 

In what follows, we restrict the discussion to small strain and a linearly elas­
tic material, i.e., where the stress-strain relations are linear. We also shift from 
indicial notation to matrix notation, which is more convenient for this phase. 

We list the stress and strain components in column matrices and drop the 
superscript k on the Kirchhoff stress components: 

9 = {0'11, 2 3, -k33 , 32,31} 

= {ef 1, e2 2, e3 3, 2e12, 2e2 3, 2e3 1} (10-63) 
= C28 3 2Y12Y23Y31} 

With this notation, 
&V = oj (5eij 8v (10-64) 

The matrix transformation laws are 

6' = T,, 
(10-65) 

Since V is invariant under a transformation of reference frames, the trans­
formation matrices are related by 

(T.)ATT = (10-66) 
The total strain, , is expressed as 

E = £" + Au (10-67) 
°where E contains the initial strains not associated with stress, e.g., strain due 

to a temperature increment, and A is called the material compliance matrix. 
We write the inverted relations as 

a = DZ) - ,") (10-68) 
where D = A is the material rigidity matrix. Equation (10-62) requires D 
(and A) to be symmetrical. The elements of A are determined from material 
tests, and D is generated by inverting A. Substituting for in (10-64), we 
obtain the form of the strain energy density for the linear case, 

1
V ( - 0)D( - EO) (10-69) 

Since V > 0 for arbitrary ( - O), D and A are positive definite matrices. 
There are 21 material constants for a linearly elastic Green-type material. 

The number of independent constants is reduced if the material structure 

t See Prob. 10-6. 10-13. 
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exhibits symmetry.t In what follows, we describe the transition from an aniso­
tropic material to an isotropic material. 

A material whose structure has three orthogonal axes of symmetry is called 
orthotropic. The structure of an orthotropic material appears identical after a 

° 180 rotation about a symmetry axis. To determine the number of indepen­
dent constants for this case, we suppose X 1, X2 , X3 are axes of symmetry and 

° consider a 180 rotation about X2. We use a prime superscript to indicate the 
rotated axes. From Fig. 10-13, 

X i = -X 1 

X - -X,3 (a) 
X2 = X2 

The stress and deformation quantities are related by (we replace 1 by - 1 and 
3 by -3 in the shear terms) 

vii - ii 
! 

Ci = i i= 1,2, 3 

cr 12 = -12 ;3 == -2 23 3 = (713 (b) 

712 = --712 j'23 = -Y23 Y13 = Y13 

Now, the stress-strain relations must be identical in form. We expand = 
Au, ' = A', and substitute for ' using (b). Equating the expressions for e 

x ------ I 

X3 

Fig. 10-13. Rotation of axes for symmetry with respect to the X2-X plane.3 

t A material whose structure has no symmetry is said to be anisotropic. 
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and e' leads to the following relations between the elements of A, 

a1 4 u1 2 + a1572 3 = -a 1 4u 1 2 - 1523 

= 1a2 4 U2 + a2 5 a2 3 -a 2 4 1 2 - a25U23 (c) 
a3 4 U1 2 + a3 5 72 3 = -a3 4 ¢C 1 2 - a35C23 

For (c) to be satisfied, the coefficients must vanish identically. This requires 

a14 = = 0a1 5 

a2 4 = (125 = 0 (d) 
a34 = a35 = 0 

We consider next the expansions for yi'. The symmetry conditions require 
° a,,4 = a 6 = 0. By rotating 180 about X1 , we find 

a, = a = a =- a = 0 (e) 
A rotation about the X3 axis will not result in any additional conditions. 
Finally, when the strains are referred to the structural symmetry axes, the 
stress-strain relations for an orthotropic material reduce to 

i1 a,, al 2 a1 3 I ll 
g2 a12 a2 2 a2 3 0 712 

3 a13 a23 a3 3 (733 
=- - - - - -- - - ------ (10-70)

Y12 a4 4 0 0() 12 

Y23 0 0 a5 0 a2 3 

|Y3! 0 0 a6 6 35 

We see that A is quasi-diagonal and involves 9 independent constants. There 
is no interaction between extension and shear. Also, the shearing effect is 
uncoupled, i.e., o'1 2 leads only to Y12. 

An alternate form of the orthotropic stress-strain relations is 

1 12 V3 
et = It1 T + E '11 - 0'<722- 33 

1 V12 V'322
82 = t2 AT + 22 2 

- 133 
2 ElT EE11---3 

(10-71) 
1 V13 V23 

83 = 13 AT -I3 - -- 011-2 0.22 
3 E, E 

31 1
Y12 = 712 t/23 = - (7 Y31= <3

G12 ( 2 3 G31 

where E are extensional moduli, Gji are shear moduli, vjk are coupling coeffi­
cients, and AT is the temperature increment. The coupling terms are related by 

V2 1 V1 2 V3 1 V13 V3 2 V2 3 

E2 E E E E3 E2 
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It is relatively straightforward to invert these relations.j One should note that 
(10-71) apply only when Xi coincide with the material symmetry directions. ; 

If the stress-strain relations are invariant for arbitrary directions in a plane, 
the material is said to be transversely orthotropic or isotropic with respect to 
the plane. We consider the case where the X1 direction is the preferred direc­
tion, i.e., where the material is isotropic with respect to the X2-X3 plane. By 
definition, A is invariant when we transform from X1-X2 -X 3 to Xl-X2-X. 
This requires§ 

E221 = - .v3 1E, = E3E = G31 GGG12 -
v 

E2 E3 E 

V3 2 V23 V 1 2( + v) (10-73) 
//2 = /P3 P/

E3 E2 E G23 E 

and the relations reduce to 

1
E1 = ,t AT + - ll- (22 + (733) 

2 = It AT + - (022 - V1( l 1 - V(733 ) (10-74) 

/3 = pAT E- (33 - V10ll - V2 2 ) 

2(1 + v) 
Y12 = - '12 Y3.1 = GI1 31 /23 -' E 23 

There are five independent constants (E, v, E,, Iv', G1 ). 
Lastly, the material is called isotropic when the stress-strain relations are 

invariant for arbitrary directions, X1-X,-X3. For this case, A = A' for arbi­
trary X-X-X. The relations are obtained by specializing (10-74): 

1 
ei = AT + (ii - v(jj + (Tkk)) 

(10-75)
2(1 + v) 

Yij = -- j 

Note that now there are only two independent constants (E, v). The coupling 
coefficient, v, is called Poisson's ratio. 

The inverted form of (10-75) is written as 

ail f0 ( + 22G)ej + )(ej + P',) 
i = Gyi, (10-76) 

° c = -(32 + 2G)j AT 

t See Prob. 10-19 for the inverted form of (10-71). 
$See Prob. 10--21. 
§ See Prob. 10-22. 
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where 2, G are called Lam constants and are related to E, v by 

G = shear modulus 
E 

vE 
2(1 + v) (10-77) 

(1 + v)(1 - 2v) 

Since D must be positive definite, v is restricted to - 1 < v < 1/2. The limiting 
case where v = + 1/2 is discussed in Problem 10-24. 

10-6. PRINCIPLE OF VIRTUAL DISPLACEMENTS; PRINCIPLE OF. 
STATIONARY POTENTIAL ENERGY; CLASSICAL STABILITY 
CRITERIA 

Chapter 7 dealt with variational principles for an ideal truss. For com­
pleteness, we derive here the 3-dimensional form of the principle of virtual 
displacements, principle of stationary potential energy, and the classical stability 
criterion. The principle of virtual forces and stationary complementary energy 
are treated in the next section. 

The principle of virtual displacements states that the first-order work done 
by the external forces (WWE) is equal to the first order work done by the internal 
forces (Wo) acting on the restraints for an arbitrary virtual displacement of 
the body from an equilibrium position. t In the continuous case, the external 
loading consists of body (b) and surface (p) loads and the internal forces are 
represented by the stress vectors. 

We follow the Lagrange approach,+ i.e., we work with Lagrange finite 
strain components (ej,), Kirchhoff stresses (k), and external force measures per 
unit initial volume or area (b*, P*). This is consistent with our derivation of 
the equilibrium equations. Let Au denote the virtual displacement. The first­
order external work is 

6W, = JJJfb* · AU dx dx2 dx 3 + fp,* A dQ (10-78) 
.bIb= Aui dx d 2 dX3 ± jpp* Aul dil 

dX3jSSV + Sfp*. AuLi Q~~ 
where Q is the initial surface area. The total internal deformation work is 
obtained by summing the first-order work done by the stress vectors acting on 
a differential volume element. § 

3WD = JSff Au, j dx, dx 2 dx 3 (10-79). 

IIikj beij dxl dx2 dx3 

Equating (a) and (b), we obtain the 3-dimensional form of the principle of 

t See Sec. 7-2. 
$ See Fig. 10-12. 
§ See (10-60). 
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virtual displacements, 

5w, = 6w, 

= - d dx 2 lx3 + |fi ' AUl dQ (10-80)Jiffj Al , jdx,1 2x2 dx33 ­

fJJkj< (Seij dx1 dx2 dX3 = fJfb* Aui dx 1 dx2 dx 3 +- Jfp* Aui dQ 

Requiring (10-80) to be satisfied for arbitrary (continuous) Al is equivalent to 

enforcing the equilibrium equations. 
To show this, we work with the vector form and utilize the following inte­

gration by parts formula :? 

x, x2 dx 3 (10-81)dX dx 2 dx3 = - J d, cdQl 

where Lc,j is the direction cosine for the initial outward normal (n) with respect 

to the Xj direction. Operating on the left-hand term and equating coefficients 

of Au in the volume and surface integrals leads directly to (10-50) and (10-54). 

The principle of virtual displacements applies for arbitrary loading (static 

or dynamic) and material behavior. When the behavior is elastic and the loading 

is independent of time, it can be interpreted as a variational principle for the 

displacements. The essential steps required for the truss formulation are de­

scribed in Sec. 7-4. Their extension to a continuous body is straightforward. 

When the behavior is elastic, 

i. aev (a) 

Letting VT denote the total strain energy, the left-hand side of (10-80) reduces to 

J= d 2 dx 3 = TV (b)6WD JJa bei d dcX dx3 = [JS ST/ dx 

We consider the surface area to consist of 2 zones as shown in Fig. 10-14. 

f2 = Qd + Q, 

where displacements are prescribed on Qd, 

ui = ,i on d (10-82) 

and surface force intensities are prescribed on K2, 

Pni = Pni on 0, 

The displacement variation, Au,, is admissible if it is continuous and satisfies 

Au = 0 on Qd (10-83) 

We also consider the surface and body forces to be independent of the displace­

ments. With these definitions, the principle of virtual displacements is trans­

t See Prob. 10-25. 
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formed to 
5Hv = -O for arbitrary admissible Aui 

(10-84) 
n, = VT - fJjbi*u dx1 dx2 dx 3 - Jffi f*. dQ 

where I, is the total potential energy functional. According to (10-84), the 

displacements defining an equilibrium position correspond to a stationary 

value of the total potential energy functional. Note that this result applies for 

arbitrary strain and finite rotations. The only restrictions are elastic behavior 

and static loading. 

Pn 

Dad(I = ) 

Fig. 10-14. Classification of boundary zones. 

Example 10-2 

Direct methods of variational calculus such as Rayleigh-Ritz, Galerkin, weighted resid­
uals, and others are applied to Ip,to determine approximate solutions for the displacements. 
In the Rayleigh-Ritz method, one expresses the displacements in terms of unknown param­
eters, q,and prescribed functions, +(x1, x2, x3), 

tli Up + E q(D){i) (a) 
j= 

where 
u° = i 

on nQl (b)
¢' = 0 forj = 12,..., N} 

The displacement boundary conditions on Qd are called "essential" boundary conditions. 
Substituting for ui transforms ip to a function of the q's. When the material is linearly 
elastic, V is a quadratic function of the strains. Then, V will involve up to fourth-degree 
terms for the geometrically nonlinear case. If the behavior is completely linear, nip reduces 
to: 

TI, = Const. + qTQ + -qKq 

q = (qq)'.* .. qq)" qN)} (3N x 1) (c) 

K is symmetrical 
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Finally, requiring fIp to be stationary for arbitrary Sq leads (for linear behavior) to 
(d)Kq = Q 

The strains are evaluated by operating on (a) and the stresses are determined from the 
stress-strain relations. 

Polynomials and trigonometric functions are generally used to construct the spatial 
distribution functions. The mathematical basis for direct methods is treated in numerous 
texts (see Refs. 9, 10). 

The "classical" stability criterion for a stable equilibrium position ist 

(52 WD - 2WE > 0 for arbitrary A/i 

where 52WE = 6((SWE) is the second-order work done by the external forces 
during the incremental displacement, A/i, and D2= 6S(SWD) is the second­
order work done by the internal forces acting on the rcstraints during the 
incremental deformation resulting from Af. The form of the work terms for 
a continuous body are obtained by operating on (10-78) and (10-79):t 

2 WE = i '. dx3 + f 5p*. AFl lal dXb*..l 2x2 

f=(5b-* Aut dx 3 + f I5pi Aui dQ (10-85)2WDD( = 5fff 36k AUi j dxl dx2 (1x3 

S=ff(ba beej + 62eij)dxl dx 2 dx,3 

If 62WD = 32WF for a particular A, the equilibrium position is neutral. The 
position is unstable if 52W < 62WE. Note that 6b, c5p are null vectors when 
the forces are prescribed. 

For elastic behavior, the incremental deformation work is equal to the 
increment in strain energy (WD = 6(5V), and (10--84) can be written as 

632 Ip = (p) > 0 for arbitrary Ai (10-86) 

It follows that a stable equilibrium position corresponds to a relative minimum 
value of the total potential energy. Bifurcation (neutral equilibrium) occurs 
when 2 IiP = 0 for some Aut, say AfiB. If the loading is prescribed, 2Hp = 62 VT, 
and 2VT = 0 at bifurcation. 

The governing equations for bifurcation can be obtained by expanding 
2WDD = 52WE. This involves transforming the integrand of 62WD by applying 

(10-81). Since bifurcation corresponds to the existence of an alternate equili­
brium position, it is more convenient to form the incremental equations directly. 
The equations for the case of linearly elastic material and prescribed external 
forces are listed below. 

t See Sec. 7-6 for a derivation of the classical stability criterion. 
+See Probs. 10-11, 10-18. 
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L. Eiquilibrium Equation in the Interior 

(3ou' + u, i ji + a Auef £) = = 1, 2, 3 

2. Stress-BoundaryForce Equations on 0R1 

(6j + Uj, i b6a, + , Aluj, i) = 0 j = 1,2, 3 (10-87) 

3. Stress-Strain Relations 

& = D &E 

4. Strain-Displacement Relations 

6eij = -(Aui, j Aj, + u,, i Aigt, j + tn j A, i) 

Au = 0 on Q, 

10-7. PRINCIPLE OF VIRTUAL FORCES; PRINCIPLE OF STATIONARY 
COMPLEMENTARY ENERGY 

Let uabe the actual displacements in a body due to some loading and eij the 
geometrically linear strain measures corresponding to uli. The strain and 
displacement measures are related by 

eij = I(u,j + 11 .j) (a) 
Also, 

ui = lo on 2Qd (b) 

Once the strains are known, we can find the displacements by solving (a) and 
enforcing (b). The principle of virtual forces is basically a procedure for deter­
mining displacements without having to operate on (a). It applies only for 
lineargeometry. We developed its form for an ideal truss in Sec. 7-3. We will 
follow the same approach here to establish the three-dimensional form. 

The essential step involves selecting a statically permissible force system, 
i.e., a force system which satisfies the linear equilibrium equations. For the 
continuous case, the force system consists of stresses, Auij; surface forces, 
Ap,,i, on Qs,; and reactions, Apni, on Qd. Static permissibility requires 

Aji, j = 

p, C%,jAuji on Q, (10-88) 
0Api = aj Aoji on d 

If we multiply eij by A uij integrate over the volume using (10-81), and note the 
static relations, we obtain the following identity, t 

ff5eij LAij dxl dx 2 dX3 = S. ui Ap,2i d + -i Ap, d (10-89) 

t See Prob. 10-26. 
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which is referred to as the principle of virtual forces (or stresses). This result is 
applicable for arbitrary material behavior. However, the geometry must be 
linear. 

Suppose the translation at a point Q on Q, in the direction defined by 1 is 
desired (see Fig. 10-15). Let dQ be the displacement. We apply a unit force 
at Q in the q direction and generate a statically permissible stress field. 

(1) 7q, at point Q => Aa (9) and Ap(1 

The integral on Q, reduces to (1)dQ, and it follows that 
tdQ = ffsei A dxl dx 3 - f iJ Ap) dQ (10-90) 

X,, 

A second application is in the force method, where one reduces the governing
equations (stress equilibrium and stress displacement) to a set of equations 

Ed 

Fig. 10-15. Notation for determination of the translation at point Q. 

involving only force unknowns. We start by expressing the stress field in terms 
°of a prescribed distribution (a ) and a "corrective" field (R), 

0 
0ai *o + ocj (10-91) 

° where a is a particular solution of the equilibrium equations which satisfies 
the boundary conditions on Q,, 

0cpi, j + bi = 0 (1.0-92)
anjajfi Pi on Qa 

and atcsatisfies 
c. c = 0 

an.JBi 0= on Q0, (10-93) 

o,,jo = i on Od 

Stress fields 
°
satisfying (10-93) are called self equilibratingstress fields. For the 

ideal truss, o corresponds to the forces in the primary structure due to the 
prescribed loading and ac represents the contribution of the force redundants. 

SEC. 10-7. PRINCIPLE OF VIRTUAL FORCES 

The governing equations for the force redundants were obtained by enforcing
geometric compatibility, i.e., the bar elongations are constrained by the require­
ment that the deformed bar lengths fit in the assembled structure. 

Geometric compatibility for a continuum requires the strains to lead to 
continuous displacements. One can establish the strain compatibility equations 
by operating on the strain- displacement relations. This approach is described 
in Prob. 10-10. One can also obtain these equations with the principle of 
virtual forces by taking a self-equilibrating force system. Letting Auc, ApC denote 
the virtual stress system, (10-89) reduces to 

fffeij Aoij d.x, dx 2 dx3 = fjiii Apl dQ (10-94)
sId 

The compatibility equations are determined by expressing ocrin terms of stress 
functions and integrating the left-hand term by parts. We illustrate its applica­
tion to the plane stress problem. 

Example 10-3 

If the stress components associated with the normal direction to a plane are zero, the 
stress state is called planar. We consider the case where a1 3 = 623 = 33= 0. The 
equilibrium equations and stress-boundary force relations reduce to 

11, + 21,2 + b = 0 
(a)T 

+ b2 = 00' 1 2 1 + C2 2 ,2 

Pll = nlO11 + "Zn2(721 

Pn2 = 4,nl1 + n,2 2 2 
(b)

2 

The stress field, ac, - must satisfy (a) with bl = b2 = 0 and also ,,1= P,2 = 0 on ,.
We can satisfy the equilibrium equations by expressing oj in terms of a function, , as 
follows: '?. 

all = ,22 Y2 2 = . 

a'12 = a2l = -'. 12 (c) 
The boundary forces corresponding to ,j are 

c I 

Pn = I. 2 Pn2 I (d) 

where s is the arc length on the boundary (sense is from X t - X2). 
Substituting for C¢,p in terms of , (10-94) expands to 

ff (6 t22 + 82 A, 1 1 - Y1 2 A, 12)dx1 dx 2 

(e) 
d ( ,' 2 - 2 A S = 0 

There is no loss in generality by taking AO = 0 on S. Then, integrating (e) by parts, 

f(E1, 22 + 2, 11 - Y1 21 2)A)a, dx 1 dx 2 = 0 (f) 

t See Prob. 10-14. 
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and requiring (f) to be satisfied for arbitrary AO results in the strain compatibility equation, 

81 22 +t 82, 1 12, 12 = 0 (g) 

which is actually a continuity requirement I 

domain. We call ccthe corrective stress field since it is required to correct the 
compatibility error due to r ° . 

For completeness, we describe here how one establishes a variational principle
for (j. Our starting point is (10-94) restricted to elastic behavior. We define 

Ul.122 + U, 211 - (1,212 + 112, 112) = 0 (h) 
V* = V* (uij) according to 

We express (g)in terms of ¢ by substituting for the strains in terms of the stresses.t cSV* = eij A c j = ETTA (10-99) 

The principle of virtual forces is also employed to generate approximate
solutions for the stresses. It is convenient to shift over to matrix notation for 
this discussion, and we write (10-94) as 

and call V* the complementary energy density. The form of V* for a linearly
elastic material is 

V* = ,aTe0 + 1 AT 

By definition, V* complements V,i.e., 
(10-100) 

SfJsT Ao7 dx 1 dx 2 d 3 = f jT Apc dQ 

We express the stress matrix in terms of prescribed stress states and unknown 
parameters, ai, 

a = ( + C'. 

=6 + (101( + a2 2 + + a,d4, 
(10-95) 

Then, letting 
V + V* = ijeij 

V7 = SFSV* dx 1 dx 2 d-Y3 

we can write (10-94) as 

51' = 0 for arbitrary Aua 

(10-101) 

(10-102) 

where ° satisfies (10-92) and bij (i = 1, 2, . .., r) are self-equilibrating stress n, = v - fJ u;p,i d = n,(5j) (10-103) 
states, i.e., they satisfy the homogenous equilibrium equations and boundary 
conditions on Q2,. The corresponding surface forces arc This form is called the principle of stationary complementary energy and shows 

that the true stresses correspond to a stationary value of I, c. 
p= pO + a1 0, + a2 02a22 + ' + a0,. Since p, is linear in aij, the second variation of ,i, reduces to 

pO= p 
0i =0 (i= 1,2... ,7) 

on Q, 
(10-96) 62-c = 52V = ff eij Aaz; dx, dx 2 dx 3 

We shift over to matrix notation and express 5E as 
(10-104) 

Taking virtual-force systems corresponding to Aai (i 
equations for the parameters. 

= 1, 2, . . ., r) results in r & = A, Ao( c 
(10-.05) 

.ffsT, dx, dx2 dx 3 = ff T0 i do 
' a 

i= 1,2,...,r 

In order to proceed, we need to introduce the material properties. 
material is linearly elastic, 

= EO O ± +0= + A + a 

and the equations expand to 

(10-97) 

[hen the 

(a) 

where At represents the tangent compliance matrix. Now, A, must be positive
definite in order for the material to be stable.t Then, 52FI,, > 0 for arbitrary 
Aac and we see that the solution actually corresponds to a relative minimum 
vanle of I,. 

The approximate method described earlier can be applied to I,. Substituting 
for given by (10-95) converts nc to a function of the stress parameters 
(al, a2 .... , ar). When the material is linearly elastic, 

Jjaj = d i i,j = 1, 2... r 
-Ic = a fa - aTd + const (10-106) 

fi = fi = SS Aj 
di = 1iTo dO -

Q. 

dx dx 2 dX 3 

f4(T(zE + Au)dX 1 dx 2 d 3 

(10-98) 
i 

i 

The equations for the stress parameters follow by requiring EI,
for arbitrary Aai : 

6, = AaT(fa - d) = 0 

to be stationary 

One should note that (10-97) are weighted compatibility conditions. The 
true stresses must satisfy both equilibrium and compatibility throughout the 

t See Prob. 10-27. 

fa d (10-107)
fa d 

t The classical stability criterion specialized for elastic material and linear geometry requires
5
2V = 6ETD, eC> 0 for arbitrary 5E which, in turn, requires D to be positive definite. Since 

A, = D 1 , it follows that A, must be positive definite for a stable material. 
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Operatingon IcT, 10-6. 

2rCI, = aTf Aa (10-108) (a) Specialize (10-19) for small strain and write out the expressions for 

I E, Y'j in terms of 8e, 82 *... 3 
and noting that 62HC > 0, we conclude that f is positive definite. (b) Let = {F,, 82, 83, Y12, )'23, 31}. We can express the strain trans­

formation (small strain) as 

REFERENCES ' = Te 

Develop the form of T, using the results of part a.
1. CRANDALL, S. J., and N. C. DAHL: An Itroduction to the Mechanics of' Solids, 

(c) Evaluate T, in terms of cos 0, sin 0 for the rotation shown below.
McGraw-Hill, New York, 1959. Comment on the transformation law for the out-of-plane shear strains

2. BISPLINGHOFF, R. L., MAR., J. W., and T. H. H. PIAN: Statics of Deformable Solids, 
Addison-Wesley, Reading, Mass., 1965. Y3 , Y32­

3. WANG, C. T.: Applied Elasticity, McGraw-Hill, New York, 1953. 
4. TIMOSHENKO, S. J., and J. N. GOODIER: Theory of Elasticity, 3d ed., McGraw-Hill, 

X2 
Prob. 10-6 

,New York, 1970. X 
5. SOKOLNIKOFF, I. S.: Mathematical Theory of' Elasticity, 2d ed., McGraw-Hill, New 

York, 1956. 
6. FUNG, Y. C.: Foundationsof Solid Mechanics,Prentice-HIall, 1965. 
7. LEKHNITSKII, S. G.: Theory of Elasticityof an Anisotropic Elastic Body, Holden-Day, 

San Francisco, 1963. 
8. WASHIZU, K.: VariationalMethods in Flasticit' andPlasticity,Pergamon Press, 1968. 
9. HILDEBRAND, F. B.: Methods of Applied Mathienmatics, Prentice-Hall, 1965. 

10. CRANDALL, S. J.: Engineering Analysis, McGraw-Hill. New York, 1956. -Xl 

PROBLEMS 

10-1. Write out the expanded form of the following products. Consider 
the repeated indices to range from 1 to 2. 10-7. In the Eulerian approach, the cartesian coordinates (i) for the 

deformed state are taken to be the independent variables, i.e.,
(a) ai.jkXjxk 
(b) ij(ui, j + uj, i) where ij = aji Uj = Uj(k) Xj = Xj(tlk)u-
(C) (nj - Um,j)(,nk + U. k) - (

5jk 
10-2. Let f be a continuous function of x1 , x 2, x 3. Establish the trans- Almansi's strain tensor is defined as 

formation laws for aflaxj and 02f/OXj CXXk. 
10-3. Establish the transformation law for aijbk where ai, bk are cartesian ld1 2 - (ds)2 = 2Ejk dj dk 

tensors. 
10-4. Prove that Determine the expression for Ejk in terms of the displacements. Compare the 

result with (10-21).
ejk = (PjR Pk - bjk) 10-8. Consider the case of two-dimensional deformation in the Xl-X2 

is a second-order cartesian tensor. Hint: Expand plane ( 3 = Y13 = 23 = 0). Let ,, b,E,, be the extensions in the a, b, c direc­
tions defined below and let EN = {8,,, , . We can write 

a p (l) 
,j' P k' - x, 5x EN = BE 

g = B-'£N10-5. Equations (10-19) are the strain transformation laws. Since e,, is 
a symmetrical second-order cartesian tensor, there exists a particular set of 

(a) Determine the general form of B.directions, say Xy, for which ed
/ is a diagonal array. What are the strain com­ ° (b) Determine B-' for Oa = 0, b = 45 , 0 = 90.ponents for the XP frame? Consider a rectangular parallelepiped having sides 

dX? in the undeformed state. What is its deformed shape and relative change (c) Determine B- for Oa = 0, Ob = 600, 0c = 1200. 

in volume, eP, with respect to its initial volume? Specialize the expression for (d) Extend (a) to the three-dimensional case. Consider six directions 

sP for small strain. Then determine 8, for the initial (Xj) directions and small having direction cosines 0cjl, j2, CCj3with respect to X1, X2, X3. Can 
strain. Finally, show that e, is invariant. we select the six directions arbitrarily'? 
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Prob. 10-8 10-11. Equation (10-21) defines the strain measures due to displacements, 
X2 

ui. To analyze geometrically nonlinear behavior, one can employ an incre­
mental formulation. Let Aui represent the displacement increment and Aejk 
the incremental strain. We write 

Aejk = ejk + ½r2ejk 

where 6ej, contains linear terms (Aui) and i2ejk involves quadratic terms. The 
b-symbol denotes the first-order change in a functional and is called the varia­
tional operator (see Ref. 8). We refer to 5e as the first variation of e. Determine 
the expressions for e, 2e. 

X1 10-12. Let i,, be the unit vector defining the initial orientation of the 
differential line element d,, at a point. 

10-9. For small strain, the volumetric strain is d,, = dsT,, i, = oI,,jlf 
8, = 81 + 2 + 83 = el + e2 2 + e3 3 The unit vector defining the orientation in the deformed state is i,,. 

Rather than work with eij, one can express it as the sum of two tensors, d, = (1 + )ds,, lt = j 

ei = e + e'j Determine the general expression for fl,,. Then specialize it for small strain. 

where e!( is called the spherical strain tensor, 10-13. The several parts of this question concerns stress transformation. 
(a) Starting with (10--41), write out the expressions for Oh, i'j in terms of 

e(J) = = keijE. 
1 3 .ijtel, 1 1, '(22, , 

and e(d) is the deviator strain tensor. (b) Let (r = {all, U2 2 , 03.3, (12, a23, (T1 } = stress matrix. We express the 

(a) Write out the expanded form for e!9) and e!'f. 
stress transformation as a matrix product. 

(b) Determine the first invariant of el,) e' andcompare with the invariant a' = T,a
of ei.p 

10-10. This question concerns strain compatibility equations. Develop the form of T, using the results of part a. 
(a) Show that (c) Evaluate T, in terms of cos 0, sin 0 for the axes shown. 

j2e,,k ( 2ent 2en, + 
X,n (?CX CX,, C-

, 
?xk I n k - XX,, ,Ys x2 Prob. 10-13 

where 
1 (t,,, (uj\ 

enk = ek,, = C 
+±, ;~ 

and k, X,In, n range from I to 3. This expression leads to six indepen­
dent conditions, called geometric conlpatibilit relations, on the strain 
measures. 

(b) Show that for two-dimensional deformation in the X1-X 2 plane 
Y.
'1I 

(83 = 813 = 823 = 0; this called plane strain) there is only one com­
patibility equation, and it has the following form: (d) Plane stress refers to the case where C13 = (23 = 33 = 0. We work 

with reduced stress and strain matrices,
l.,22 + 82. 11 = )'12. 12 

Is the following strain state permissible? = 8{ill, 22,' 12} 

r8 = k(x + x2) 
= {el, 2, Y12} 

and write the transformations in the same form as the three-dimensional 
82 = kx, case: 

}'12 = 2kX1 X2 ' = Tao 
k = constant 
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Evaluate T, from part c above and T, from Prob. 10-6. Verify that 

T7% = 13 

10-14. This question develops a procedure for generating self-equilibrating 
stress fields. 

(a) Expand the linear equilibrium equations, (10--49) and (10-50). 
(b) Specialize the equilibrium equations for plane stress (13 = 023= 

033 = 0). 
(c) Suppose we express the two-dimensional stress components in terms 

of a function V = VJ(xl, x 2), as follows: 

(T = 22 - j'., b dxl 

022 = . 11 - fx 2 12 X2 

012 = 21 = -',I2 

The notation for body and surface forces is defined in the following 
sketch. 

Prob. 10-14 

X2 

2 

Xl 

Verify that this definition satisfies the equilibrium equations in the 
interior. Show that the expressions for pI and P2 in terms of derivatives 
with respect to xl, x2, and s are 

P1 = -cs 2 - nl fx, i, &xj(? 

P2 - ,1 - an2 . b2 dx2c S 

10-15. The mean stress, a,,, is defined as 

a - 1(011 + 022 +m 3 3 ) 

Rather than work with aij, we can express it as the sum of two tensors, 

a(jd)i =- 0. ii) + ii o ~ 

PROBLEMS 267 

where a0-!is called the spherical stress tensor, 

t
s ) 

=- (ij,,, 

and a'J) is the deviator stress tensor. 
(a) Write out the expanded forms for C( and a'!). 
(b) Determine the first invariant of !(c.'j.) 

10-16. Establish the stress-equilibrium equations for sall-finite rotation 
and small strain. 

10-17. Starting with (10-52), (10-55) specialized for small strain, establish 
the incremental equilibrium equations in terms of Aak, Au, Ab*, and Ap*. 
Group according to linear and quadratic terms. Specialize these equations 
for the case where the initial position is geometrically linear, i.e., where we can 
approximate fij, with jk in the incremental equations. 

10-18. Prove (10-60). Hint: 

6ejs = (P.j BP.k + P.k .j) 
8), i = Ai,i 

10-19. Verify that the inverted form of (10-71) is 

= D(E - O) 

where 

Dll = El/C3 D12 = (C2/CL)DI D1 3 = C4D 1 

D122 = E2 /C1 + (C2 /C1)D1 2 

= 3 2 E 2/Cl + (C2 /C 1)D13 D2 3 

D3 3 = E3 + 3 1 D1 3 + 1'321D23 

and 

C = 1- v32(E 2/E3 ) 

C2 = + V v13 2(E2 /E 3 )V2 1 3 

C4 = +V3 1 V32 

Specialize for plane strain (3 = '13 = 23 = 0) 
10-20. Consider 2 sets of orthogonal directions defined by the unit vectors 

i and tj. The stress-strain relations for the two frames are 

£ = EO + sT 

r' = (o)I + A'W' 

Express A' in terms of A and T,. Also determine D'. 
10--21. Consider the three-dimensional stress-strain relations defined by 

(10-71). 
(a) Specialize for plane stress (0.33 = 013 = 0'T23 = 0) 
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where K is the bulk modulus = (E/3(1 - 2!)). Discuss the case where 
(b) Let 

° V = 2 
= 6, U,2 2 1 2 } (b) Show that 
= E, 2, 12} J) = 2Ge!j) 
= O + A 

(c) Verify that the strain-energy density can be written as 
Verify that D has the following form: 

V = u(e -ei°i) 
I V21 

0 
- O((ej - ,) + -2 

I 
D-

E1 0 - V(s) +- (d)
V21 ­

1- 1,'221 

O 0 4G(1 - 1V2 1 
Determine V(s) and V(d) for the isotropic case. 

(d) When v = , E! = c. We must work with 7 stress measures (ai, r,,,) 

and the mean stress has to be determined from an equilibrium con­
where n =- E sideration. Summarize the governing equations for the incompressible 

E2 case. 
(c) Assuming X 1-X 2 in the sketch are material symmetry directions, 10-25. Prove (10--81) for the two-dimensional case. Is this formula re­

determine D' for the X1-X 2 frame. Use the results of Prob. 10-13, stricted to a specific direction of integration on the boundary? Does it apply 
10-20. What relations between the properties are required in order for a multi-connected region, such as shown in the figure below? 
for D' to be identical to D? 

Prob. 10-25 
Prob. 10-21 

X2 -r CS� 

10-26. Verify Equation (10-89). 
10-27. Refer to Example 10-3. Express (g) in terms of ¢/. Consider the 

material to be orthotropic. 
10-28. Verify that the stationary requirement 

XI 
HIR = 0 for arbitrary Au, Auci, Apni 

10-22. Verify (10-73). Start by requiring equal properties for the X2 and where 

X3 directions. Then introduce a rotation about the X1 axis and consider the r = ff(eiju- - V* - i*'i)dx1 .X2 d.x,3 

expression for '23. Isotropy in the X2-X 3 plane requires 
- Tfp*tu dQ - Jf p,,i( - ui)dQ 

1 
2, Qd 

a~j = Kirchhoff stress
Y3 = 6 23 

G23 eij = Lagrange strain = (ui j + uJ, + u,, ium,j) 

10-23. Verify that the directions of principal stress and strain coincide for V* = complementary energy density (initial volume) 

an isotropic material. Is this also true for an orthotropic material? b*, p* = prescribed force measures (initial dimensions) 
10-24. Equations (10-76) can be written as 

leads to the complete set of,governing equations for an elastic solid, i.e.,
ij = '08bij +- 8s,,ij + 2Geij 

1. stress equilibrium equations 

where %eis the volumetric strain. Using the notation introduced in Probs. 10-9 2. stress-displacement relations 
3. stress boundary conditions on f2,and 10-15-

(a) Show that 4. displacement boundary conditions on Qd 

nt = K-,, + c0 5. expressions for the reaction surface forces on Qd 
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This variational statement is called Reissner's principle (see Ref. 8). 
(a) Transform HR to Tip by requiring the stresses to satisfy the stress 

displacement relations. Hint: Note (10-101). 
(b) Transform nR to - lHc by restricting the geometry to be linear (Ck = a 

and eij = (ui, j + uz,;)/2) and requiring the stresses to satisfy the stress 
equilibrium equations and stress boundary conditions on Q,. Hint: 
Integrate uijeij by parts, using (10-81). 

10-29. Interpret (10-90) as St. Venant Theory of(IQ= ie fIC 

where PQ is a force applied at Q in the direction of the displacement measure, dQ. Torsion-Flexure of 
Prismatic Members 

11-1. INTRODUCTION AND NOTATION 

A body whose cross-sectional dimensions are small in comparison with its 
axial dimension is called a member. If the centroidal axis is straight and the 
shape and orientation of the normal cross section are constant,s the member 
is said to be prismatic. We define the member geometry with respect to a 
global reference frame (Xi, X2, X3), as shown in Fig. 11-1. The X1 axis is 
taken to coincide with the centroidal axis and X2, X3 are taken as the principal 
inertia directions. We employ the following notation for the cross-sectional 
properties: 

A = d x3 = (IA 

12 = fS(X3) 2 dA (11-1) 

13 = (X2)2 dA 

Since X2 , X3 pass through the centroid and are principal inertia directions, 
the centroidal coordinates and product of inertia vanish: 

-2, = - jx 2 dA = 0 X3, c J=x 3 dA = 0 
(11-2) 

123 = fJX2X 3 dA = 0 

One can work with an arbitrary orientation of the reference axes, but this will 
complicate the derivation. 

St. Venant's theory of torsion-flexure is restricted to linearbehavior. It is an 
exact linear formulation for a prismatic member subjected to a prescribed 

t The case where the cross-sectional shape is constant but the orientation varies along the 
centroidal axis is treated in Chapter 15. 

271 


