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This variational statement is called Reissner's principle (see Ref. 8).
(a) Transform IR to Tp, by requiring the stresses to satisfy the stress

displacement relations. Hint: Note (10-101). 
k(b) Transform FIR to - IH by restricting the geometry to be linear (a = a

and eij = (ui, j + uj, i)/2) and requiring the stresses to satisfy the stress
equilibrium equations and stress boundary conditions on DQ. Hint: 
Integrate uijeij by parts, using (10-81).

10-29. Interpret (10-90) as St. Venant Theory ofdQ -1c 

where PQ is a force applied at Q in the direction of the displacement measure, dQ. Torsion-Feexure of 
Prismatic Members 

11-1. INTRODUCTION AND NOTATION 

A body whose cross-sectional dimensions are small in comparison with its
axial dimension is called a member. If the centroidal axis is straight and the
shape and orientation of the normal cross section are constant,-'- the member 
is said to be prismatic. We define the member geometry with respect to a 
global reference frame (X1 , X2 , X3), as shown in Fig. 11-1. The X1 axis is
taken to coincide with the centroidal axis and X2 , X are taken as the principal
inertia directions. We employ the following notation for the cross-sectional
properties: 

A = f dx, dx, = fS dA 
I2 = j'(x 3 )2 dA (11-1) 
I3 =- (X)2 dA 

Since X2, X3 pass through the centroid and are principal inertia directions,
the centroidal coordinates and product of inertia vanish: 

Ax2 = - x dJXxdAz = 0 3 0 
(11-2) 

123 = (fX2 dA 0X3 

One can work with an arbitrary orientation of the reference axes, but this will
complicate the derivation. 

St. Venant's theory of torsion-flexure is restricted to linearbehavior. It is an 
exact linear formulation for a prismatic member subjected to a prescribed 

f The case where the cross-sectional shape is constant but the orientation varies along thecentroidal axis is treated in Chapter 15. 
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TORSION-FLEXURE OF PRISMATIC MEMBERS CHAP. 11 

distribution of surface forces applied on the end cross sections. Later, in 
Chapter 13, we modify the St. Venant theory to account for displacement 
restraint at the ends and for geometric nonlinearity. 

X2 

X1 

Fig. 11-1. Notation for prismatic member. 

The distribution of surface forces on a cross section is specified in terms of 
its statically equivalent force system at the centroid. Figure 11-1 shows the 
stress components on a positive face. We define F+, M+ as the force and 
moment vectors acting at the centroid which are statically equivalent to the 
distribution of stresses over the section. The components of F, M+ are called 
stress resultants and stress couples, respectively, and their definition equations 
are 

F = J, 11 dA F = ffU1 2 dA F3 = fOr 3 dA 

M, = f(x 2 61 - 3c 12)dA (11-3) 
M 2 = fJJX 3a 1 1 dA 

M 3 = -fx 2 all dA 

The internal force and moment vectors acting on the negative face are denoted 
by F_, M_ Since 

F_ = -+ M_ = -M+ (11-4) 

it follows that the positive sense of the stress resultants and couples for the 
negative face is opposite to that shown in Fig. 11-1. 

We discuss next the pure-torsion case, i.e., where the end forces are statically 
equivalent to only M1. We then extend the formulation to account for flexure 
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and treat torsional-flexural coupling. Finally, we describe an approximate 
procedure for determining the flexural shear stress distribution in thin-walled 
sections. 

11-2. THE PURE-TORSION PROBLEM 

Consider the prismatic member shown in Fig. 11-2. There are no boundary 
forces acting on the cylindrical surface. The boundary forces acting on the end 
cross sections are statically equivalent to just a twisting moment M1 . Also, 
there is no restraint with respect to axial (out-of-plane) displacement at the ends. 
The analysis of this member presents the pure-torsion problem. In what 
follows, we establish the governing equations for pure torsion, using the 
approach originally suggested by St. Venant. 

X2 

ill1 
Ailli 
--- *-i--

Fig. 11-2. Prismatic member in pure torsion. 

Rather than attempt to solve the three-dimensional problem directly, we 
impose the following conditions on the behavior and then determine what 
problem these conditions correspond to. 

1. Each cross section is rigid with respect to deformation in its plane, 
i.e., e2 = 83 = 723 = 0. 

2. Each cross section experiences a rotation w1 about the X1 axist and 
an out-of-plane displacement u1. 

These conditions lead to the following expansions for the in-place displace­
ments: 

112 = - 1X3 

113 = +0 1 X2 

The corresponding linear strains are 

82 = 83 = Y23 = 0 

C1 =' ll. 1 (11-6) 
1 2 = U1, 2 + 12. 1 = tl, 2 - X3 01, 1 

713 = U1, 3 + u3, 1 ==0 U1,3 ± X2 ,1 1 

t Problem 11- treats the general case where the cross section rotates about an arbitrary point. 
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Now, the strains must be independent of xl since each cross section is 
subjected to the same moment. This requires 

col 1 = const - kl (11-7) 
U1 = lt1 (X2, X3 ) 

We consider the left end to be fixed with respect to rotation and express 
cot, Ul as 

(11-8) 
= kl(qtU1 

where d = 0t(x2, x 3) defines the out-of-plane displacement (warping) of a cross 
section. The strains and stresses corresponding to this postulated displacement 
behavior are 

E = E2 = 3 = Y23 = 0 

Y12 = k (t, 2 - 3 ) (11-9) 

T13 = 1(¢t, 3 + X2) 
and 

al0' = 2 2 = = 01 1 3 3 = a'2 3 

a01 2 = Gyl2 = Gkl(t 2 - x3 ) = 51 2(x2 , x3) 
(11-10) 

U13 = G 1 3 = Gki(4t 3 + x2) = a13(x2, x3) 

We are assuming that the material is isotropict and there are no initial strains. 
One step remains, namely, to satisfy the stress-equilibrium equations and 

stress boundary conditions on the cylindrical surface. The complete system of 
linear stress-equilibrium equations, (10-49), reduces to 

a 2 1 ,2 + a3 1 ,3 = 0 (11-11) 

Substituting for the shearing stresses and noting that Gkl is constant lead to 
the differential equation 

(U.4+ -a--)J =V24, == 0 (11-12) 

which must be satisfied at all points in the cross section. 
The exterior normal n for the cylindrical surface is perpendicular to the Xl 

direction. Then a,, = 0, and the stress boundary conditions, (10-49), reduce to 

Pn = {n26021 + xn3a 3 1 = 0 (11-13) 

Using (11-10), the boundary condition for , is 

Xn2(¢, 2 - X3 ) + (Z3(t,. 3 + 2 ) = 0 

(11-14) 

a0n -- ,,2X 3 - n3X2 (on S) 

t Problem 11-3 treats the orthotropic case. 
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The pure-torsion problem involves solving V2 , = 0 subject to (11-14). Once 
A0 is known, we determine the distribution of transverse shearing stresses from 
(11-10). Note that t depends only on the shape of the cross section. 

The shearing stress distribution must lead to no shearing stress resultants: 

F 2 = ffS12 dA = 0 
(a)

F = Jfa,, dA 0 
This requires 

J dA = -,( dA =O0 (b)
(7X 2 'X 3 

To proceed further, we need certain integration formulas. We start with 

(11-15)j f dA = f .,, Sexj 

which is just a special case of (10-81). Applying (11-15) to . V2 q dA leads to 
Green's theorem, 

$V2 dA = (n2jq + 1n3 q3)dS=5(··O ,3 ( - .; (11-16) 

If is a harmonic function (i.e., V2lp = 0), Green's theorem requires 

IdS = 0 (c)n .v 

l,Now, is a harmonic function. For the formulation to be consistent, (11-14) 
must satisfy (c). Using (11-15), (c) transforms to 

(,n2-X3 - a,,3X2)dS = (: -i- | dA 0_ (d) 
(?. GX 

Since c0,t/On is specified on the boundary, we cannot apply (11-15) directly 
to (b). In this case, we use the fact that V2 S0 = 0 and write 

( (e)
aXj aX, j ax2J Ox,ao '?¢' (j = 2,3) 

Integrating (e), 

t (Ihi 
f~j 

'dA = xj dS (j = 2, 3) (f)l 

and then substituting for the normal derivative, verifies (b). 
The constant k is determined from the remaining boundary condition, 

Ml = fS( 2 13 - X3 a12)dA (11-17) 
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We substitute for the shearing stresses and write the result as 

M1 = GklJ (11---18) 

where J is a cross-sectional property, 

J = X2+ + X2 O x3 X3 (2j) dA (11-19) 

At this point, we summarize the results for the pure-torsion problem. 

1. Displacements 

112 = -(1iX 3 

= )1X 2U3 

O = k1 

M1 
G.1 

2. Stresses 

612 J (82 - x3) 

(t1-20)
.M1 -7(= t, 

613 J- X3 
+ X2 1e-~C 

3. Governing Equations 

in A: V2 , = 0 
2 2on S: (t/(1il2 = rn2X3 - Cn3X 2 

It is possible to obtain the exact solution for )t,for simple cross sections. 
The procedure outlined above is basically a displacement method. One 

can also use a force approach for this problem. We start by expressing the 
shearing stresses in terms of a stress function //,so that the stress-equilibrium 
equation (Equation 11-11) is identically satisfied. An appropriate definition is 

3I12 - (X3 /1 l 

I I -/i.) 

013 --
C.X 2 

The shearing stresses for the i, v directions, shown in Fig. 11-3, follow directly 
from the definition equation 

aO 

(11-22)
at/i 

61,. 
a ; e, A 
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° Taking S 90 counterclockwise from the exterior normal direction, and noting 
that the stress boundary condition is ,, = 0, lead to the boundary condition 
for ¢J/, 

0 = const on S (11-23) 

We establish the differential equation for by requiring the warping function7 

4, to be continuous. First, we equate the expressions for a in terms of ¢ and it: 

'12 = = -3 (',,2
J 

- X3) 

(a) 
6'13 --1/.2 = -(4. 

J 
3 + 2) 

Now, for continuity, 

Operating on (a), we obtain 
4)t, 23 =Ot, 32 (b) 

V2 = -2 M1
J (c) 

It is convenient to express ¢fas 

J (11-24) 

The governing equations in terms of 7 aret 

M, a01 
6.12 -J- aX 

(l1--25) 
013 

d ax2 
and 

V2i = -2 (in A) 

1 = Ci (on boundary S) (11-26) 

Substituting (11-25) in the definition equation for Ml leads to the following 
expression for J: 

= - (X + X dA (a) 

Applying (10-81) to (a) and noting: that 

j;- xicC dS = Ai = area enclosed by the interior boundary curve, Si (b) 

~si = C,Ciconst 

t Equations (I 11-26) can be interpreted as the governing equations for an initially stretched 
membrane subjected to normal pressure. This interpretation is called the "membrane analogy." 
See Ref. 3. 

+The S direction is always taken such that n - S has the same sense as X2 - X,3. Then, the 
+S direction for an interior boundary is opposite to the + S direction for an exterior boundary 

since the direction for is reversed. This is the reason for the negative sign on the boundary integral. 



SEC. 11-2. THE PURE-TORSION PROBLEM 279278 TORSION-FLEXURE OF PRISMATIC MEMBERS CHAP. 11 

we can write Consider the closed curve shown in Fig. 11-4. The shearing strain yTs is 
J 2f dA + 2ZAiCi (11-27) given by 

Yis = aS2Y12 + YS3Y13 (a)
where V = 0 on the exterior boundary. 

To determine the constants Ci for the multiply connected case, we use the Using (11-9), we can write (a) as 

fact that at is continuous. This requires Y1s = k(ts24f, 2 4+as31t, 3 - X3 0a 2 + X2 aS3 ) 

i dS = O (11-28) (11-29) 
=l [k,~s~;

where p is the projection of the radius vector on the outward normal.t The
for an arbitrary closed curve in the cross section. magnitude of p is equal to the perpendicular distance from the origin to the 

X3 tangent. Integrating between points P, Q, we obtain 

s y1 dS- k(4, Q- , + 2ApQ) (11-30) 

where 

ApQ = I s p dS = sector area enclosed by the arc PQ and the 
radius vectors to P and Q. 

Finally, taking P = Q,J 

y1 s dS = 2klAv (11-31) 

where As denotes the area enclosed by the curve. Since a = Gy1j, we can 
write 

Ifls dS = 2GklA s = 2 As (11-32)
J 

Note that the + S direction for ( 1-32) is from X2 toward X3. Also, this result 
is independent of the location of the origin. 

Instead of using (11-9), we could have started with the fact that the cross
Fig. 11-3. Definition of n-s and -v directions. 

section rotates about the centroid. The displacement in the + S direction fol­
lows from Fig. 11-4:§ 

X3 us = 09,(! x 5is)= .)1P = klXlp (11-33) 

Substituting for us in 
I = S. 1 + I, S (11-34) 

and noting that ut = k t lead to (11-29). 
Using (11-22), we can write 

X2 (Tls = -- aq = J (on (11-35)an 

t This interpretation of p is valid only when S is directed from X2 to X3, i.e., counterclockwise 
for this case. 

+See Prob. 11-14 for an alternate derivation. 
§ This development applies for arbitrary choice of the +S direction. The sign of p is positive 

if a rotation about X, produces a translation in the +S direction. Equation (11-29) is used to 
Fig. 11-4. Graphical representation of sector area. determine the warping distribution once the shearing stress distribution is known. See Prob. 11-4. 
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Then, substituting for as in (11-32), we obtain 

afd S 2A 5 
(11-36) 

";c 

where n is the outward normal, As is the area enclosed by S, and the + S sense 

is from X2 to X3. This result is valid for an arbitrary closed curve in the cross 

section. We employ (11-36) to determine the values of Z)at the interior bound­

aries of a multiply connected cross section. 
It is of interest to determine the energy functions associated with pure tor­

sion. When the material is linearly elastic and there are no initial strains, the 
V = V* = Tc.strain and complementary energy densities are equal, i.e., 

We let . . . . 7, 

P =.i V dA = strain energy per unit length t11-t /) 
A 

The strain energy density is given by 

V= (f 2 + Y2K) (a) 

Substituting for y12, Y13 

V _-G2- [(, 2 - (4, ,3 + -X2) ] (b) 

and integrating (b) over the cross section, we obtain 

(11-38)V = GJk 2 

Since V* = V, and Mt = GJk,, it follows that 

(11-39)
V* | |f (r2 + a 3)dA

2 G I 2GJ 

--- 4-- * - ~X 1 

W1 A11 dXl
W + c-X d, 

Fig. 11-5. Differential element for determination of the rotational work. 

Instead of integrating the strain-energy density, we could have determined 

the work done by the moments acting on a differential element. Consider the 

element shown in Fig. 11- 5. The boundary forces acting on a face are statically 

equivalent to just a torsional moment. Also, the cross sections are rigid in 
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their plane and rotate about XI. The relative rotation of the faces is 

(1 +do ldxI - co = k dx (a) 

and the first-order work done by the external forces due to an increment in co1 

reduces to 
6WE = f PTAu dS = M1 Akl dx1 (b) 

Now, 
3WE = VT = J.FS 6T d x, dx2 d, = VP dx, (c) 

for an elastic body. Then, expanding J V, 

5V = d Ak 
dk 

= M k, (d) 

and it follows that 
dV 

dk, 

P = ½GJk2
2 

(11-40) 

11-3. APPROXIMATE SOLUTION OF THE TORSION PROBLEM FOR 

THIN-WALLED OPEN CROSS SECTIONS 

We consider first the rectangular cross section shown in Fig. 11-6. The exact 

solution for this problem is contained in numerous texts (e.g., see Art. 5-3 of 

Ref. 1) and therefore we will only summarize the results obtained. 

X3 

2 1 
,i I 

I 
d/2 

i I' 
5 X26 

d '2 

4 3 

11 t/2 --- t/2 --

Fig. 11-6. Notation for rectangular section. 
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When t < d, the maximum shearing stress a,,,, occurs at x2 = + t/2, x3 = 0 cross section. Later, we shall extend the results obtained for this case to an 

(points 5, 6). The exact expressions are arbitrary thin walled open cross section. The governing equations for a simply 
connected cross section are summarized below for convenience (see (11-26), 

dt3 (11-27)):
J = K 1 3 ,l3 { i _~ V2 = -2 (in A) 

k.1 -- J.t 
= 0 (on the boundary) 

tOmax= J K2t M a, 
1n =J cS (a)

where 
J = 2JS1/ dA 

_ °K = - 92 .=o-,l1 .... (2n + 1)2 tanh 2i 
where the S direction is 90 counterclockwise from the n direction.t Since t is 

8 1 1 small and at2, the shearing stress component in the thickness direction, must 

72 n.1 1 (2n + 1)2 cosh ,, 

2n+ 1 (d\
A=--2- t 

Values of KL, K 2 for d/t ranging from 1 to 10 are tabulated below: 
Id 2 

d/t K, K2 L 
1 0.422 0.675 6 X2 

2 .687 .930 
3 .789 .985 4 

4 .843 .997 
5 .873 .999 XI, 11I 

10 0.936 1.000 
Fig. 11-7. Warping function for a rectangular cross section. 

If t << d, we say the cross section is thin. The approximate solution for a 
vanish on the boundary faces, it is reasonable to assume (a12 = 0 at all points

thin rectangle is 
in the cross section. This corresponds to taking i/ independent of x 3. The 

J .. dt 3 
equations reduce to 

(r13 ~ 2---x 2 = 2Gkx 2 dx22;dPX = 2 
(b)(11-42) 

at X2X3C p = 0 at x2 = + 
2,-.2 Solving (b), we obtain 

2 
t 

4(We take d/t = o in the exact solution.) The shearing stress 13 varies linearly 
= -- x 2 + _­

across the thickness and 
J = 2d '2 dx 2 = d 3 

(c)
I max M 

| 
3M 1- M1-Jmx tt a13 =-

8M 
- 2---x 2 

J aX 2 J 
A view of the warped cross section is shown in Fig. 11-7. 

Since the stress function approach is quite convenient for the analysis of t This applies for X3 counterclockwise from X2. The general requirement is the n - S sense 
must coincide with the X2-X3 sense.thin-walled cross sections, we illustrate its application to a thin rectangular 
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The expression for i/; developed above must be corrected near the ends 
(x3 = d/2) since it does not satisfy the boundary condition, 

d (d)
C = 0 at X = . 

This will lead to a, 2 A 0 near the ends, but will have a negligible effect on J 

and unax. Actually, the moment due to the approximate linear expansion for 

,, is equal to only one half the applied moment:3

(M)l = dd dtx2 ( 3 M1 
(e) 

33 
,] t2 

The corrective stress system ( 2) carries M1,/2. This is reasonable since, even 

though ai2 is small in comparison to omax, its moment arm is large. 

i ,. 

i 

07 

I 

I I 

~X(1 ~~~~I%~~~ 2 

Fig. 11-8. Notation for thin-walled open cross section. 

We consider next the arbitrary thin-walled open cross section shown in 

Fig. 11-8. The S curve defines the centerline (bisects the thickness) and the n 
2 

direction is normal to S. We assume a,, = 0 and take I = - n + t2/4. This 

corresponds to using the solution for the thin rectangle and is reasonable when 

S is a smooth curve. The resulting expressions for J and rs are 
3 = s3 t dS 

M1 
cas 2 n (11-43) 

G k t m 
61 S, max = max l ax 
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The results for a single thin rectangle are also applied to a cross section 
consisting of thin rectangular elements. Let di, t denote the length and thickness 
of element i. We take J as 

J = i (11-44)4Z I. nt 

As an illustration, consider the symmetrical section shown in Fig. 11-9. Apply­
ing (11-44), we obtain 

J = (2b,. t + dwt3.) 

The maximum shearing stress in the center zone of an element is taken as 

U111=tj= Gkiti (11-45)i 

In general, there is a stress concentration at a reentrant corner (e.g., point A in 
Fig. 11-9) which depends on the ratio of fillet radius to thickness. For the case 

! _t-__ ibf 
tf 

-T 

d,, 

Fig. 11-9. Symmetrical wide-flange section. 

of an angle having equal flange thicknesses, the formulat 

Gfilet A , 1 + 4r) (11-46) 

where rf is the fillet radius and u, is given by (14-45), gives good results for 

Ir/t < 0.3. The stress increase can be significant for small values of rf/t. For 

example, ufilet = 3.5,, for rf = 0.1t. Numerical procedures such as finite 

differences or the finite element method + must be resorted to in order to obtain 

exact solutions for irregular sections. 

t See Ref. 2 and Appendix of Ref. 9. 
+See Ref. 4. 
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11-4. APPROXIMATE SOLUTION OF THE TORSION PROBLEM FOR satisfies the one-dimensional compatibility equation and boundary conditions,
THIN-WALLED CLOSED CROSS SECTIONS 

The stress function method is generally used to analyze thin-walled closed 2 -2 
oncross sections. For convenience, the governing equations are summarized below 

(see (11-26), (11-27), (11-36)): i = at n = t/2 
(a)I = C, at n = -t/2

V2 = -2 (in A) and is a reasonable approximation when S is a smooth curve. 
i; =0 (on the exterior boundary) Differentiating ti, 
I = Ci (on the interior boundary, Si) CIf -2 - - -- = 0 (b)J = 2jfq dA + 2CCA (A = area enclosed by Si) 0s1 t Os 

Mt a8C (n is the outward normal for S and substituting (b) in the expressions for the shearing stress components lead to 
2s1 J efn and +S sense from X,2 toward X3) 

(in = 0 

dS = -2As 
aIJ., = 0 2n (11-48) 

We consider first the single cell shown in Fig. 11-10. The S 1 curve defines = Is + ls 

the centerline. Since there is an interior boundary, we have to add a term The tangential shearing stress varies linearly over the thickness and its average 
value is ao,. We let q be the shear stress resultant per unit length along S, 
positive when pointing in the + S direction,n 

q - f/2 o'is dl (11-49) 
- t/2 

and call q the shearflow. Substituting for aUs, we find 

Mq 1q = --i C1 = aest (11-50) 

The additional shearing stress due to the interior boundary (i.e., closed cell)
corresponds to a constant shear flow around the cell. One can readily verifyt 
that the distribution, q = const, is statically equivalent to only a torsional 
moment, M , given by 

M'1 = 2qA , (11-51) 

The torsional constant is determined from 

'S). O1cI J = 2dA 2C 1A1l M1/Gk (a) 
Sect. E-E 

Substituting for i using (11-47), we obtain 

j = Jo + JCFig. 11-10. Single closed cell. 
(11-52) 

LLIinvolving C to the approximate expression for t used for the open section. Jo = _S f sISri t3 (IdS J = 2C1A, 

We take i as Equation (a) was established by substituting for the shearing stresses in terms
4= O+ Tc of in the definition equation for Ml and then transforming the integrand. We 

t2 2n) (11-47) could have arrived at (11-52) by first expressing the total torsional moment as 
Ml = M + MC (11-53) 

where f7c represents the contribution of the interior boundary. This expression 
t See Prob. 11-5. 
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where M" is the open section contribution and M' is due to the closure. Next, 
we write 

° M1 = Gk 1J Mi = Gk1 J M = GklJc (11-54) 
Then, 

J = Jo + c (11-55) 
and it follows that 

Jo Jc 
M = M, Ml -Ml (11-56) 

Finally, using (11-51), we can express Jc as 

Jc = M'/(M/J) = 2A,,[q/(Ml/J)] (11-57) 

This result shows that we should work with a modified shear flow, 

C = cL/(M/J) (11-58) 

rather than with the actual shear flow. Note that C C for the single cell. 
It remains to determine C1 by enforcing continuity of the warping function 

on the centerline curve. Applying (11-32) to S, we have 

asls dS= 2 M A, (11-59)
I.3 iJ 

Substituting for a/is, Sc' 

els = q/t .. •.
J t 

leads tot 
2A,cl (11-60)

SC1dS/t 

One should note that C1 is a property of the cross section. Once C1 is known, 
we can evaluate .1from (11-52) and the shearing stress from 

s = -j-- +t+ (11-61) 

·IIV�m�·L� ·-
Consider the rectangular section shown. The thickness is constant and a, are centerline 

Consider the rectangular section shown. The thickness is constant and a, h are centerline 

dimensions. The various cross-sectional properties are 

= ob dS 2(a - h)A1
J t t 

abt 
C1 ab Jo= 3t[2(a + )] 

2a2b2t 

t See Prob. 11-6. 
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We express J as 

J = JC Y( + 2 

For this section, 

il = 3 ( ) J (t ) 1+--) 
We consider a > b. Then, 

o(_;/ 
The section is said to be thin-walled when t <<b. In this case, it is reasonable to neglect 
Jdvs. Jc. 

�� Fig. Ell-1 

+s,Iq 

t b4 b a| 

The stress follows from (11-61), 

J t Cl tsl + 

where, for this section, 

t= 1+b) t= 

If the section is thin-walled, we can neglect the contribution of {r's, i.e., we can take 

Ml 
(lS ~4 Ors = q/t = -2

2Acdt 

We consider next the section shown in Fig. 11--11. Rather than work with 
q/, it is more convenient to work with the shear flows for the segments. We 
number the closed cells consecutively and take the + S sense to coincide with 
the X2-X 3 sense. The + S sense for the open segments is arbitrary. We define 
qj as the shear flow for cell j and write 

qj = 
M1 

C. 
(11-62)i 

Note that Cj is the value of FIon the interior boundary of cell j and the shear 
flow is constant along a segment. The total shear flow distribution is obtained 
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Substituting for Mc,t 

M = 2qlA 1 + 2q 2A2 

= 2 (C1A 1 + C2A2 ) (c) 

in (b) leads to 
JC = 2(AlC 1 + A2 C2 ) (11-66) 

The constants Ci are obtained by enforcing continuity of ,t on the centerline 
of each cell. This can also be interpreted as requiring each cell to have the same 
twist deformation, k: 

M1J i= 1,2 (11-67) 

Substituting for q in terms of C and letting
qI, S1 

.dS-, dS " dS 
522 = _ (/12 = (21 -j (11-68)k_ X2 

Ml Fig. 11-11. Cross section consisting of closed cells 
2 t c' 

and open segments; Al and A, are centerline areas. 
wvhere a1 2 involves the segment common to cells 1, 2, the continuity equations
take the following form: 

by superimposing the individual cell flows. Then, the shear flow in the segment a1 1C1 + al 2C2 = 2A1 (11-69)
common to cells i and j is the difference between q and qj. The sign depends al 2 CL + a22 C2 = 2A2 

on the sense of S. We solve this system of equations for C, C2, then determine J with (11-66), 

q = ql - q2 - j-(C - C2) for S, 
and finally evaluate the stresses with (11 --64). 

J (11-63) We can represent the governing equations in compact form by introducing 
q = q2 - q for S2 

matrix notation. The form of the equations suggests that we define 

The shearing stress is assumed to vary linearly over the thickness. For con- C = {C A _ Al a = alt a1 2] (11-70)venience, we drop the subscripts on als and write the limiting values as IAJ -La 2 a 22 
With this notation,

CT= +O' - c 

where Jc = 2A'C 
(11-71)aC = 2A 

= 
J 

t 
c 

qt =M C 1 (11-64) Substituting for A in the expression for Jc,q J 

It remains to determine C1, C2, and J. J = CaC (a) 
We have shown (see (11-55)) that and noting that Jc is positive, we conclude that a must be positive definite. 

J = Jo + Jc (a) The complementary energy per unit length along the centroidal axis is defined 
by (11-39),

and 
Jc dA-

Mc = 
J , (b) 

V*= 2G ulJsdA 2GJ (b) 

We determine J' from 
t We apply (11-51) to each cell. o = E Ift 3 dS (11-65) t See (11-32). 

segments 
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Since aus varies linearly over the thickness, the open and closed stress dis­
tributions are uncoupled, i.e., we can write 

FV* = *Iop,,n + VldI toq 
where 

= 2*2 GJZk = G J) i ) 
(11-72) 

V*] =· 1 f q-,d- (qaq) 

M2G2 

It is reasonable to neglect the open contribution when the section is thin-walled. 

Example 11-2 

The open-section torsional constant for the section shown is 

Jo = . [et3 + 2(b + d + hf)t1 +ht2] (a) 

Applying (11-68) to this section, we obtain 

A1 = ihd 

A2 = hb 

all = -( + 2d) +--- (b) 

LI 
= ­a1 2 

t2 

1 h 
a22 = -( + 2b) + -­

tl t2 

and the following equations for C1, C2 and J. 

1 
t2 

+ 2 
h6 

C1 - C 
t 

2 = 2 dt 

(c) 
( 2) J C2 = 2bt) 

JC = 2h(Ctd + C2b) 
J = j0 + Jc 

Finally, the shear stress intensities in the various segments are 

C 
_- m1. t 4+- 2 

(d) 

t2M° (C2 

M1 
0'3 = .1 t3 

SEC. 11-5. TORSION-FLEXURE WITH UNRESTRAINED WARPING 

t3

_L 
-T 

X3 
l 

Oi em) I 
i_ Lt -1 I -]Ii 

Ml 

When d = b, 

C1 = C2 = 2bt (e)
b 

1 t 2­

and the section functions as a single cell with respect to shear flow. 

11-5. TORSION-FLEXURE WITH UNRESTRAINED WARPING 

Consider the prismatic member shown in Fig. 11-12. There arc no boundary 
forces acting on the cylindrical surface. The distribution of boundary forces 

X2 

P2L ( X1 

tP2 
P2 I'i 

is---------------- 1. --------- 1-----~ 

Fig. 11-12. Prismatic member in shear loading. 

on the cross section at x = L is statically equivalent to a single force P212 , 

acting at the centroid. Also, the end cross sections are not restrained against 

warping, i.e., out-of-plane displacement. In what follows, we describe St. 

Venant's torsion-flexure formulation for this problem. Later, in Chapter 13, 

we shall modify the theory to include restraint against warping. 
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We start by postulating expansions for the stresses. The stress resultants and deformation. Substituting for the stresses in (10-74), we obtain 
couples required for equilibrium at x1 are 

1 P2 
81 = l, 1 =- EI al -

E 113 
(L - X13X2F = F3 = M1 = M2 = 0 El 

F2 = P2 (a) 
-

M3 = P2(L - xl) E2 = 2, 2 = -
E 

11 = 
EI 3 

(L - X1)x2 (a) 

vlP 2Introducing (a) in the definition equations for the stress resultants and couples 
s 3 = 3,3 = 

V1 
-1 = 3 (L - X)X2leads to the following conditions on the stresses: 

=SX 3 11 dA = 712 = U1, 2 + U2 , 1 -- 712 = function of x2 , x 3fSo1 1 cIA = 
G1 

fjx 2 l1 dA = P(L - ) 

ff12 dA = P2 (b) 7/13 = u1, 3 + 3,l =-a 
G1 1 3 = function of x 2, x3 

Jff0 3 dA = 0 
723 = 112, 3 + U3,2 0= 

ff(x2 o- 1 3 - X3c 1 2)dA = o 

The expansion, Integrating the first three equations leads to 

M3 P2 1 
611 = -- CX2- -- (Y 1)X2 (c) u1 = P 2 (Lx - -- X)-T) 2 + fi(X 2 , X3)13 13 

satisfies the first three conditions (i.e., F1 , M, 3 ) identically since 
U2 = ---

V1P2 (L - x1 )x
2 + f 2(x.I, x3) (b)

2EI 3 

jJx 2 dA = jfx 2x3 dA = 0 (d) v1P2 
JXX22 dA = 13 UI3= k- (L - X)X + J3 (X1, x 2 )

El3 
2 3 

The last three conditions (i.e., F2, F3, M1) require a12, 013 to be independent The functions fl, f 2, f3 are determined by substituting (b) in the last three 
of xI. This suggests that we consider the following postulated stress behavior: equations. We omit the details and just list the resulting expressions, which 

involve seven constants: 
M3 'P2 

11 - - (L l)XG 
I3 - 3 ft = C1 + C5 x 2 + C6X3 + 4()(x 2, x3 ) 

012 = 0712(X2, X3) (11-73) f2 = C2 - C5 x 1 + C4 x 3 - kX 1 X3 

13 = C1 3(xC X3), 2 IP2 (L- x)x 23 + P2 
(c) 

(33 -= 23 = 0 2E 3= 2E 1 3X2022 -= 
13 = C3 - C6X1 - C4X2 + kIX 2 

Introducing (11-73) in the stress-equilibrium equations and stress boundary 
conditions for the cylindrical surface leads to The constants C1, C2, ... , C6 are associated with rigid body motion and k, 

is associated with the twist deformation.' 
P2 We consider the following displacement boundary conditions: 021,2 + 31. 3 + -- X2 = 0 (in A)
13 (11-74) 

0
Xn2021 + (n3 31 == 0 (on S) 1. The origin is fixed: 

U1 -= U2 = 113 = 0 at (0, 0, 0) 
At this point, we can either introduce a stress function or express (11-74) in 
terms of a warping function. We will describe the latter approach first. 2. A line element oh the centroidal axis at the origin is fixed: 

The displacements can be found by integrating the stress-displacement rela­
tions. We suppose the material is linearly elastic, isotropic with respect to the U2, 1 = U3,1 = 0 at (O, 0, O) 

X 2-X 3 plane, and orthotropic with respect to the axial direction. This is a 
convenient way of keeping track of the coupling between axial and in-plane tSee Eq. (11-5). 



297 
296 -TORSION-FLEXURE OF PRISMATIC MEMBERS CHAP. 11 

3. A line element on the X2 axis at the origin is fixed with respect to rotation 
in the X2 -X3 plane: 

u2, 3 0 at (0, 0, 0) 

These conditions correspond to the "fixed-end" case and are sufficient to 
eliminate the rigid body terms. The final displacement expressions are 

U _ 2 (Lx - I)x 2 + +(X2, X3) 
V 1P2 2 P(Lx 

2 =2- (L - x)(x2 - x) + 2 L x2 - 1 X 1X3 (11-75) 

vIP2
'3 EI3 (L - x 1)x 2x 3 +klX1X2Elj3


One step remains, namely, to satisfy the equilibrium equation and boundary 
condition. The transverse shearing stresses are given by 

1 012 = , 2 - k 3 + VP (X X2)
G 1 ( +k - 2E1 3 

2 

(11-76) 
I 1 (3, 3 + 1X2 - ---- X2 C3


Ij El 3L: 

Substituting for the stresses in (11-74), we obtain the following differential 
equation and boundary condition for 4: 

V2q =yj +/vG x 2 (in A))2x + [ (x 2 j (11-77) 

The form of the above equations suggests that we express 0 as 

2 - IV P21q5 k1qo, + G11T02r - x2) + El,3 G'2d + 4-)3 
(11-78)I , 

where ¢t is the warping function for pure torsion and k2,- and 0b2d are harmonic 
functions which define the warping due to flexure. Substituting for ¢7 leads 
to the following boundary conditions for 2v,and i2d: 

o32r 1 2 
-a- = - anC

2n 2 X2 

a42d _ /X 2 ± 3 (11-79)
NU = _ (an2( 2) + o,3.x2 x3 

One can show, by using (11-15), that 

- dS = 0 

(dS = 0 
0on


SEC. 11-5. TORSION-FLEXURE WITH UNRESTRAINED WARPING 

and therefore the formulation is consistent. Terms involving v/E are due to 
in-plane deformation, i.e., deformation in the plane of the cross section, and 
setting v/lE = corresponds to assuming the cross section is rigid. Then, t2r 

defines the flexural warping for a rigid cross section and 'k2d represents the 
correction due to in-plane deformation. 

The shearing stress is obtained by substituting for in (11-76). We write 
the result as 

al = lj,t + Cl1j,r + Ulj,d ( = 2, 3) (11-80) 
where au,, is the pure-torsion distribution and oj. , a1j, d are flexural distri­

4butions corresponding to q2,. and ( 2d: 

(U12,r = 
I3 

(2r,2 - X2) 

P2
(13, r - I q2r, 3 

(11-81) 
G2, d (- -E--) [02d.2 + I-( + x2)] 

7i3, d -i= L) PI (2d, X )3 - X2 3

The pure torsion distribution is statically equivalent to only a torsional mo­
ment, MIt, = Glk 1 J. One can show thatt 

ffa2, r dA = P2 .[f.l3,rdA = 0 
ffiJ1 2,d dA = 0 Jfcl 3 ddA = 0 

(11-82) 

Note that the shear stress due to in-plane deformation does not contribute 
to P2. 

The total torsional moment consists of a pure torsion term and two flexural 
terms, 

2dM 1 = GlklJ 
P2(3 

+ + SS2 (11-83),- G, 
where 

S2 = (fxJx - 3,02r,,2 + x202r. 3 )dA3 

S2d = f(--X2X3 - X3 --X2¢2d, 3 - X30 2 d, 2)dA 

Since q52r and q02d depend only on the shape of the cross section, it follows that 
S2, and S2d are properties of the cross section. For convenience, we let 

X3 = - S2 +E -- S2d- (11-84) 
and (11-83) reduces to 

M = GjklJ - P2~ 3 (11-85) 
Now, - P2 2X is the statically equivalent torsional moment at the centroid due3 

f See Prob. 11-10. 
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to the flexural shear stress distribution. Then, x3 defines the location of the for this case. Finally, it follows thatt S2r,, 0 and S, O. Generalizing thisresultant of the flexural shear stress distribution with respect to the centroid. result, we can state: 
The twist deformation is determined from The resultant of the shear stress distribution due to flexure in the Xj

direction passes through the centroid when Xj is an axis of symmetry
(11-86)

G1J for the cross section. 

where Ml is the applied torsional moment with respect to the centroid. If P2 x 3
is applied at the centroid, Ml = 0, and 

-3 
k = -P2 (a)

G1J 

The cross section will twist unless . 3 = 0. Suppose P2 has an eccentricity e3. 
In this case (see Fig. 11-13), M = - e 3P2, and 

kl -]P (:V3 e-3) (b)
GJForfexuralonetomustour,e3equal 

For fexure alone to occur, e must equal x3. 
X2 

X3 

Fig. 11-14. Coordinates of the shear center. 

We consider next the case where the member is subjected to P2, P3 and Ml 
at the right end (see Fig. 11-14). The governing equations for the P3 loading 
can be obtained by transforming the equations for the P2 case according to 

X2 -* X3 - X2X3 

X2 U2 U3 83 - 4U2 
(a)a a8 O 0 

8x2 x3 Ox3 8x 2 

-U1 2 3 1 13 -a 1 2 

13 ' I2 
Fig. 11-13. Notation for eccentric load. Two additional flexural warping functions must be determined. The expres­

sions defining the flexural shear stress distributions due to P3 are 
Whether twist occurs depends on the relative eccentricity, e3 - 3. Now, to 

P3find X3, one must determine S2, and S2d . This involves solving two second­ 012,r = 3r, 2 
I,order partial differential equations. Exact solutions can be obtained for simple 

cross sections. In the section following, we present the exact solution for a P3 
013, r (t( 3 r, 3 -X23)rectangular cross section. If the section is irregular, one must resort to such 

numerical procedures as finite differences to solve the equations. In Sec. 11-7, vlG 1 P3 
(11-87) 

we describe an approximate procedure for determining the flexural shear stress [ 

distribution in thin walled cross sections. 
123 d =E 2 3d.2 - 2 X3 

Suppose the cross section is symmetrical with respect to the X2 axis. Then, 3 vd=G 1 P [-(X2 ±3)+ 3d, 3]+ 

cn,2 is an even function of x 3 and a,3 is an odd function of x 3. The form of the 
E 12 

boundary conditions (11-79) requires (t2 r and sb2d to be even functions of x3 t 5.2 is even in x3, ),3 is odd in x3, and S2,, S2d involve only integrals of odd functions ofx 3. 
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where 3r, k3d are harmonic functionst satisfying the following boundary 
conditions: 2E V I(2 I3 

(11-93) 

03r, 2 
Now, the total shearing stress is the sum of three terms: an 2 

(11-88) 
4I'3d = zn'23 + X230 1. t, a pure torsional distribution due to MT 

_ ==n2X2X3 - Xn3 2 - ) 2. YF2, the flexural distribution due to F 2C11 2 
3. ,,3 the flexural distribution due to F3 

Note that the distribution due to 03d leads to o shearing stress resultants. Each of the flexural distributions can be further subdivided into-
Finally, the total normal stress is given by 

1. eF, the distribution corresponding to a rigid cross section (defined67, 
t 2 = M3(L P3+ 

(11-89) by qkjr) 
12- 13 - - 2 13 X2 2. Cd, Fj, the distribution associated with in-plane deformation of the cross 

Superimposing the shearing stresses and evaluating the torsional moment, section (defined by (jd) 

we obtain We combine the flexural distributions and express the total stress as 
M1 = GklJ - P2-33 ,. + P3. 2 (11-90) 

612 = 012,t + 12,r + 12.d (a)
where x2 defines the location of the resultant of the flexural shear stress distri- 613 = 13.t + 13,r + '13.d 

bution due to P3. One can interpret 2, X3 as the coordinates of a point, 
called the shear center. The required twist follows from (11-90): where the various terms are defined by (11-81) and (11-87). For example, 

~ 

Vlr 

/V2 1 2) ± 3 (b)
612, r =3(f2r, 2 -1x2 + -- 3, 2k =G (Ml + P2 3- P3-2) (a) 

Since (see Fig. 11-14) The complementary energy due to pure torsion follows from (11-38) and 

(11-92):M1 + P2 3 - P3 X2 (11-91) 
I F2 

= the applied moment with respect to the shear center = MT c3, =,,,, 2GJ 
(11-94) 

we can write (a) as 
k = MT (11-92) We express u1j.,I

G1 J 

To determine the twist deformation (and the resulting torsional stresses), one 
612, r 13 2r. 2 + -" 

3
3r, 2 

F3 =+ 

must work with the torsional moment with respect to the shear center, not the F2 F3 -
(11-95) 

centroid. For no twist, the applied force must pass through the shear center. 613, r = - 02r, 3 4 --L 3r, 3 
13 12 

In general, the shear center lies on an axis of symmetry. If the cross section where 
is completely symmetrical, the shear center coincides with the centroid. 2r = )2 r - X2 43r = 3r - TX3 

It is of interest to determine the complementary energy associated with 
torsion-flexure. The only finite stress components are a , a12, and 613. Then Expanding (a22, r + Uc13, r) and integrating over the cross section, we obtainj-

V* reduces to F2 2F2 F3 F3 
12fr ± 613 ,r)dA = _+ +

*= 2 61 ± 2 ±+ i 2 (a) A2 A23 A3 

A j # k 

The contribution from a 1 follows directly by substituting (11 -89) and using Aj
1 1 

k 
i2, 2 +~J~r, )dA = xj~j, dAn (11-96)(~) I1~.1 j, k = 2, 3k 

the definition equations for I2, 13. fJ
t The total flexural warping function for P3 is -A_ = I (752r, 2k3r, 2 + 2, 343, 3)dA = I3 X3 /2 r dA 

¢ = X 3) + E +3d 1X3) t See Prob. 11-tl. 
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The coupling term, 1/A23, vanishes when the cross section has an axis of In the engineering theory of flexural shear stress distribution, the cross section 
Isymmetry. is considered to be rigid, i.e., the distribution due to in-plane deformation is 
iWe consider next the coupling between , and a., . i neglected. The consistent continuity condition on the flexural shearing stress 
11
 is 

ff(1 2, t1 2 , r + U13 , tI 3 ,,.)dA s ils dS = 0 (11-100) 

_= MJj[(¢ - X3) | I3r,2r,2 + 2 One can take the +S direction as either clockwise or counterclockwise. By 
definition, the positive sense for os coincides with the - S direction. 

+ (t, 3 + X2) (r 2 2r, 3+ 2 3r 3)]dA 11-6. EXACT FLEXURAL SHEAR STRESS DISTRIBUTION FOR A 
RECTANGULAR CROSS SECTION 

- MT F2, + % .3r[(2t,Z - X3).n2 + (h. 3 + 2),,3dS (11-97) We consider the problem of determining the exact shear stress distribution 
due to F2 for the rectangular cross section shown in Fig. 11-15. For con-

-J i 2r + FI 3" V2) , dA = 0 venience, we first list the governing equations: 

The remaining terms involve a, d, the shearing stress distribution due to in­
plane deformation of the cross section. We' will not attempt to expand these 

X2 

terms since we are interested primarily in the rigid cross section case. 
Summarizing, the complementary energy for flexure-torsion with unre­

strained warping is given by 

_-*1 7M2 M2 I IF F2 F3 11 (11-98)/V, = - + + 
Mi2 

+- -_ + 2- 
2E- 12 I ,1 2GJJ 2G1 \A2 A2 3 A 3 / 

+ terms involving vl/E 
_Id3 

where MT = M1 + F2x3 - F3 2. We introduce the assumption of negligible 
in-plane deformation by setting v,/E = 0. Similarly, we introduce the assump- X3 12 = 1­
tion of negligible warping due to flexure (2r ' 0, 1)3r, 0) by setting 1/A = 

A =dt 
1/A 2 = 1/A = 0.2 3 

In Sec. 11-7, we develop an approximate procedure, called the engineering 
theory, for determining the flexural shear stress distribution, which is based 
upon integrating the stress-equilibrium equation directly. This approach is 
similar to the torsional stress analysis procedure described in the previous 
section. Since the shear stress distribution is statically indeterminate when the 
cross section is closed, the force redundants have to be determined by requiring - t/2 - t/2
the warping function to be continuous. For pure torsion, continuity requires 
(see (11-32)) Fig. 11-15. Notation for rectangular cross section. 

s 1 s, dS = 2G1klAs (a) 

where the integration is carried out in the X2-X 3 sense around S, and As is the 1. Warping functions 
area enclosed by S. To establish the continuity conditions for flexure, we 
operate on (11-81) and (11 -47). There are four requirements: F;2 

2 
vlF 2 (:2d + '.C23)= 1I- (q~2r-- - X2) + E 

¢jr => S (IS, r)Fj dS = 0 j =- 2, 3 2 2 
V )2r - 0 V 2 d = 0 

,. 102d (5,1 d)F2 dS - fI, ,P 
As,

j x3 dA 
(11-99) On l:(n2X2

2 

.3d ( IS, d)F3 dS = 2vG 1P3 J dA 0¢02d -n2 22 + X3 + 06n3X2X 3
2 4 

2 
aO 

n2d 
°Cw 

2 

2 ) ± cs3x2x 3 
As 
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2. Shearing stresses where f is an harmonic function. 
tions expressed in terms of f are 

The shearing stresses and boundary condi­

aF,122 (I3 
- x2) ±GF 

El3 
2 2± + (x + X2)] 

U1 2, d = 
vlG1 12

E (3 
2 

J 2) 

a13 = 
13 

(2r, 3)+ -(2d,3
El 3 

- X2X3) 
Cr13 , d= 

v1G1E 
E 

F2 

13 
(-f 3) 

(c) 

and 
Determinationof 2,. d 

The boundary conditions for c(2 are f, 2 = x3 at x2 = 2+2 (d) 

(2r, 2= -(2 at X2 = ( 
f3 =0 atx3 

t 
+ 

(a) It remains to solve V2f = 0 subject to (d). 
(2r, 3 = 0 at x 3 = +-- Since the cross section is symmetrical, f must be an even function of X3 and 

an odd function of x2. We express f as 
We can take the solution as 

P2r = d 2 (b) f = Box2 + S 
n=12, .... 

Bn cos (2-_ 3 
t 

sinh (2n2 
t _ 

(e) 

The corresponding stresses and warping function are This expansion satisfies V2 f = 0 and the boundary condition at x 3 = ±t/2. 

(2r 

012,r 

= ?,
02r02r 
F2 
2 

, 3 -Xx2=6- 2 2 
2 
4 - - ) 

X2iX 

(11-101) 

The remaining boundary condition requires 

Bo + Bn 2 cosh cos--
n= l1, 2 '.. . 't 

= ( 2 3< ±)2· (f) 

a1 3 ,r = 0 Expanding x 2 in a Fourier cosine series and equating coefficients leads to 

One can readily show that t 
2 

a1 2,,r dA =_ F2 

Finally, we evaluate 1./A2 using (11-96): 

12 

1 ( t )3 (- 0 

(g) 

I 2I 
12 

22r 
X202, 

dA 
61 

....
5A 

(11-102) 
cosh 

t 

The final expressions for the shearing stresses are 

Determination of 02d 

The boundary conditions for 02d are 

02d,2 = -

t 
02d, 3 = -'(222 

+ Xj at x 2 = 

atx 3 = 

Now, the form of (a) suggests that we express 0(2d as 

d 
+ 

t 

2 

(a) 

'12,d 

U13, d = 

iG 1l F2 

E 13 

v1G1 F2 

E 13 

(2n 

(t2 

n= 1 2,... 

I 
n=l, 2... 

cosh 2n7x2 

(--1)"2 co shI-..
,,2s O t \ c s mdoshl t~ / 

2nxx 1
(_ 1)n sinh t- 2nx 3 

2 sin 
11 cosh n7d t 

1.cosh 
t 

I 
(1t -103) 

-(P2d = -2dx23x3 -- ? 2X3 f(x 2 , x3) (b) This system is statically equivalent to zero. 
1 
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To investigate the error involved in assuming the cross section is rigid, we 
note that the maximum value of l12,r occurs at x 2 = 0: 

F2 d2 (a),max 8131 

Specializing l12, d for x2 = 0, 

vlG 1 F2 d2 
2n17X 3wher12,eJ - e C. COS -- (b)

(2d)x2= E 13 4 n=1.2 ... 

where 

C, =- I
An cotsh ,, 

(c)
nid 

/2-

Now, C, decreases rapidly with n. Retaining only the first term in (b) leads to the 
following error estimate, 

(2v & 4 

6'12, FL' t 
(d) 

Results for a representative range of d/t and isotropic material are listed below. 
They show that it is reasonable to neglect the corrective stress system for a 
rectangular cross section. The error decreases as the section becomes thinner, 
i.e., as d/t becomes large with respect to unity: 

dlt 1612,/dl6112.E 

2 0.024 
1 0.092 
2 0.122 

11-7. ENGINEERING THEORY OF FLEXURAL SHEAR STRESS 
DISTRIBUTION IN THIN-WALLED CROSS SECTIONS 

The "exact" solution of the flexure problem involves solving four second­
order artial differential euations. If one a.sumes the cros sectinn i riid 
with respect to in-plane deformation, only two equations have to be solved. 
Even in this case, solutions can be found for only simple cross sections. When 
the cross section is irregular, one must resort to a numerical procedure such as 
finite differences or, alternatively, introduce simplifying assumptions as to the 
stress distribution. In what follows, we describe the latter approach for a thin­
walled cross section. The resulting theory is generally called the engineering
theory of shear stress. We apply the engineering theory to typical cross sections 

_.i__l__^_____�_X____L111_1_1 I__ 

SEC. 11-7. ENGINEERING THEORY OF FLEXURAL SHEAR STRESS 

and also illustrate the determination of the shear center and the energy co­
efficients, 1/A ( = 2, 3).

Figure 11-16 shows a segment defined by cutting planes at x and x + dx1. 
Since the cross section is thin-walled, it is reasonable to assume that the normal 
stress, ol , is constant through the thickness and to neglect a,,. Also, we work 

x 3 

qdxl 

qdsis 
){l 

/ aX [)(XI jI1Ltd; 

x1 

Fig. 11-16. Differential thin-walled segment. 

with the shear flow, q, rather than with 5s. Integrating the axial force-equi-
librium equation, 

Oq a 
;q + ax, ( 1, t)= 0 (a)alS 1 

with respect to S, we obtain the following expression for q, 

C iS 
m qA - JS ,1I t dS (11-104) 

Equation (11-104) is the starting point for the engineering theory of shear 
stress distribution. Once the variation of over the cross section is known, 
we can evaluate q. Now, we have shown that the normal stress varies linearly 
over the cross section when the member is subjected to a constant shear (F2, F3 
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constant) and the end sections can warp freely. Noting that the member is 
prismatic, the derivative of or for this case is 

al1 1 X3 dM 2 x2 dM 3 

ax1 I2 dxl 13 dxl 

F3 F2
X3 ±- x 

=2 '3 

and (11-104) expands to 

q = qA - - X2t dS - -| X3t dS (b) 
3SA 2I A 

The integrals represent the moment of the segmental area with respect to X 2, X3 
and are generally denoted by Q2, Q3: 

Q2 = SAXn3t dS = Q2(S, S) 
S (11-105) 

Q3 - s2tx dS = Q3(S, SA)
SA 

With this notation, (b) simplifies to 

q = qA -
F2 3 -

F3 Q2 (11-106) 
I, 1, 

Equation (11-106) defines the shear flow distribution for the case of negligible 
restraint against warping, i.e., for a linear variation in normal stress. Note 
that q is positive when pointing in the + S direction. 

We consider first the open section shown in Fig. 11-17. The end faces are 
unstressed, i.e., 

qA = qB = 0 (a) 

Taking the origin for S at A, (11-106) reduces to 

q = 
F2 Q3 -

F3 Q2 
13 I2 (11-107) 

Q3 = f x2 tdS Q2 = X3t dS 

We determine Q2, Q3 and then combine according to (11-107). 
The shearing stress distribution corresponding to F2, 

F2q = -- 3 (a)
13 

satisfies 
JScrt 2 dA = F2 (b) 
fOf13 dA = 0 

identically. To show this, we expand , 

4=ql = (qs2)+ (qgs3)i3 (c)1 2 

SEC. 11-7. ENGINEERING THEORY OF FLEXURAL SHEAR STRESS 

X3 

F3i 3x2 1 ScX2h 

B I Shear center 

- " +S~ F2i2 

' 1 3 

? X2II 

Centroid 

Fig. 11-17. Flexural shear flow-open segment. 

and evaluate the shear stress resultants: 

J}'ui2dA = f qrs2 dS = _ .2s2Q 3 dS 
(d) 

i 3 dA = f qs 3 dS- -- $ 3 Q3 dS 

Equation (b) requires 

JO S2Q3 = -3 

(e) 
ccas3 Q3 dS = 0 

Now, 

°cj - dS (f) 

Integrating (e) by parts and noting that X 2, X 3 are principal centroidal axes,t-
we obtain iSB XS2Q3dS = [x2Q3]J - " x2 t dS = -I 3 (g) 

f as3Q3dS = [ 3Q3] - S x2x 3t dS = 

The shear stress distribution predicted by (a) is statically equivalent to a 
force F272. To determine the location of its line of action,+ we evaluate the 
moment with respect to a convenient moment center. By applying the same 
argument, one can show that the shear flow corresponding to F3 is statically 

t See Eq. (11-2). 
+See Prob. 11-12. 
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equivalent to a force, F313 . The intersection of the lines of action of the two X2 
Fig. Ell-4A 

resultants is the shear center for the cross section (see Fig. 11-17). 

Irnmrr·� =__ 1 s A N B 

Consider the thin rectangular section shown. We take + S in the +X2 direction. Then, 
+q points in the +X2 direction and q/t = 12. The various terms are iiS 

h 
Q3 = J 2 td = - (4

2 
-:2) I 

F2 tF (d2 

X22 
q = - Q3 = 2 4 - I I I C I C 

= = 213 ( 
- tw 

This result coincides with the solution for a12 ., obtained in Sec. 1 -6. Actually, the engi­
tfneering theory is exact for a rigid cross section, i.e., fr vJ/E - 0. i 

Fig. Ell -3 I 
X2 I 

Sment CI 

- I~-- Segment BC 

,+q We measure S from B to C. Then, 
Cd

22 Q3 = hbftf + ½t,,(1z2 - x ) 

X.,--t ------
1 ------------ q -= 2 [hft/f + t,(h2 - X)]

I 

d Note that the actual sense of q is from C to B. The distribution and sense of q are shown 

S 
in Fig. Ell-4B. 

It is of interest to evaluate A2. Specializing (11 -96) for a thin-walled section, 
-

(61s.,)F dA J (q2)F ' = - (a)
ff ., _f),A t 2 

and substituting for q yields
Example 11-4 t 1 r 2dS (b) 

We determine the distribution of q corresponding to F2 for the symmetrical section A2 I2 J 3 t 

of Fig. Ell-4A. Only two segments, AB and BC, have to be considered since IQ31 is We let 
Aw, area of the web = dt,,symmetrical. 
Af = total flange area = 2bt/f (c) 

Segment AB A2 = kA, 

Q3 = htfS The resulting expression for k'is 
2 A,, ( 1 A,

F'2 F2 1 +- f 1 +6 A­
q = - 3- - (htfS) 3 Af\ 6 Af/ 

13 13 (d) 
2 A [+ I,,,+ Itbf2

According to our definition, +q points in the + S direction (from A to B). Since q is 3 Af L5 Af 2 \,d/
negative for this segment, it actually acts in the negative S direction (from B to A). 
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Y2 Fig. Ell-4B Determination of Q2 

Taking S as shown in the sketch, we have 

Q2 = tl Ub _ x] 

Q212 = 2 -[() _-32 (c) 

- X2) 
Q21w = 0 since X2 is an axis of symmetry. 

Fig. Ell-5A 
X3 

TSt 
Tw 

bt 

1 h thf 
tl 

This factor is quite close to unity. For example, taking as typical, for a wide-flange section, 
(1+ A) - l 

tf = 2tw 
d- ­

bf = 
we find 

Af = 3A,, Distributionofq Correspondingto F3 
k = 0.95 

The shear flow corresponding to F3 is obtained by applying 
The shearing stress corresponding to F varies parabolically in the flanges and is zero in3 

the web. Each flange carries half the shear and F43 
q = - - Q2 (d) 

1 61 31 I, 

(e)
A3 5 Af 5 btf and is shown in Fig. El 1-5B. The shear stress vanishes in the web and varies parabolically 

in each flange. 
e,,, ~~ --- ······-- 4 ·-- Integrating the shear flow over each flange, we obtain 

Cross-SectionalProperties 
F3 

(I2)j
12 (e) 

This section (Fig. El 1-5A) is symmetrical with respect to X2. The shift in the centroid 
from the center of the web due to the difference in flange areas is Then, the distribution is statically equivalent to F37 acting at a distance e from the left3 

b2 t2 - btl flange, where 
(a)

blt + b2 t2 + dt,. 
e = (f)

We neglect the contribution of the web in I2 since it involves t3,: R 1 2 

12 (12)1 + (2)2 = 1 (t1b + t2 b
3) (b) Since X2 is an axis of symmetry, the shear center is located at the intersection of R and X2 , 
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Fig. E11-58 stant is statically equivalent to only a torsional moment equal to 2q1Ac7 3. The 
X3 

second and third terms are statically equivalent to F2 52 and F3i3 . 

The constant q1 is determined by applying the continuity requirement to the 

F R = F3 centerline curve. Since the engineering theory corresponds to assuming the 
q = 7 ,3Jx21 cross section is rigid with respect to in-plane deformation, we use (11-100). 

I 
X3 

X2 

2-1 

The coordinates of the shear center with respect to the centroidare 

3 = 0 Fig. 11-18. Notation for closed cell. 

(g)x -=e-( + \) 
The flexural shear stress distribution must satisfy 

2= d e[1I2 
+1 

1+Al 
tals dS= dS (11--109) 

Torsional Shear Stress for an arbitrary closed curve.t Substituting for q, 

The flexural shear stress distribution is statically equivalent to a torsional moment equal 
dS F, ,e 3dSF , d 

to F3x 2 with respect to the centroid. We have defined M1 as the required torsional moment (a) 
ISc t I3 l t cl c twith respect to the centroid. Then, the moment which must be balanced by torsion is 

M, - F3Y2 = MT, the required torsional moment with respect to the shear center. Using 
and considering separately the distributions corresponding to F,2 and F3, we 

the approximate theory developed in Sec. 1 -3, the maximum torsional shear stress in a 
obtain 

segment is q = qF, q, 

maxlj = --- tj (h) 
F2 F3 

qF = (, 2 - Q3 ) qF3 =-(B3 - Q2 ) 
where 

J =- (bt3 + b2t + dt') (i) 
I3 I2 

(11-110) 
QdS B d tSQ3

We consider next the closed cross section shown in Fig. I -18. We take the 
origin for S at some arbitrarypoint and apply ( 1--106) to the segment Sp-S: t t 

F2 F3 (11-108) Each distribution satisfies (11-109) identically. Also, the distribution (q)r is 
q = ql- I Q3 IQ2 

statically equivalent to a force FJij, located Tk units from the centroid. Note 

Q =s x3t dS Q3 = X2t dS that q = B. leads only to a torsional moment equal to 2BAC. 
Sp Sp 

where q, is the shear flow at P. The shear flow distribution is statically indeter- t One can interpret (11-109) as requiring the flexural shear stress distribution to lead to no twist 
deformation. See Prob. 11-14 for the more general expression, which allows for a variable shear 

minate since q, in unknown. We have previously shown that q = q = con- modulus. 
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The general expression for l/Aj follows from (11-96): Determinationof Q2 

We start at P and work counterclockwise around the centerline. The resulting distribu­

dS F 4~~t~j = 2,3 (11-111) tion and actual sense of q due to Q2 are shown in Fig. El -6B. Note that + Q2 corresponds 

to a negative i.e., clockwise, q. 

Substituting for (q)F, 
Fig. Ell -6B 

2 ~(B~ -- 2BjQk + Q2) TdS(B- 2BJQI, - (j 0 k;j, k = 2, 3) (b)I {
Aj Ik so 

and noting that 1 I a2t 
d S 4 's g sdIS (c) 8 

B I Qk t 
we obtain 

I I IQ2 iJ dS (j # k;j,k = 2,3) (11-112) 
Q~ t 2 J fIAj -k Ix7 

which applies for an arbitrary single cell. 

Example 11-6 
Evaluation of B3 

We illustrate the determination of (q)F, for the square section of Fig. Ell -6A. It is 

convenient to take P at the midpoint since the centerline is symmetrical. By definition, 

X3 Fig. Ell-6A Q2 (T 
.. dSS 1.Q 

a/2 1--+ 3.5 -
_t t 

4~ 
_ ___ _-I ~__ _ _ r_- II 

1 
I Using the above results, and noting that the area of a parabola is equal to (2/3) (base) x 

IP 
1 (height), we obtain 

dSCentroid 
X2 

Shear I
I 

Q2 --- = + 
a3I 

I 

center I t 2t 
-1~ 

a i + b II 
X2 B3 = 28 

I 
I - 2t 

F3 lt Distributionof FlexuralShear Flow for F3ll ~ O ~.It 
I 

The shear flow is given by__. - -L…---·----, L__________S 
..~~~~~~~~~_ 

/--I I 
q =( 3 - Q2) = - 4a 

'2 QlF 2(T\ 3 a2t) 

(+ sense clockwise). The two distributions are plotted in Fig. El I1-6C. 
Cross-Sectional Properties To locate the line of action of the resultant, we sum moments about the midpoint (O in 

Ac = a2 the sketch: 
2 a tj~5a 

+ 2(at)-
2 3= 

12 = 3t (a3) -- a3t (M)o -- + 21­13 
1 a 4F, N2F= 12612 4 a

3 
9 MO(-) _2l\4 

19 aF 

A (at)(a/2) a The resultant acts e units to the right of 0, where 
5at 10 

19 
e = -- aIdS 3.5 126 
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Fig. E11-6C 

q 
a 

=L-'LI 
1 

L1'3 
a

16 

q =F3( 4 Q2) 

Finally, the coordinates of the shear center with respect to the centroid (which is Aunits to 
the right of 0) are 

16 
2 = e--A +-- a 

x3 = 0 

TorsionalShear Flow 

The shear flow for pure torsion is due to MT, the torsional moment with respect to the 
shear center. For this section, 

16 
MT = M - 2F3 +-X3F 1 - ---- aF32 315 

Equation (11-61): 

1lSimax (t + 
C = at 

3
J =8a 

3
t + -lat 

Determinationof 1/A3 

Applying (11-112), we find 

i 4 ( dQ2 -- dQ 1.276 
5T ,-- = -

Note that 3at is the total web area. 

We consider next the analysis ofa two-cell section and include open segments 
for generality. There is one redundant shear flow for each cell. We select a 
convenient point in each cell and take the shear flow at the point as the redun­
dant for the cell. This is illustrated in Fig. 11 --19: qj represents the shear flow 
redundant for cell j and the + S sense coincides with the X 2-X 3 sense to be 
consistent with the pure-torsion analysis. The + S sense for the open segments 
is inward from the free edge. For convenience, we drop the CL (centerline) 
subscript on S and A. 

+S 

P2 

I X2 

We apply the theory developed in Sec. 11-4. One just has to replace Ml with MT in Fig. 11-19. Notation for multi-cell section. 
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The total shear flow is the sum of q, the open cross-section distribution 

321 

(q1 = q2 = 0), and qR, the distribution due to the redundants: 
X3 

Fig. Ell1-7A 

q = q0 + qR (11-113) 

We determine q0 by applying (11-107) to the various segments. The redun­
dant shear-flow distribution is the same as for pure torsion (see Fig. 11-11).
Finally, we obtain a system of equations relating q, q2 to F,, F3 by applying 
the continuity requirement to each centerline, t 

Jq = o j = 1,2 (11-114) X2t 

where q is positive if it points in the +S direction. Using the ajk notation 
defined by (11-68), the equations take the following form: 

allq + al2q2 = D1, 
I_- - 2a-- -- a--J ­

al2 ql + a2 2q2 -- D2 
(11-115) 

Dj = - qo T = Dj (F2, F3 ) Distributionof qR 

J This system (Fig. El -7B) is statically equivalent to a moment 
The shear flows (ql ,, q2, t) for pure torsion are related by (we multiply (11-71) 

by MT/J and note ( 1-62)) 2a 2(2q, + q2)i3 

Distributionof qo Due to F3MT
allql,t + al2q2,t = 2A 1 -

I. We apply 
(11--116) 13 

-al 2ql,t + 2 2 q2, = 2A 2 -
MT q = --- 02 

J 
to the various segments starting at points P, P2. The resulting distribution is shown inThus, the complete shear stress analysis involves solving aq = b for three differ- Fig. El -7C. 

ent right-hand sides. The equations developed above can be readily generalized. 
Determinationof q, q2 

Example 11-7 
dSD2 = i qo t-= - -F3

We determine the flexural shear stress distribution corresponding toWe determine the flexural shear stress distribution corresponding to F3 for the sectionfor the sectionF, t 7 t 
shown in Fig. Ell-7A. We locateshown in Fig. Ell-7A. We locate 11, andand P2 ' 1 I'2 at the midpoints to take advantage ofat the midpoints to take advantage of
symmetry.symmetry.

s2 7 t 

Cross-SectionalCross-Sectional Properties The equations for q and q2 arePoperties 

Al == 2a2At 2 2 6q1 - q2 F3 

A2
2 7a 

= a 

A = 9a -q 1 + 4q2 = 
2 
F
F3 (a) 

Solving (a), we find 7 a 

L127 + 2 (3at) ­12 = 3 (a- 4_ =-4 a3t 
2 F3 

6a 4a a 161 a 
=- =- a --a1 1 t 

a2 2 1 2t t =q2 + 11 F3 (b) 
161 at See Prob. 11--14 for the more general expression, which allows for a variable shear modulus. 

The total distribution is obtained by adding qr and q algebraically. 
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Fig. E11-7B 

Fig. E11 -7C 

F3 
a 

1 
14 

Location of the Shear Center 

Taking moments about the midpoint of the left web, and letting e be the distance to the 
line of action of the resultant, we obtain 

)-2a 2 (2ql + q2) + (2a) 1 F3 + (3a)( -yF3) = eF3M(+')= 

+e = 2 31 ) a 161a 

The shear center is located on the X2 axis and 
= - (2a - A) = 0.055a 
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PROBLEMS 

11-1. The pure-torsion formulation presented in Sec. 11-2 considers the 
cross section to rotate about the centroid, i.e., it takes 

0 
112 -(J) 1 X3 )1 = klx I I. 
U3 +(O1X 2 

ut = k, ta) 

Suppose we consider the cross-section to rotate about an arbitrary point 
(x2, ). The general form of (a) is 

L2 = -C(1(x3 - X3) ol = kxI + cl (b) 

113 = + 1 (X2 - X2) U k*(b) 

(a) Starting with Equation (b), derive the expressions for C12, '13 and the 
governing equations for /t¢*. 

(b) What form do the equations take if we write 

*t = )t + C2 - x2 x3 + 3X* 

Do the torsional shearing stress distribution and torsional constant J 
depend on the center of twist? 

11-2. Show that J can be expressed as 

J = [XX2 + X -- (¢, 2)2 - (t. 3)
2 ]dA 

= I - jC[(4d, 2)2 + (, 3)2]dA 
Hint: 

iJS, v2 , dA = 

Compare this result with the solution for a circular cross section and comment 
on the relative efficiency of circular vs. noncircular cross section for torsion. 

11-3. Derive the governing differential equation and boundary condition 
for at for the case where the material is orthotropic and the material symmetry 
axes coincide with the X1 , X2, X3 directions. 
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11-4. The variation in the warping function t,along an arbitrary curve S 
is obtained by integrating (11-29), 

dYis = 00t + Pt) (a) 

where p,, is the perpendicular distance from the center of twist to the tangent.One selects a positive sense for S. The sign of p is positive when a rotationabout the center of twist results in translation in the +S direction. We express 
7ys as 

1 1 M1 
7s= G J as (b) 

and (a) reduces to 

as -t +± iS (c) 

Determine the variation of 0t along the centerline for the two thin-walled o0pen 

sections shown. 

Prob. 111-4 
X3 

tf 

I 

r 
d Center -v

t/ of twist 
2 

X2 -X2 + 

dd \Center of twist 2
2 

(a)b2 

(a) (b) 

11-5. Verify that the distribution, q = const, satisfies 

AF = a , d.f = qc 2s5 dS = 
F, = f 13 dA = fcaS3 dS = O 
M1 = ( x *-i')dS = 2qAol 

for the closed cross section sketched. 
11-6. Refer to Prob. 11-4. To apply Equation (c) to the centerline of a

closed cell, we note that (see (11-50)) 
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X3 Prob. 11-5 

13 

i 
i 

i 
i
iI 

X2 

Then, 

0 p C 
- = CS; - +- (b) 

I 
Integrating (b) leads to the distribution of i,. Apply (b) to the section shown. 
Take q t = 0 at point P. Discuss the case where a = b. 

Prob. 11 -6 
! 

l 

11-7. Determine the torsional shear stress distribution and torsional
constant J for the section shown. Specialize for t << a. 

11-8. Determine the equations for C (j = , 2, 3) and J for the section
shown. Generalize for a section consisting of "n" cells. 

11-9. Determine the distribution of torsional shear stress, the torsionalconstant J, and the distribution of the warping function for the section shown. 
Take qt = 0 on the symmetry axis and use the results presented in Prob. 11-6.11-10. Verify Equation (11-82). Utilize (11-15).

11-11. The flexural warping function ij, satisfy 

V
2 

jr - j in A 
J qcl C 

a1S = M 1S
cl M1 

(a) n 0 on St t on 
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11-13. Determine the flexural shear flow distributions due to F2, F3 and 

Prob. 11-7 locate the shear center for the five thin-walled sections shown. 

t 

o i 
T_ 

4 b-

Prob. 11-13 

' 
- ( J t 0- ' t a 

~~~1,~~~~ 
R T 

: sStSt 
1 - ±5S2 I "- tw tf 

I 
t t 

|<a ,,| - . 2a X3 d1/ 

Prob. 11-8 

t -

X2 

_L . - I 

I 

t t t (b) 

t 8t t 
(a) 

t- tl--- tl -
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Utilizing the following integration formula, T 
t 

a 
( 1 , 2 f 2, 2 + J1, L, 3)dx 2 dx 3 dS - f V2f d 2 dx3 

where ft, f 2 are arbitrary functions, verify Equation (11-96). 
a-t aa---- a---

11-12. Refer to Fig. 11-17. Starting with (11-107), derive the expressions t l =-t t=ca 

for the coordinates ofthe shear center in terms of the cross-sectional parameters. 
(e) 
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11-14. We established the expression for the twist deformation (Equation The general principle states that 

(11-31) by requiring the torsional warping function to be continuous. One (JFET A, dA)dx, = ( Abru dA)dx + ff ApT Au dAI,, ,,+d, (a) 
can also obtain this result by applying the principle of virtual forces to the 
segment shown as part of the accompanying figure. for a statically permissible force system. Now, we select a force system acting 

on the end faces which is statically equivalent to only a torsional moment M1 . 
If we consider the cross section to be rigid, the right-hand side of (a) reduces 
to AMlo,1 1 dx, and we can write 

Prob. 11-14 

Arbitrary (ol, = k 1 AM A dA (b)
closed AM, 
curve 

Next, we select an arbitrary closed curve, S (part b of figure), and consider the 
region defined by S and the differential thickness dni.We specialize the virtual-

AM 1 w, +wl,1 dxl stress system such that Au = 0 outside this domain and only Au,, is finite 
-M1J 1 ol 

inside the domain. Finally, using (11 -51), we can write 

dni(Auts) = AM (c) 
|F---_- dxl 2A, 

and Equation (b) reduces to 
(a) 

ki = 1a_ d ls IS (d) 

The derivations presented in the text are based on a constant shear modulus 
G throughout the section, so we replace (d) with 

Gk =i a dS (e)
2As 

If G is a variable, say G = JfG* (where f = f(x ,2 x 3)), we have to work with 

G*k = --s ls (iS (f) 

(b) Also, we define the torsional constant J according to 

G*klJ M l (g) 

Consider a thin-walled section comprising discrete elements having differentI 2G(2 ) material properties. Develop the expressions for the torsional and flexuralI1 

shear flow distributions accounting for variable G and E. Determine the 
I normal stress distribution from the stress-strain relation. Assume a linearr varia­

tion in extensional strain and evaluate the coefficients of the strain expansion
X3 from the definition equations for F,, M2, and M3. Apply your formulation 

G(E) to the section shown in part c of the figure. 
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