12
Engineering Theory of
Prismatic Members

12-1. INTRODUCTION
St. Venant’s theory of flexure-torsion is restricted to the case where—

1. There arc no surface forces applied to the cylindrical surface.
2. The end cross sections can warp freely.

The warping function ¢ consists of a term due to flexure (¢,) and a term due to
pure torsion (¢,). Since ¢ is independent of x,, the linear expansion
F, M, M,

011 ='*A—+"I‘2'"x3 “T;LXZ (12—1)

is the exact solutiont for ¢y4. The total shearing stress is given by
Gis = 0, + 0y (12-2)

where ¢, is the pure-torsion distribution (due to ¢,) and o, represents the
flexural distribution {due to ¢;). We generally determine o, by applying the
engineering theory of shear stress distribution, which assumes that the cross
section is rigid with respect to in-plane deformation. Using (12—1) leads to the
following expression for the flexural shear flow (see (11-106)):

4p = qa — "Qj*Fz - 'Q—Z‘F3 (12-3)

13 12
The warping function will depend on x; if forces are applied to the cylindrical
surface or the ends are restrained with respect to warping. A term due to
variable warping must be added to the linear expansion for o,. This leads
to an additional term in the expression for the flexural shear flow. Since (12—1)

t A linear variation of normal stress is exact for a homogeneous beam. Composite beaws (e.g.. a
sandwich beam) are treated by assuming a linear variation in extensional strain and obtaining
the distributions of ¢, ; from the stress-strain relation. See Probs. [1-14 and 12-1.
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satisfies the definition equations for Fy, M,, M, identically, the normal stress
correction is self-equilibrating; i.e., it is statically equivalent to zero. Also, the
shear flow correction is statically equivalent to only a torsional moment since
(12--3) satisfies the definition equations for F,, F, identically.

In the engineering theory of members, we neglect the effect of variable warping
on the normal and shearing stress; i.e., we use the stress distribution predicted
by the St. Venant theory, which is based on constant warping and no warping
restraint at the ends. In what follows, we develop the governing equations for
the engineering theory and illustrate the two general solution procedures. This
formulation is restricted to the linear geometric case. In the next chapter, we
present a more refined theory which accounts for warping restraint, and in-
vestigate the error involved in the engineering theory.

12-2. FORCE-EQUILIBRIUM EQUATIONS

In the enginecring theory, we take the stress resultants and couples referred
to the centroid as force quantities, and determine the stresses using (12-1),
(12-3), and the pure-torsional distribution due to My. To establish the force-
cquilibrium equations, we consider the differential element shown in Fig.
12--1. The statically equivalent external force and moment vectors per unit

}-dx,/z —{ dx 12 7'

= = di‘i dx;
< +£(17.[;;. ._c_z‘f.l‘) \\ F+ + d,\’] ( 2.
!
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Fig. 12-1. Differential element for equilibrium analysis.

length along X | are denoted by b, 7. Summing forces and moments about 0

leads to the following vector equilibrium equations (note that F_ = — F 4>
M. = ~M.,) _
1F - .
i h=0 .
dx,
— (a)
d1\4+ -
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expansions and equating the coefficients o :
sulting system uncouples into four sets of equations

stretching, flexure in the X:-X>

v - .12
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ons by introducing the component
{ the unit vectors to Z€ro. The re-
that are associated with

plane, flexure in the X;-X5 plane, and twist.

We obtain the scalar equilibrium equati

Stretching

Flexure in X-X, Plane

-4
dM; (12-4)

+my+ Fr=
X1 .

Flexure in X ,-X 5 Plane

4.],\.{1.;2«—{-}')12—— F3:0
Xm

Twist M
t""‘ L + my = 0
dX1
This uncoupling is characteristic only of prismatic members; ths eth;brsxt\:;xl
equations for an arbitrary curved member are generally coupled, as w

s in Chapter 15. ' '
sh?[V}Vx; ﬂexurz equilibrium equations can be reduced by solving for the shear

force in terms of the bending moment, and then substituting in the remaining
equations. We list the results below for future reference.

Flexure in X1-X, Plane

dM 3
2 *‘C‘E{‘l‘ — hi3
d*M;  dmgs by = 0
dx? dx;
(12-5)
Flexure in X,-X; Plane
| Fy = dM3 +m
Sl 2

d2M, dmy
My | dma 20
dx% t Xm 0
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Note that the shearing force is known once the bending moment variation is
determined.

The statically equivalent external force and moment components acting on
the end cross sections are called end forces. We generally use a bar superscript
to indicate an end action in this text. Also, we use A, B to denote the negative
and positive end points (see Fig. 12-2) and take the positive sense of an end

Fig. 12-2. Notation and positive direction for end forces.

force to coincide with the corresponding coordinate axis. The end forces are
related to the stress resultants and couples by

szj = [Ff]X1=L
Mp; = [M] =1
F“U = ~[Fi1‘€1=0
M’U = “[ij]:q:o

A minus sign is required at A, since it is a negative face.

(=123) (12-6)

12-3, FORCE-DISPLACEMENT RELATIONS; PRINCIPLE OF
VIRTUAL FORCES

We started by sclecting the stress resultants and stress couples as force
parameters. Applying the equilibrium conditions to a differential element re-
sults in a set of six differential equations relating the six force parameters. To
complete the formulation, we must select a set of displacement parameters and
relate the force and displacement parameters. These equations are generally
called force-displacement relations. Since we have six equilibrium equations,
we must introduce six displacement parameters in order for the formulation
to be consistent.

Now, the force parameters are actually the statically equivalent forces and
moments acting at the centroid. This suggests that we take as displacement
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parameters the equivalent rigid body translations and rotations of the cross
section at the centroid. We define i and @ as

it = Y u;i; = equivalent rigid body translation vector at the centroid (12-7)
@ = ) w;i; = equivalent rigid body rotation vector

By equivalent displacements, we mean

{{ (force intensity) (displacement) dA4 = Fri+M-® (12-8)
A

Note that (12~7) corresponds to a linear distribution of displacements over the
cross section, whereas the actual distribution is nonlinear, owing to shear de-
formation. In this approach, we are allowing for an average shear deforma-
tion determined such that the energy is invariant.

We establish the force-displacement relations by applying the principle of
virtual forces to the differential element shown in Fig. 12-3. The virtual-force

AN, 4 dx; -
AM, + g (AM)= A AF,
- :
| / | d dx
- = dyy
—-A}": | o | AN, +dx| (AB )_2‘“
. b
| |
’ |
| |
- dudu i i d
axy 2 = du dXy
% 1/ “ F:I}T 2
~ _dody \ »+ (1_?11;—‘
dx; 2

Fig. 12-3. Statically permissible force system.

system is statically permissible; that is, it satisfics the one-dimensional equili-
brium equations i
e (AF.) =0
- (2)

&AM, + (1, x AF2) = 0
dxy

Specializing the principle of virtual forces for the one-dimensional elastic

case, we can write
7% dx, = Yd; AP, ()

where d; represents a displacement quantity, and P; is the external force quan-
tity corresponding to d;. The term dV* is the first-order change in the one-
dimensional complementary energy density due to increments in the stress
resultants and couples.
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Evaluating the right-hand side of (b), we have
— du —  do d -
d; AP, =} AF,  — + AM , - — — 7]
> [ * + * T + (dxl AM+> w] dx, (c)
Using the second equation in (a), (c) takes the form
— dii —  d®

Yd; AP; = {AFJ, . (—l— + 0 % 6) + AM icg} dx, (d)

dxy d

Finally, evaluating the products, we obtain

Z[li AP, = [AFllll)l + AFz(llzyl - C{)g) -+ AFs(usy 1 + Cl)z) .
+ AM{C’)Ll + A.lwzCDZ, 1 + A]V13CO3, 1][1}61 (12—9)

Continuing, we expand dV*:

3 7[7* "'T/'*
avs =y (WZF AF; + AM;)
. l .. (j .
;5 d I (12-10)
Z (ej AFJ -+ kj AMJ)
i=1
The quantities e; and k; are one-dimensional deformation measures. Equating
(12-9) and (12-10) leads to the following relation between the deformation

measures and the displacements:

av* oV

€ = 5ﬂ = Uy, 1 ki = Zﬁ/f—_ = Wy
av* av*

ey = 5—1?2~ = Uz 1 — W3 ky = oM, = 602,1 (12-11)
av ‘ av*

CTGE T e Ry = o

We see that—

¢, is the average extensional strain.

e;, e3 are average transverse shear deformations.

ky is a twist deformation.

ky, ks are average bending deformation measures (relative rotations of
the cross section about X,, X 3).

N

Once the form of V* is specified, we can evaluate the partial derivatives. In
what follows, we suppose that the material is linearly elastic. We allow for the
possibility of an initial extensional strain, but no initial shear strain. The
general expression for V* is

_ 1 1 y
V* = U [E 07 + oy8f + E(U%Z + 0'%3)] dA4 (a)

Y
A

where ¢} denotes the initial extensional strain. Now, 7* for unrestrained
torsion-flexure is given by (11-98). Since we are using the engineering theory
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of shear stress distribution, it is inconsistent to retain terms involving in-plane
deformation, ie., v;/E. Adding terms due to oy = F/4, 0,2}, and neglecting
the coupling between F,, F3 leads to

_ 1 ! !
* . 7,0 F2 F3 F3
1% F1€1+2AE 1+2GA2 2+2GA3 3 _
1 (12-12)
1 2 0 2 o 2
] — M
+ g7 M+ BMa 4 g M3+ KM+ 5y M3

where
Mr = M; + F,X;3 — F3X;

] ! cas0
k.?, = —I—— X387 C]A
kg = :I:l J\J‘ .‘-(28? dA
3

We take (12—12) as the definition of the one-dimensional linearly elastic com-
plementary energy density for the engineering theory. One can interpret
€9, k9, k3 as “weighted” or equivalent initial strain measurcs.

Differentiating (12—12) with respect to the stress resultants and couples, and
substituting in (12-11), we obtain the following force-displacement relations:

M,
81=e(1)+,4;3=”1,1 kl:—atlfzcul’l
F, M M
e; = —(-;-j;'; + MG.; X3 = Uy 1 — W3 kz = ]‘(2) + E]“z“ = 7. 1 (12_13)
Fs M M
e R R SRy B LR

To interpret the coupling between the shear and twist deformations, we note
(see Fig. 12-4) that
U; = X304 (3)
Uy = — Xy
defines the centroidal displacements due to a rigid body rotation about the
shear center. Comparing (a) with (12—13), we see that the cross section twists
about the shear center, not the centroid. This result is a consequence of neglect-
ing the in-plane deformation terms in 7*, ie., of using (12~12).

Instead of working with centroidal quantities (M, u,, u3), we could have
started with My and the transfations of the shear center. This presupposes
that the cross section rotates about the shear center. We replace us, u3 (see
Fig. 12-4) by

Hy = Ugy; + W X3 (12-14)
Uy = Usz — WXy

SEC. 12-3. FORCE-DISPLACEMENT RELATIONS 337

where us,, ug; denote the translati
U slations of the shear center T i i
Fi, F3, M, in (12-9) transform to - The terms favolving

AMrwy, 1 + AFj(usy, | ~ 3) + AFs(uss, ; + w,) (@)
Then, taking M as an independent force parameter, we obtain
My
GI = Wy, q
£,
GA, = Ugy ; — s (12~15)
Fy

'Gz = Ug3, ;1 + W,

‘ tshm/f; the section twists gbout the shear center, it is more convenient to work
wi r and the translations of the shear center. Once Usy, Ugs, and w, are

X3

Fig. 12—-4. Translations of the centroid and the shear center.

llfnown{ we can dctermige Uz, uz from (12~14). We list the uncoupled sets of
orce-displacement relations below for future reference.

Stretching
Fy
el + AE = M
Flexure in X,-X, Plane
F
G4, = Usz,y — w3
M
8+ =2 = w;
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Flexure in X,-X; Plane (12-16)
3
—— =u + o
GA3 S3.1 2
1\42
K+ =0
T 2,1

Twist About the Shear Center
My

“Tow
GJ ~ TH!

The development presented above is restricted to an elastic material. Now,

the principle of virtual forces applies for an arbitrary material. Instead of first

specializing it for the elastic case, we could have started with its general form

(see (10-94)), )
S [” el Ao dA] dx; = Y d; AP (12-17)
A

where & represents the actual strain matrix, and Ac denotes a system of statically
permissible stresses due to the external force system, AP, We express the
integral as
3
[feT Ao dA = Y (e; AF; + k; AM)) (12-18)
A j=1
and determine e;, k;, using Ao as defined by the engincering theory. Forexample,

taking
AF, AM, AM;

Ao, = e + I X3 — T X3 (a)
leads to
1
€y = '/Z jJ €1 dA
1
ky, = —- Jj X3€1.dA ()
I,

k3 = :;1‘ J‘J‘ X281 dA
15

Once the extensional strain distribution is known, we can evaluate (b).
Using (12-18), the one-dimensional principle of virtual forces takes the form

FelX(e; AF; + k; AM )Jdxy = Y d; AP, (12-19)

The virtual-force system must satisfy the one-dimensional equilibrium equations
(12—4). One should note that (12-19) is applicable for an arbitrary material.
When the material is elastic, the bracketed term is equal to dV*, and we can

write it as
[ dV*dx, = Yd; AP, (12-20)
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The expanded form for the linearly elastic case is

F F F M
j [(el + AE) L+ (G )8+ (G2 ) AFs + GraMy

M M
3

We use (12-21) in the force method discussed in Sec. 12—-6.

(12-21)

12-4. SUMMARY OF THE GOVERNING EQUATIONS

At this point, we summarize the governing equations for the linear engineering
theory of prismatic members. We list the equations according to the different
modes of deformation (stretching, flexure, etc.). The boundary conditions reduce
to either a force or the corresponding displacement is prescribed at each end.

Stretching (F, u,)

Fii+b =0
F 12-22
| e + "Afé: = U1 ( )
F{ or uy prescribed at x; = 0, L
Flexure in X ~-X, Plane (Fyy M5, u;, 3)
'FLI + bz = 0
Mi+my+ F,=0
F,
GA, = Uy — W3
(12-23)
M3 0
‘E_}; + k3 = W3,
u, or F, prescribed at x, = 0, L
M, or w; prescribed at x; = 0, L
Flexure in the X -X; Plane (F5, M,, us, 0;)
F3’1 + b3 = 0
MZ,1+H12~F3=0
Fy
GaT e 12-24
o, (12-24)

—EIZ "‘1' kg == (1)2’1

us or F5 prescribed at x, = 0, L
w, or M, prescribed at x; = 0, L
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Twist About the Shear Center (M1, ©,, u,, i)

Mz + mp =0

My

Gl - Wy, 1

M or w, prescribed at x; = 0, L (12-25)
myp = my + b,X3 — b3X,

Uy = X3w;y

Uz = —Xy0¢

12-5. DISPLACEMENT METHOD OF SOLUTION—PRISMATIC MEMBER

The displacement method involves integrating the governing differential
equations and leads to expressions for the force and displacement parameters
as functions of x;. When the applied external loads are independent of the
displacements, we can integrate the force-equilibrium equations directly and
then find the displacements from the force-displacement relations. If the applied
load depends on the displacements (c.g., a beam on an elastic foundation),
we must first express the equilibrium equations in terms of the displacement
parameters. This problem is more difficult, since it requires solving a differential
equation rather than just successive integration. The following examples illus-
trate the application of the displacement method to a prismatic member.

Example 121

We consider the case where b, = const (Fig. E12-1). This loading will produce flexure
in the X {-X, plane and also twist about the shear center if the shear center does not lie on
the X, axis. We solve the two uncoupled problems, superimpose the results, and then
apply the boundary conditions.

Flexure in X,-X, Plane

We start with the force-equilibrium equations,
Fyy=~b, (@)
M, = ~F, (b)

Integrating (a), and noting that b, = const, we have
F2 = Fz,x,=0 - ble (C)
For convenience, we use subscripts 4, B for quantities associated with x;, = 0, L:
File=0 = Fguj Fil =1 = Fy; etc. d)
With this notation, (c) simplifies to
Fy = Fyy — byx; (e)
Substituting for F, in (b), and integrating, we obtain

My = Mys — x;F g5 + 3byxi (f)
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We consider next the force-displacement relations,

M
w3, = _EIZ ) (g)
F
Up | = @y + (h)

GA,

Integrating (g) and then (h), we obtain

1
W3 = Wy3 + EI_(XIMAS — $XTF 45 + §b2x})
3

3 2 2 2
Xy X3 X7 b,xt 1 X3 ,
= —_— [ ——— +
Ha = sz + X043 + Faz (GA2 6EI3> + M <2E13) 3 ( GA, 12513> ®

The general flexual solution (for b, = const) is given by (e), (f}, and (i).

Fig. E12-1
X, T by
byb Xz
T r T i Shear center
S
Y ®
) S 4 XX b
s / B
/
X3 .
Centroid
{ee |
x L |
Twist About the Shear Center
The applied torsional moment with respect to the shear center is
mp = b,X; 0]
Substituting for my in the governing equations,

M T,1 = —Mr

M, (k)

©n1=Gy |

and integrating, we obtain
Mr = My — b;¥sx,
1 o )
Wy =Wy, t reli (M 47 — 3b2X3x7)
The additional centroidal displacements due to twist are
Uy = T30,
Uy = — X0, (m)
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Cantilever Case

We suppose that the left end is fixed, and the right end is free. The boundary conditions

are
Uyy = Wy3 = Wy =0

Fpy = Mps = Mpr =0 (n)
Specializing the general solution for these boundary conditions requires
Fa = b,L
M3 = 3b,L? (0)
Mg = by%sL

and the final expressions reduce to
Fy = by(L — xy)
L? 1
M3 = b2<—2‘“ - LX‘ + Exf)

My = b,%5(L — xy)
1 X1 X1

Uy = X300 +b]x<»—1—____“2>+1bL2(X1>+b2‘C1 2 1
PTG, 6 EL) T 27 2k, 2 \12EI; G4y} (p)

Uy = — Xy
Y b, (xiLz x2L  x}
« = —— —
T EL 2 2 '3
byX3x
Wy = ZG; L(L = dxp)

It is of interest to compare the deflections due to bending and shear deformation.
Evaluating u, at x; = L, we have

1h,L*
uBZibending = gﬁ[s = 51}
LhL? s @
uBZisllcar deformation ’j‘ "G-‘/I’- == ()S
2
Js _ E I,
6 G L%

As an illustration, we consider a rectangular cross section and isotropic material with
v = 0.3 (d = depth):

E
E=2.6

13_613_42 (r)
A, S5A4 10

s d\?

3;—104@

By definition, d/L is small with respect to unity for a member element and, therefore, it is
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reasongble to neglect transverse shear deformation with respect to bending deformation
for the isotropic case.f Formally, one sets 1/4, = 0.

Fixed-End Case

We consider next the case where both ends are fixed. The boundary conditions are

Uy = W3 = Wy =0
Upy = Wp3s = Wp; = 0 (S)

Specializing (h), (i), and (k) for this case, we obtain

b,L
Fup = "”22“'
Mys = B (t)
{
Myr = ’2‘b2:€3L
The final expressions are
L
F2 = bz ("2— - x;)
2 2
My = b, L Ly X
12 2 2
L
M’r = 172?3 (-2‘ -— X1>
U, = X3 + bz (Lxl - Y%) + - b2 (LZ.‘C% - ZLX% + X}‘) (u)
G4, 24EI,
Uy = —Xmy
=Xy — —x{ + =X
DT Eo\2zt T A T
byX
01 = 522 (Lxy = x)

Example 12-2

We consider a member (Fig. E12-2) restrained at the left end, and subjected only to
forces applied at the right end. We allow for the possibility of support movement at 4.
The expressions for the translations and rotations at B in terms of the end actions at B
and support movement at 4 are called member force-displacement relations. We can
obtain these relations for a prismatic member by direct integration of the force-displacement

+ For shear deformation to be significant with respect to bending deformation, G/E must be of
the same order as I/A,L* where A, is the shear area. This is not possible for the isotropic case.
However, it may be satisfied for a sandwich beam having a soft core. See Prob. 12-1.
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relations. In the next section, we illustrate an alternative approach, which utilizes the
principle of virtual forces.

Fig. E12-2
X
Myo * *1‘_4192,@1;2
L
Eq 1 tisz,uﬁz
N _
X ; \\ Fpy,upy
My Fq3 A\ 4 ,
—— }—-7‘ ———————————————— 75 Xy
/ f—
— / M,
Eis B1, Wa1
7 / /Fm,uaa
3
Mp3, wps
X3

The boundary conditions at x; = L are
[File= =T @)
(M]e=L = My,
Integrating the force-equilibrium equations and applying (a) lead to the following expres-
sions for the stress resultants and couples:
Fj=FBj (j= 1,2,3)
My = MBT (b)
M, = My, — (L — x)F33
My = Mps + (L ~ x)Fp;

Using (b), the force-displacement relations take the form

Uy, = :4‘1; Fpy
| R -~
w3, 1 = EI; [Mps + (L — x1)Fp;]

- X3
Uz =w3s +—=—Fp +-—~M
2,1 03 G4, B2 7 BT (c)

1 _ -
2,1 = EI: [M.Bz - (L~ xx)Fm]

Uy, = —Wwy + ! F )TZJVI
a1= =02+ o Fas = oy Mar

1
=—M
@y, 1 GJ BT
t See Prob. 12-11. '
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Integrating (c) and setting x; = L, we obtain

uUgy = Uyy + EFBI
Wp3 = Wa3 + L M L
B3 43 ElL B3 + Z“EEIBZ
L* _ Lx L L3
Upy = gy + Lwogs + 5o Mps + — M —— + —— | F
4T 2en TGy M e, T 3En) e
_ L2 (G
Wpy = Mgy +—— Mgy — ——— F
B2 A2 I, e 2E12133
L* _ Lx L L3
MB3=UA3“"LCU - —M —';2'1\7[ — F
AT A e I R eV N oy R
L _
Wy = Wyqy + EMBT

Finally, we replace My by
Mpr = Mp, + %3Fy; — %,Fp3 (e)

and write the equations in matrix form:

] T 1
B1 1B . Fp,
. L + L2
Upy i GAZ 3E13 Lfgfz L.?3 L2 FBZ
+Lx%/GJ GJ GJ 2EI,
L + L}
Ugy L%, GAs ' 3El, |- Lx, L2 Fys
GJ +Lx2/GJ T 65 | 2EL
f- =4
ony X;L %L L _
G I Gr M
L? L
g2 — - Mg,
2EI, El,
LZ
L
) — M
B3 i 26T, E_[3 J Mp;
+ {lm, gz + Lvgs, has — Lwas, way, 042, W43} (3]

;J).‘he coefficient matrix is called the member “flexibility” matrix and is generally denoted
y fg.

We obtain expressions for the end forces in terms of the end displacements by inverting
f. The final relations are listed below for future reference:
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Fp = i42(”};1 — Ug1) »
L —
Fpy = %{—E(um — Uaz) — 6?? (wps + wa3) — IZIiIE_xi (wp1 — @ay)
Fgy = 12LE31¥ (ups — uqa) + E%éi (wp2 + Wa2) + ‘1'2?3%%2 (wpy — @a1) (h)
Mg, = [’G‘i{ + %(‘5313‘ + Y%@)] (wp1 — wa1)
- 121;13’53 (ug2 — uaz) + @ﬁ"-‘?’ {wps + wa3)
+ ]212? i (ups — Ua3) + gEgj?‘ (wpz + wa42)
My, = G—ﬁ?(uss — ug3) + 6‘}?%‘?2 (wp1 — w/.“)
+ @+ az)'f%éwsz + (2 - a) EI{Z‘ W42
Mps = — '6‘%? (up2 — ta2) + %EE {ws1 — @a1)

. El} E
+ (4 + a3) —]ji wpz + 2 — a3) “f' D43

where )
_ e L2EL
=G4 P oAl
[2 13
- Jf = —
i 1+ a ? 1+ a3

We introduce the assumption of negligible transverse shear deformation by sctting
a; = asy = 0.
The end forces at 4 and B are related by
FA,»: »—FBj (i=123)
My = —Mp, @
MAZ = "
MAa = —Mpyy — LFg,

|

|
=
3
+
~
s
2

We list only the expressions for M, M 43:

— 6EI} GEILR,

Mgy = ”“L—z‘“(“ﬂi% — ug3) + 12 - (wp1 — ®a1)

+ (4+a2)5£§w42+ 2 - az)%{zwm .
_ 6ET 6EIS%; 0
My = — I (upz — Ua2) + ——LZ‘-(wm — ©41)

+ 4+ %)%{—%w,ﬁ + 2 - @)%{Ewm
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Example 12-3

We consider next the case where the applied loads depend on the displacements. To
simplify the discussion, we suppose the shear center is on the X, axis and the member is
loaded only in the X (-X, plane. The member will experience only flexure in the X -X,
plane under these conditions.

The governing equations are given by (12-23):

F2,1 + bz =0 (a)
F2:“‘M3~1”‘m3 (b)

M,

= kg +
3,1 3+ L ) ©

Fy
- =2 d
Uz, w3 GA, (d)

An alternate form of (a) is

Mz gy +ms —by=0 (e)

Once M is known, we can, using (b), find F,.
Now, we solve (d) for @, and substitute in (c):

u Fs
w3 = ——
3 TN
)
Fa i + by
== — e =Y e
3, 1 Uz, 11 GA, 2,11 GA,
Then,
1
M3 = El(uz, 11 + ‘ézz by — k) (&)
and .
1
Fy = —my — El4 <l‘2,111 + &;[’z.x - kg.l) (b

Finally, we substitute for M; in (e) and obtain a fourth-order differential equation involving
u, and the load terms:

d*uy;  d* [ b, 1 [dms
LaC LY SRZ T ) UL SRS -
daxt * dx3 (GAZ 3) * El, (clx, b2> 0 M

The problem reduces to solving (i) and satisfying the boundary conditions:

I, or u, prescribed
M; or w; prescribed

}atXIZO,L (J)

Neglecting transverse shear deformation simplifies the equations somewhat. The re-
sulting equations are (we set 1/GA; = 0)

W3 = Uy ¢
My = El(ug, 41 — k9 . . @)
Fa = —m3 — El3(uy 111 ~ kg.l)

d*u,  d? 1 [dms
e I 4 =~ by | =
i aa e T, (dxl 2) 0
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As an illustration, consider the case of linear restraint against translation of the centroid,
e.g, a beam on a linearly elastic foundation. The distributed loading consists of two
terms, one due to the applied external loading and the othcr due to the restraint force.
We write

by = q — ku, @

where g denotes the external distributed load and k is the stiffness factor for the restraint.
We suppose m; = k3 = 0, k is constant, and transverse shear deformation is negligible.
Specializing (k) for this case, we have

W3 = Uz,
M; = Elzu;, 14 (m)
Fy = —Elu 114
d4u2 k q
o VIR T ®)
F,oru, prescril?ed at x;.= 0, L ©)
M or w3 prescribed

The general solution of (n) is

Uy =ty , + ¢ *(Cy sin Axy + C; cos Ax,) + €*{(Cj sin Ax; + C4 cos Ax,)

k 1/4 (p)
A= <4E13>

where u,, , represents the particular solution due to g. Enforcement of the boundary
conditions at x = 0, L leads to thc cquations rclating the four integration constants.

The functién e”** decays with increasing x, whereas ¢** increases with increasing x.
For Ax > = 3,e™** ~ 0. Ifthe member length L is greater than 2(3/1) = 2L, (we interpret
L, as the width of the boundary layer), we can approximate the solution by the following:

0 < x < Ly: Uy = uy,, + e MYC; sin Ax; + C, cos Axy)
Lg <x; <L — Ly: Uy = Uz p Q)
L—Ly<x S L uy=uy,+ e (Cysin Axy + C4 cos Axy)

The constants (Cy, C,) are determined from the boundary conditions at x; = 0 and
(Cs, C,) from the conditions at x; = L. Note that C; and C, must be of order e~ *F since
u, is finite at x; = L.

Application 1
The boundary conditions at x; = 0 (Fig. E12-3A) are

Uy =0
M3 = EI3M2’11 = 0

Since q is constant, the particular solution follows directly from (n),

U, p = g/k
The complete solution is

u = %(1 — e ™1 cos Axy)
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Fig. E12-3A
g = const
| 1
L
1777077777 A 777777 77777777777777777777777777777777777 ~ Xt
X3
Application 2
The boundary conditions at x; = 0 (Fig. E12-3B) are
uz‘ 1 = 0
Fy = —Elu; 111 = = P2
and the solution is
Pi _.. . L
u, = —27(—e *i{cos Ax; + sin Axy)
The four basic functions encountered are
Y = e"*(cos Ax + sin Ax)
W, = e Msin Ax = — »1; "
: 2 .
(12-26)

1
e

Y3 = e **(cos Ax — sin Ax) =

e 1
Ve = e *cos ix = —‘z‘};l//::,
Their values over the range from Ax = 0 to Ax = S are presented in Table 12-1.

Fig. E12-3B
P

!

¢ T X
7777777777777 7777777777777 777777777777 7777777777777

X3

12-6. FORCE METHOD OF SOLUTION

In the force method, we apply the principle of virtual forces to determine the
displacement at a point and also to establish the equations relating the force
redundants for a statically indeterminate member. We start with the one-
dimensional form of the principle of virtual forces developed in Sec. 12-3 (see
Equation 12-19):

fu[D(e; AF; + k; AMpldx, = Y d; AP, (a)
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Table 12—1
Numerical Values of the y Functions

ix 12 V2 ¥s Ya AX
0.0 1.000 0.000 1.000 1.000 0

0.2 0.965 0.163 0.640 0.802 0.2
0.4 0.878 0.261 0.356 0.617 04
0.6 0.763 0.310 0.143 0.453 0.6
0.8 0.635 0.322 —0.009 0.313 0.8
1.0 0.508 0.310 -0.111 0.199 10
1.2 0.390 0.281 -0.172 0.109 1.2
14 0.285 0.243 -0.201 0.042 14
1.6 0.196 0.202 —-0.208 —0.006 1.6
1.8 0.123 0.161 —0.199 -0.038 1.8
2.0 0.067 0.123 —-0.179 ~0.056 2.0
22 0.024 0.090 —0.155 -0.065 22
2.4 -0.006 0.061 —0.128 -0.067 2.4
2.6 —-0.025 0.038 -0.102 —0.064 2.6
2.3 —-0.037 0.020 -0.078 —0.057 28
3.0 —~0.042 0.007 —0.056 ~0.049 3.0
32 -0.043 —0.002 —0.038 —0.041 32
3.4 —0.041 —0.009 —-0.024 —0.032 3.4
3.6 -0.037 -0.012 -0.012 —0.024 3.6
38 -0.031 -0.014 -0.004 -0.018 3.8
40 —0.026 -0.014 0.002 —0.012 4.0
4.2 —-0.020 —-0.013 0.0006 —0.007 4.2
44 —-0.016 -0.012 0.008 —0.004 44
4.6 —0.011 -0.010 0.009 —-0.001 4.6
48 —0.008 ~0.008 0.009 0.001 48
50 -0.005 ~0.007 0.008 0.002 50

where e;, k; are the actual one-dimensional deformation measures;
d; represents a displacement quantity;
AP; is an external virtual force applied in the direction of d;.

The relations between the deformation measures and the internal forces depend
on the material properties and the assumed stress expansions. The appropriate
relations for the linear elastic enginecring theory are given by (12-13). If
a displacement is prescribed, the corresponding force is actually a reaction.
We use d;, AR, to denote a prescribed displacement and the corresponding
reaction increment, and write (a) as

[ e; AF; + kj AM)ldx, — Y &, AR, = Y d; AP, (12-27)
where d; represents an unknown displacement quantity.

To determine the displacement at some point, say Q, in the direction defined
by the unit vector 7y, we apply a virtual force AP yf,, and generate the necessary
internal forces and reactions required for equilibrium using the one-dimensional
force-equilibrium equations. We express the required virtual-force system as

AF i = F j.Q AP Q .
AM; = M; o APy (12-28)
ARy = Ry, o AP
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Introducing (12-28) in (12-27) and canceling AP, leads to
o= =3 Riodi + [ [SheF, o + kM, p)]dx, (12-29)

I"Ijhls expres‘sior} is applic{able for an arbitrary material, but is restricted to the
.mear.geomemc. case. Since the only requircment on the virtual force system
is that it be statically permissible, one can always work with a statically deter-

minate virtual force system. The expanded form of (12-29 i
elastic case follows from (12-21): (12729 for the lincarly

F
{, = — . 1 .
(Q ZRk,QEk‘*‘J;I [(e?+Z—E)F1,Q
F2 F?r MT
ot (GA) Fao+ <@2;) Fa g+ "é‘jMT,Q (12-30)

M M
0 4L 72 0 3
+ (kz + Elz) Mz,Q + (/&3 + I_;,Tg,) MS,Q] dxl

1
= 1 fj 8? dA
.0 1 0
kZ = f‘ x3ey dA
2
° -1
K =~ || x,60dA
I3

Finally, we can express (12-29) for the elastic case in terms of V*:

av* GR
dyp = | - Y%
0 j 3P, dxy — ¥d ", (12-31)

where

-0

This form follows from ( 12-20) and applies for an arbitrary elastic material.

Example 12-4

4 Wc consider .the channel member shown in ig. E12-4A. We suppose that the material
1s linearly elastic and that there is no support movement. We will determine the vertical

Fig. E12—-4A
/2 I’ L2 ‘_-’ X,
VY
dg P P
l L Centroid 3

7 0 \ ¢
Shear
%1 center
% e —]
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displacement of the web at point Q due to—
1. the concentrated force P
2. a temperature increase AT, given by

AT = a;x; + azx1x2 + a3X1X3

Force System Due to P

- B ¢
Applying the equilibrium conditions to the segment shown in Fig. E12-4B leads to

Fy=—P

MT:+P3 (3.)
M3: —P(L"-Xl)

F, =F3=M2=0

Fig. E12-4B

l P Shear center axis

k‘/L—XIM\
o

PR o e e S

Mr i
Fy

Virtual-Force System

Pe

p S - [ sistent,
We take (l ositive When dOW“Wa!d 1.€., in the X, d\lC\,“OY\ Q be con

Q 3}

ply a unit dOWllWa[d iOI(Je at Q. [he ICqullCd ln‘.efnal forces fO“OW ffoln
we must ap

Fig. E12-4C:

FZ,Q:"‘l

My g=¢ b) .

L L (b)

Osx<y Msg=—\3 ™

FLQ::Fs,Q—"MZQ"O
L | Fio =0 (1:1,2,3)} ©
y<ust Mjo=0

Fig. E12-4C

Shear center axis
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Initial Deformations
The initial extensional strain due to the temperature increase is
&) = a AT = afayx; + a2x,X; + azx(x3) (d)

The equivalent one-dimensional initial deformations are

T
e = —Ji[ &2 dA = aayxy
/(2 = ——jj\ 7C3f‘ dA = 243Xy (e)
kg = ——J] X260 dA = —aa,x,

Determination of d,

Substituting for the forces and initial deformations in (12-30), we obtain

L2 P [J ]) L
dg = L {GAZ + e + [aa;x, + - (L - \1)] (: — x1>} dxy

{ L 2L 5 13} ocazLZ - ®
- Pl +

e b
504, T 261 T WEL

48
Example 12-5

When the material is nonlinear, we must use (12-29) rather than (12--30). To illus-
trate the nonlincar case, we determine the vertical displacement due to P at the right end

Fig. E12-5

X | |

Xz
P

e -
X, X3 &

S

Centroid (and

}# . : shear center)

of the member shown in Fig. E12-5. We suppose that transverse shear deformation is
negligible, and take the relation between k5 and M as

ky = aM; + asM3 (a)
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Noting that only F, g and M, ,, are finite, and letting e, = 0, the general expression for
d, reduces to

L
d, =j0 ksMs, o dx; (b)
Now,
M; = —P(L — x;)
Mg = —(L - xy) ©
Then,
ky = —Pa,(L — x;) — Pay(L ~ x,)? (d)

Substituting for k5 in (b), we obtain

L3 L’
dg = Pa; — + Pay -
Q ay 3 as 5

We describe next the application of the principle of virtual forces in the
analysis of a statically indeterminate member. Wc suppose that the member
is statically indeterminate to the rth degree. The first step involves selecting
r force quantities, Z,, Z,, . . ., Z,. These quantities may be either internal forces
or reactions, and are generally called force redundants.

Using the force-equilibrium equations, we express the internal forces and
reactions in terms of the prescribed external forces and the force redundants.

Fj == ‘Fj,O + Z Fjvkzk
K=1

M= Mo+ S M,z (12-32)
k=1

Ri=Rio+ ) RiiZi
k=1

The member corresponding to Z; = Z, = -+ = Z, = 0 is conventionally
called the primary structure. Note that all the force analyses are carried out on
the primary structure. The set (F; o, M; o, R; o) represents the internal forces
and reactions for the primary structure due to the prescribed external forces.
Also, (Fj 1, Mj i, R; i) represents the forces and reactions for the primary
structure due to a unit value of Z,. One must select the force resultants such
that the resulting primary structure is stable.

Once the force redundants are known, we can find the total forces from
(12-32). It remains to establish a system of r cquations relating the force
redundants. With this objective, we consider the virtual-force system consisting
of AZ, and the corresponding internal forces and reactions,

AFJ = Fj’ k AZk
AM; = M; , AZ, (@
ARi = R,‘) k AZk
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This system is statically permissible. Substitutin i i
. g (a) in (12-27), and notin
that AP; = 0, we obtain . ( ) £

[ [EJZ (€iF; i + k,-Mj,k)] dx; = Y TR, (12-33)

Taking k=1,2,..., rresults in a set of r equations relating the actual de-
fc.u*matlon& One can interpret these equations as compatibility conditions
since they represent restrictions on the deformations. ,

To proceed further, we must express the deformations in terms of F,, M..
In what follows, we suppose that the material is linearly elastic. The Jcomj-
patibility conditions for the linearly elastic case are given by

F Fy\ F My
O+ L\ F 2 3 \F T
J[(l AE) et GA, Fout GAs Fs i+ Gr ) Mz

M M
0 2
+ (kz + EE) M, + (kg’ + ET:) M”J dx, =Y diR;

k=1,2...,r

(12-34)

A more compact form, which is valid for an arbitrary elastic material, is

ov* — OR; , '

J;l —52;- dxl = Zdi 52—,‘- (k = 1, 2, ey r) (12—‘35)

The final step involves substituting for F 7» M; using (12-32). We write the
resulting equations as

j; foZi=A  (k=1,2....,7 (12-36)
where
1 1 . 1
ka“fjk“J;l['A-E'Fl,jFlk'f“é;l F2,12k+z;—/—1—3—F3,jF3_k
1
+_~_MT,jMT,k+"_‘LM2jM2k+"l-‘M3 ‘Ma dx
GJ Er, =770 T gy TR A

- F F F
A=Y aR, . — 0 1,0 3,0 3,0
& E Lk Ll [(31 +“‘AE)F1,1«+(C;—A2>F2,k+<‘—*‘GA3)F3,k

MT,O 0 MZ,O / M
+ (W)MT,k + (kz + —E—IZ‘)MZJ( -+ (k%’ + *E—;;}—O>M3’k]dx1

The various terms in (12-36) have geometrical significance. Using (12-30),
we see that f is the displacement of the primary structure in the direction of
Z ; due to a unit value of Z,." Since f & = [ itis also equal to the displacement
in the direction of Z; due to a unit value of Z ;- Generalizing this result, we can
write

(di)p;=1 = (dj)p = (12-37)
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where i, j are arbitrary points, and P, corresponds to d,, i.e., i has the same
direction and sense. Equation (12-37) is called Maxwell's law of reciprocal
deflections, and follows directly from (12-30). The term A; is the actual dis-
placement of the point of application of Z,, minus the displacement of the
primary structure in the direction of Z, due to support movement, initial strain,
and the prescribed external forces. If we take Z, as an internal force quantity
(stress resultant or stress couple), A, represents a relative displacement (trans-
lation or rotation) of adjacent cross sections.

One can interpret (12-36) as a superposition of the displacements due
to the various effects. They are generally called superposition equations in
elementary texts.t If the material is physically nonlinear, (12-36) are not
applicable, and one must start with (12-33). The approach is basically the
same as for the linear case. However, the final equations will be nonlinear.

The following examples illustrate some of the details involved in applying the

force method to statically indeterminate prismatic members.

Example 12—-6

This loading (Fig. E12-6A) will produce flexure in the X-X, plane and twist about
the shear center; i.e., only F,, M3 and M are finite. The member is indeterminate to the
first degree. We will take the reaction at B as the force redundant.

‘Fig. E12-6A
X2 X
i q
oy 4
A 2 Xy X3 &
5 e

| ! i
Primary Structure

One can select the positive sense of the reactions arbitrarily. (See Fig. E12-6B.) We
work with the twisting moment with respect to the shear center. The reactions are related
to the internal forces by

Ry=2,

Ry = ~[F]x,=o0

Ry = —[M;3]x, -0 @)
Ry = +[Mr]x,=0

1 See, for examptle, Art. 13-2 in Ref. 3.

FORCE METHOD OF SOLUTION
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Fig. E12-6B
X2 . XZ
R3,d3
N
A B
B Xy X3 ©
Ry,ds T
Ry, dy i f *
i Zl =0 21 = Q
7;77 /77%7
T Ry, dy
Force System Due to Prescribed External Forces (F; o, M; o, R; o)
Fig. E12-6C
q
/1’13:0
S :
My J’ \
Fap Shear center axis
L e e e e l
qe
%‘ L—x i }
Fy o= —g(L — x)) Ri,0=10
My, o = qe(L — x;) Rj 0 = qL
q L2 (b)
Ms,o = —‘Q(L"M)Z Rs,o—%v
Fio=F30=M;,0=0 Ra, 0 = geL
Force System Due to Z;, = + 1(F; , M; , R; )
Fig. E12-6D

My 1
( ' B 1‘

€

<l

Mr, ‘
I

3

| |

N

Shear center axis
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Foi= +1 Ry = +1
Mr = —e R2,1=—1
M = +(L - xy) Ry = ~L ©
Fii=F31=M;,=0 Ry = —e

Equation for Z

We suppose that the member is linearly elastic. Specializing (12-36) for this problem,

f11Z1 =4

L
fu = J [GA (Fa, 1)2+—1—(Mr )7+ F"(M3 1) :’d-’cx O

L 1 M, )
= Sk g ot s gpeattn o (18 + 5 s Ja

3

and then substituting for the forces and evaluating the resulting integrals, we obtain

fur = L +Le2+ L}
TG4, T GJ T O3EL

gl?f 1 e? L?
=d, —d, — —ed =7t T
Ay =d, —dy — Ldy — edy + - 5 [GA2+GJ+4EI3 (©

L
~[Fe e~ xex,

The value of Z, for no initial strain or support movement is

4E [ I el
1 P
+ - ( yNE +

+.vF 13 +€I3
G ZLZ JL?

3
Z1 ="qL

; ()

Final Forces

The total forces are obtained by superimposing the forces due to the prescribed external
system and the redundants:
Fy=Fa0+ ZiFy (= —q(L — x) + Z,
My = qe(L — x,) — eZ;

My = — %(L — x)? 4 (L = x)Z,
Ry = Z, (&)
Ry =¢qL - 2,

LZ
R3 = 2_7_ - LZI

Ry = elqL — Zy)
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Example 12-7

This loading (Fig. E12-7A) will produce only flexure in the X,-X

plane. We suppose
the material is physically nonlinear and take the expression for ks asZ o

k3 = .1\'3 + a1M3 4 L{3M3 (a)

To simplify the analysis, we neglect transverse shear deformation.
Fig. E12-7A

iq

q Xz

X3

Xy X3

Shear center

i L

Primary Structure

Ry =2, Ry = —(F3)x =0 Ry = —~(M3),, ¢ (b)
. Fig. E12-78
R3,d3 Q //1
/ B
Z N
Rz,gz T/ 1‘
Zl =0
1 Ry, dy

Force System Due to Prescribed External Forces (sec Example 12-6)

Fyo= —q(L - Xq)
q 2 ©
M; o = -3 (L — x,)?

Rio=0 Ry 0 =qL Rs0=—
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Force System Due to Z, = + 1(see Example 12-6)
F2,1=—'+1 M3’1=L—X1
Ry, = +1 Ry = -1 (d)
Rg,g = —-L )

Compatibility Equation

Since the material is nonlinear, we must use (12-33). Neglecting the transverse shear
deformation term (e,), the compatibility condition reduces to

L -

jo JsMs  dxy = SR, 4 ©

We substitute for k5 using (a):

L L
L (M5 + asMIM,  dxy = 3 &R\ — jo KM 5 dx, ()
Now,
My = Mj3 o+ ZiM3.,

®

= '%(L = x)) + Z(L = xy)
Introducing (g) in (f), we obtain the following cubic equation for Z

asL.’? . i asqL® a L®  3axg’L’
2 (B o 2 ez (e
‘( 5 )+ ‘< )P s

L4 2L4 L
- (a + ‘i?ffg--«) + Ay dy = LTy~ L KL — xdx ()

For the physically lincar case,
1 .
ay = EE Uy = 0 (‘)
and (h) reduces to

N .

3 EL. - - L
Zi=gal+- > [d, -~ Ldy - J KL — xl)dx,] )

Example 12-8

The member shown (Fig. E{2-8A) is fixed at both ends. We consider the case where the
material is linearly elastic, and there are no support movements or initial strains. We take
the end actions at B referred to the shear center as the force redundants.

Zy =Fp :
Zy = Mg (@)
Zs = Mrg

The forces acting on the primary structure are shown in Fig. E12-8B.

Initial Force System

Fyo="P Ms o= Pla - x1)

My, o = PX3 ®

SEC. 12-6.

FORCE METHOD OF SOLUTION

X3

L

Xy

Shear center

Zy
- i
\\
\ IP @
|
_.,.’_.______.__ _____ —
/
{ .
/) Z

11’
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Fig. E12-8A

Fig. E12-8B

Xy

Fig. E12-8C

Shear center axis
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Z = +1
Fig. E12-8D
M-
3.1 ? 1
Mr,
Py, "' Shear center axis
|
M3‘ 1= L~ Xy (C)
Zz = +1
Fig. E12—-8E
M3, ]
Mrp ( ‘)
Fip *
le
]
Fao2=Mr,=0 (@)
Z3 = +l
Fig. E12—-8F
Ms;
Mr: 1
S pyy !
] Shear center axis

©
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Compatibility Equations

The compatibility equations for this problem have the form

3

Z JiZi = A (k=1,2,3)

j=1

LTt 1 1
Jij = f [(’A Fy jFy 0 + GJMT,jMT,k +}—5}‘-Ms,jM3,k]dX1

FZO MTO A130
Ay = — — | F d
* L[(GA) “+<GJ)M” (FIB)MH] XI

Substituting for the various forces and evaluating the resulting integrals lead to the fol-

lowing cquations:
L? a 1 [a® a%
Zy= =Pl o[
+(2El> o2 [GA1+EI3<3 * z)]

]

L N L3 2
GA,  3EL,) "

L? L Pa?
—\z V7, =
(251;) ot (EI3 2= Ty ®
‘ .I;, Zsy = _ff_yfi
GJ GJ
Finally, solving (g), we obtain
6EI
o | !t oA
(A,
Zy = —P|=— + =
! (L) ) . 12EI,
L’GA, ®
6EI,
ab al.GA, Pax;
Zy =P — i Zy= — 2
2 L2 12E1; ? 3
L*GA,

Application

Suppose the member is subjected to the distributed loading shown in Fig. E12-8G.
We can determine the force redundants by substituting for P, a, and b in (h),

P = qdx,
a=x (1)
sz“Xl

and integrating the resulting expressions. The gencral solution is

—1 (* 2 6E1
VARS ‘I:TJ. {x} + ZE[«V%(L - Xp) + — LCA 3‘ x{L — xl):}}qul
6L1,
L - 23 : ‘
j [ x3( xy) + 1G4, xy(L - )]qdn ' )]

0
J X1q dx,

N}_

O

ZZ=

hixl
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where
12EI,
C=1+ -5
* 1764,

As an illustration, we consider the case where g is constant. Taking ¢ = const in (j),
we obtain

Zl = "q£
2
gL?
z, =22
2= (9]
X3qL.
Z3 = - 32q
Fig. E12-8G
X Tq
: q(x1)
_/t/\r__./r_\ 4
?
f 7 Xy X3
7
2
ﬁ v Centroid
1 |
l L '
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PROBLEMS

12-1. The accompanying sketch shows a sandwich beam consisting of a
core and symmetrical face plates. The distribution of normal stress over the
depth is determined by assuming a linear variation for the extensional strain:

i ey

PROBLEMS 365
&1 = —Xxok;
13 = Egy (@

We relate k3 to M5 by substituting for ¢, in the definition equation for M5:
M3 = —jj X041 dA
A
§
(b)
My = (Els . + El; ks
To simplify the notation, we drop the subscript and write (b) as
M = (E])equivk3 . (C)

where (EI),,,, is the equivalent homogeneous flexural rigidity.

Prob. 12-1
X
Face f
/ 1
[
F KR
Core hf2 f 0;2 /;*
{ __ Core | Vi,
: hj2 X2
¢ na

Face :’; ;‘__ b ‘_4 1

hThe shearing stress distribution is determined by applying the engineering
t eqryhdcvelopeci in Sec. 11-7. Integrglting the axial force-cquilibrium equation
over the area 4* and assuming oy, is constant over the width, we obtain

ﬂ (011,01 + &21,2 + 031,3)dA = 0
4
d
bO'lZ —:;Efo-ll'ld/’ ( )

Then, substituting for ¢,
M

011 = .~(Ek3)x2 = (El)equiv(—EXZ) (e)

and noting that F, = — M 3, 1, (d) becomes
2 b(EI)cquiv XZE dA (f)

A*
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(a) Apply Equations {e) and (f) to the given section.

(b) The flange thickness is small with respect to the core depth for a typical
beam. Also, the core material is relatively soft, ie., E. and G, are
small with respect to E ;. Specialize parta for E. = 0and ¢ ;/h « 1. Also
determine the equivalent shear rigidity (GA;)uqu., Which is defined as

po - [[rgal F3
v )0‘12 Jv 2G dd = 2(GA2)equiv

(c) The member force-deformation relations are

¥ —_ FZ
)2 (GA Z)Cquiv
ky = M,
} (El)equiv

Refer to Example 12—1. Specialize Equation (q) for this section and
discuss when transverse shear deformation has to be considered.
12-2. Using the displacement method, determine the complcte solution
for the problem presented in the accompanying sketch. Comment on the
influence of transverse shear deformation.

Prob. 12-2

X,

q = const

b

t o e

e

12-3. For the problem sketched, determine the complete solution by the

displacement method. .
12—4. Determine the solution for the cases sketched. Express the solution

in terms of the y functions defined by (12-26).

‘ PROBLEMS 367
X, Prob. 12-3
? .
:g q = const |
I
Shear center L !
1t
i
e
_ Centroid
X5 f—e—
X
Prob. 12-4
t ; ‘, l q
: i

7774
(a)

7, 7777, 77 3

e
{b)
|
Lz I 7777 - 7
{c)

12-5.  The formulation for the beam

. formula on an elastic foundation i
a continuous distribution of stiffness; ie on s based on

., We wrote
bz = ——kuz
Note that k has units of force/(length)?2,

We can apply it'to the system of discrete
of the accompanying sketch, provided that

@

restraints diagrammed in part a
restraint spacing c¢ is small in
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comparison to characteristic length (boundary Jayer) L, which we have taken as

3 3 )
Lo %5 = (kaEDy™ I
A reasonable upper limit on ¢ 18
e ©
c< ®
15

Letting k, denote the discrete stiffness, we determine the equivalent distributed

stiffness k from — @

Evaluate L, with (b), and then check ¢ with (c).

Prob. 12-5

1.1 2
r 1 I

___\,\/\__.

TITT7ITTI T I 777777 7

oo

_ | ﬁ/é/

. - I, E
- Y A/ V a V. .
et

(b)

i : 4 bers which are fised
der the beam of part b, supported ‘by cross mem ) o fixed
at (t:]:exil?leI?ds, Following the approach outlined above, determine the dlstgblfl)
tion of force applied to the cross members due to the concentrated load, P.

e

PROBLEMS 369
Evaluate this distribution for
a=24ft L==641t I, =1

12-6. Refer to Example 12-3. The governing equation for a prismatic
beam on a linearly elastic foundation with transverse shear deformation in-

cluded is obtained by setting b, = ¢ — ku, in (i). For convenience, we drop
the subscripts:

c=1f1t

4411 K fizu . k v 1 dm a? 5o q @
&t Gaae TEIYTE\! T &)t o GA 2
We let
k k '
= 4;\,4 T = )2
EI oA, = ¥ )
and (a) takes the form
d*u , d*u o

Note that £ is dimensionless and A has units of 1/length. The homogencous
solution is
u = ¢"*Cy cos bx + C, sin bx) + e™*(C; cos bx + C, sin bx)

where (d)
a =1 + &N?
b= A1 — g2

To specialize (d) for negligible transverse shear deformation, we set & = 0.

(a) Determine the expression for the boundary layer length (e73 = 0).

(b) Determince the solution for the loading shown. Assume L large with
respect to L,. The boundary conditions at x = 0 are

w=0
P
F, = —=
g 2
Investigate the variation of M, ., and u,,, with & Consider ¢ to vary
from O to L.
, Prob. 12-6
P
I - ]
7 T X
144
b—1 1 L—
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- ine the reaction R and
—7. Refer to the sketch for Prob. 12-3. Determine 0 '
cerlxtzroidal displacements at x; = L/2 due to a concentrated force Pi, applied
batx; = L/2. Employ the force method. A
© ige_ge Refer1 to E{(ample 12-7. Assuming Equation (h) 1sLs/(2>lved for Z4,
i ou would determine the translation u, at x; = . )
dlsf;i;h Ogo};xsider the four-span beam shown. Assume linearly elastic be-
havior, the shear center coincides with the centroid, and planar loading.
(a) ’ Compare the following choices for the force redundants with respect
to computational effort:
1. reactions at the interior supports t
2. bending moments at the interior supports .
(b) Discuss how fou would employ Maxwell’s faw of reciprocal deflections
to generate influence lines for the redundants duc to a concentrated

force moving from left to right.
Prob. 12--9

1 . ]
12-10. Consider a linearly elastic member fixed at both ends and subjected
to a temperature increase
T =a; + asx; + as3x;

Determine the end actions and displacements (translations and rotations) at
mid-span. ‘ i . .

12?11. Consider a linearly elastic member fixed at the left end (A) ar}f
subjected to forces acting at the right end (B) and support movement at t
Determine the expressions for the displacements at B in terms of the supp;)f
movement at 4 and end forces at B with the force method. Compare this

approach with that followed in Example 12-2.

e e

13

Restrained
Torsion-Flexure of
a Prismatic Member

13-1. INTRODUCTION

The engineering theory of prismatic members developed in Chapter 12 is
based on the assumption that the effect of variahle warping of the cross section
on the normal and shearing stresses is negligible, i.e., the stress distributions
predicted by the St. Venant theory, which is valid only for constant warping
and no warping restraint at the ends, are used. We also assume the Cross
section is rigid with respect to in-plane deformation. This leads to the result
that the cross section twists about the shear center, a fixed point in the cross
section. Torsion and flexure are uncoupled when one works with the torsional
moment about the shear center rather than the centroid. The complete set of
governing equations for the engineering theory are summarized in Sec. 12-4.

Variable warping or warping restraint at the ends of the member leads to
additional normal and shearing stresses. Since the St. Venant normal stress
distribution satisfies the definition equations for Fy, M,, M, identically, the
additional normal stress, ¢, must be statically equivalent to zero, i.e., it must
satisfy 7 :

ol da = [[x,07, a4 = {fx30%,da =0 (13-1)

The St. Venant flexural shear flow distribution is obtained by applying the
engincering theory developed in Sec. 11-7. This distribution is statically equiva-
lent to F,, F acting at the shear center. It follows that the additional shear
stresses, a7, and "5, due to warping restraint must be statically equivalent
to only a torsional moment:

‘”\0’12 dA = O
“6'13 dA = O

To account for warping restraint, one must modify the torsion relations. We
will still assume the cross section is rigid with respect to in-plane deformation.

(13-2)
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