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12

Engineering Theory of 

Prismatic Members 

12-1. INTRODUCTION 

St. Venant's theory of flexure-torsion is restricted to the case where--

1. There are no surface forces applied to the cylindrical surface. 
2. The end cross sections can warp freely. 

The warping function ¢ consists of a term due to flexure (Os) and a term due to 
pure torsion (t). Since k is independent of x-, the linear expansion 

F1 M12 1 
t -ll- -- - -- Y2 (12-1)

A '2 13 

is the exact solutiont for alt. The total shearing stress is given by 

6 1S = C, + 1-f (12-2) 

where at is the pure-torsion distribution (due to 4,) and af represents the 
flexural distribution (due to Of). We generally determine caf by applying the 
engineering theory of shear stress distribution, which assumes that the cross 
section is rigid with respect to in-plane deformation. Using (12-1) leads to the 
following expression for the flexural shear flow (see (11-106)): 

Q3 Q2
qB = qA -2 3 (12-3) 

The warping function will depend on xl if forces are applied to the cylindrical 
surface or the ends are restrained with respect to warping. A term due to 
variable warping must be added to the linear expansion for al. This leads 
to an additional term in the expression for the flexural shear flow. Since (12-1) 

t A linear variation of normal stress is exact for a homogeneous beam. Composite beams (e.g.. a 
sandwich beam) are treated by assuming a linear variation in extensional strain and obtaining 
the distributions of ao from the stress-strain relation. See Probs. I I -14 and 12-1. 
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SEC. 12-2. FORCE-EQUILIBRIUM EQUATIONS 

satisfies the definition equations for FI, M2, M3 identically, the normal stress 
correction is self-equilibrating; i.e., it is statically equivalent to zero. Also, the 
shear flow correction is statically equivalent to only a torsional moment since 
(12-3) satisfies the definition equations for F2, F3 identically. 

In the engineering theory of members, we neglect the effect of variable warping 
on the normal and shearing stress; i.e., we use the stress distribution predicted 
by the St. Venant theory, which is based on constant warping and no warping 
restraint at the ends. In what follows, we develop the governing equations for 
the engineering theory and illustrate the two general solution procedures. This 
formulation is restricted to the linear geometric case. In the next chapter, we 
present a more refined theory which accounts for warping restraint, and in­
vestigate the error involved in the engineering theory. 

12-2. FORCE-EQUILIBRIUM EQUATIONS 

In the engineering theory, we take the stress resultants and couples referred 
to the centroid as force quantities, and determine the stresses using (12-1), 
(12-3), and the pure-torsional distribution due to MT. To establish the force­
equilibrium equations, we consider the differential element shown in Fig. 
12--1. The statically equivalent external force and moment vectors per unit 

- dxI/2 clxl1/2 

--F. tr.
* . 

2' l)
'_ +d 

xt 

) 
dil _ dx 

-- -v_- ( 2- ) 

Fig. 12-1. Differential element for equilibrium analysis. 

length along X, are denoted by b, nii. Summing forces and moments about 0 
leads to the following vector equilibrium equations (note that F_ = -F+, 
M_ = -M+): 

dF+ b 
dx1 

(a)
dM+ ­
dxT+ + (71 x F+) = 
dxl 
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We obtain the scalar equilibrium equations by introducing the component 

expansions and equating the coefficients of the unit vectors to zero. The re­

sulting system uncouples into four sets of equations that are associated with 
3 plane, and twist.stretching, flexure in the XI-X 2 plane, flexure in the X-X 

Stretching 
dF + b =0 
x Y 

Flexure in X 1-X2 Plane 

dF2 + b2 = 0 
dxl 

(12-4)
dM 3 + m3 +f F2 00 
dx 

Flexure in X1-X 3 Plane 

dF3 + b3 = 0 
dx 3 

dM 2 ± rn2 - F3 == 0 
dx1 

Twist 
Mt + ml 0 

(dxt 

This uncoupling is characteristic only of prismatic members; the equilibrium 
we shallequations for an arbitrary curved member are generally coupled, as 

show in Chapter 15. 
The flexure equilibrium equations can be reduced by solving for the shear 

force in terms of the bending moment, and then substituting in the remaining 

equations. We list the results below for future reference. 

Flexure in X1-X2 Plane 
dM3 nx- 113F2 d= 
dir 1 

d2 M3 din 
M + b2 =0 

dxl dxl 

(12-5) 
Flexure in X 1-X3 Plane 

dMz 
F3- d + M2 

d2 M 2 dn2 b3 = oJd2M2t + 
dx2 dx, 

SEC. 12-3. FORCE-DISPLACEMENT RELATIONS 

Note that the shearing force is known once the bending moment variation is 
determined. 

The statically equivalent external force and moment components acting on 

the end cross sections are called endforces. We generally use a bar superscript 
Also, we use A, B to denote the negativeto indicate an end action in this text. 

and positive end points (see Fig. 12-2) and take the positive sense of an end 

X2 

1A 2 

FA2 

~ .X1 

' B3 

IX3 r U 
-i, -

Fig. 12-2. Notation and positive direction for end forces. 

force to coincide with the corresponding coordinate axis. The end forces are 
related to the stress resultants and couples by 

FBj - [Fj]x =L 

MBj = [Mj].-,=L 
(j = 1,2,3) (12-6)

FAj =-[rEjr, = 0MAJ ICj3r= 

MIAj = -[Mj],x=o 

Aminus sign is required at A, since it is a negative face. 

12-3. FORCE-DISPLACEMENT RELATIONS; PRINCIPLE OF 

VIRTUAL FORCES 

We started by selecting the stress resultants and stress couples as force 

parameters. Applying the equilibrium conditions to a differential element re-
Tosults in a set of six differential equations relating the six force parameters. 

complete the formulation, we must select a set of displacement parameters and 

relate the force and displacement parameters. These equations are generally 

called force-displacement relations. Since we have six equilibrium equations, 

we must introduce six displacement parameters in order for the formulation 

to be consistent. 
Now, the force parameters are actually the statically equivalent forces and 

moments acting at the centroid. This suggests that we take as displacement 
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parameters the equivalent rigid body translations and rotations of the cross 
section at the centroid. We define Ctand -cas 

= u/lj = equivalent rigid body translation vector at the centroid (12-7 
= C)ji = equivalent rigid body rotation vector 

By equivalent displacements, we mean 

fJ (force intensity) (displacement) dA = F · + M -c (12-8) 
A 

Note that (12-7) corresponds to a linear distribution of displacements over the 
cross section, whereas the actual distribution is nonlinear, owing to shear de­
formation. In this approach, we are allowing for an average shear deforma­
tion determined such that the energy is invariant. 

We establish the force-displacement relations by applying the principle of 
virtual forces to the differential element shown in Fig. 12-3. The virtual-force 

* . rt ... dx, 
-AM+ (1.-l-

X1 

44-nl 

-t dudxl 
ax -i 1 2 ±dS dxl 

I -' IdodxT+ i-

Ix dY 2I 

Fig. 12-3. Statically permissible force system. 

system is statically permissible; that is, it satisfies the one-dimensional equili­
brium equations 

-- (AF+) = 0 
dx = (a) 

- (AM+)+ ( x A+) 6 
dxi 

Specializing the principle of virtual forces for the one-dimensional elastic 
case, we can write 

dV* dx = di AP (b) 

where di represents a displacement quantity, and Pi is the external force quan­
tity corresponding to di. The term dV* is the first-order change in the one­
dimensional complementary energy density due to increments in the stress 
resultants and couples. 

SEC. 12-3. FORCE-DSPLACEENT RELATIONS 

Evaluating the right-hand side of (b), we have 

cli d t + 
3di AP, = AF+ d- + AI+ dx + ( AM).C dx (c)M± 

Using the second equation in (a), (c) takes the form 

EdiP += LAF+ 1 X ) +AM+ - dx (d) 

Finally, evaluating the products, we obtain 

Edi Pi = [AFtll, + AF 2(u12, - 3) + AF 3(U, 3 1 + 02)1 

+ AMtl, + AM 2 W1 + AM 3co3, ]d.X (12-9)2 

Continuing, we expand dV*: 

dO* _ ( r*F+ AMj 
(12-10)3 

= , (ej AF + k AMj) 
j=1 

The quantities e and kj are one-dimensional deJbrmation measures. Equating 
(12-9) and (12-10) leads to the following relation between the deformation 
measures and the displacements: 

OV* 
= --- 0)1.1F1 U1. k = --

OV* aj*0MI
e 2 U2 1 - )03 k2 = 8V* 

(021 (12-11) 

*0 
e3--F 717 =3, 1 + 02 k3 = =0)3, 1 

We see that--

1. el is the average extensional strain. 
2. e2, e3 are average transverse shear deformations. 
3. k1 is a twist deformation. 
4. k2, k3 are average bending deformation measures (relative rotations of 

the cross section about X2, X3 ). 

Once the form of V* is specified, we can evaluate the partial derivatives. In 
what follows, we suppose that the material is linearly elastic. We allow for the 
possibility of an initial extensional strain, but no initial shear strain. The 
general expression for V* is 

V* = 2E + aleo + 2( 2 a+ 3 )j dAh (a) 

where e° denotes the initial extensional strain. Now, V* for unrestrained 
torsion-flexure is given by (11-98). Since we are using the engineering theory 
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of shear stress distribution, it is inconsistent to retain terms involving in-plane 
337 

where Us2, Us3 denote the translations of the shear center. The terms involving
deformation, i.e., vllE. Adding terms due to o- = F1/A, uco, and neglecting F2, F3, M1 in (12-9) transform to 
the coupling between F2, F3 leads to 

AMTO 1 + AF2(U2, 1 (03) + AF 3(uS3, + o(02) (a)1 1* = Fe + 1 F + 2 F2 + 2-G-3 Then, taking MT as an independent force parameter, we obtain2AE 2GA2 2GA 3 (12-12)
1 1 I+ Mi±°+ - 3kM3 ±--M3 MT 

= ri, I2GJ 2E12 213 ­

where F2
MT = M1 + F2X3 - F3-2 

GA 2 ZS2, 1 - 03 (12-15) 

F3 
' GA 2 US 3 1 + c02 

Since the section twists about the shear center, it is more convenient to work 
1ko= i- ,dA with M and the translations of the shear center. Once us2, U3, and o are 

k = || X ' dA 
i X3 

We take (12-12) as the definition of the one-dimensional linearly elastic com­
plementary energy density for the engineering theory. One can interpret

° ° ° e , k , k as "weighted" or equivalent initial strain measures. 
Differentiating (12-12) with respect to the stress resultants and couples, and 

substituting in (12-11), we obtain the following force-displacement relations: 

° el = e + 
AE 

1 , kl = 
MT

J (01, 

F2 MrT 
e2 

GA 
-- + - X 3 = U2, 1- 903 k2-k°2 ,--= 02. 1 (12- 13)

GJ 
° k, = k + M3 1

F3 Mr _
XGA 3 -GJ 

3, 1 + (02 =+= 

To interpret the coupling between the shear and twist deformations, we note 
(see Fig. 12-4) that Fig. 12-4. Translations of the centroid and the shear center. 

2 = X30 (a) 
( 

known, we can determine 2, 3 from (12-14). We list the uncoupled sets ofUt3 - x2 01 

defines the centroidal displacements due to a rigid body rotation about the 
force-displacement relations below for future reference. 

shear center. Comparing (a) with (12-13), we see that the cross section twists Stretching 
iabout the shearcenter, not the centroid. This result is a consequence of neglect- I 

ing the in-plane deformation terms in V*, i.e., of using (12-12). elo+ A = u 1 

Instead of working with centroidal quantities (M1, u2, u3), we could have 
started with MT and the translations of the shear center. This presupposes Flexure it X1-X2 Plane 

that the cross section rotates about the shear center. We replace 2, 3 (see F2Fig. 12-4) by 
U2 =- S~2 ±+(013 ~X (12-14) 

GA - S2 , 1 - 3 
3 

kU3 =t 3 - (01 X2 3 
M3 

(0 3, 1 
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Flexure in X1 -X3 Plane (12-16) The expanded form for the linearly elastic case is 

F3 
GA- US3, 1 + (092 fI[(e + AE) AFt + AF 2 

+ F3)AF 3 + MT AMT 
GA 3 (12-21) 

+ (k ° + AM2 + k° + M , = d,k02 + __ 0)2,
El, EI2) D~~l~tJ, 

We use (12-21) in the force method discussed in Sec. 12-6. 
Twist About the Shear Center 

MT 12-4. SUMMARY OF THE GOVERNING EQUATIONS 

GJ At this point, we summarize the governing equations for the linear engineering 

The development presented above is restricted to an elastic material. Now, theory of prismatic members. We list the equations according to the different 

the principle of virtual forces applies for an arbitrary material. Instead of first modes of deformation (stretching, flex ure, etc.). The boundary conditions reduce 

specializing it for the elastic case, we could have started with its general form to either a force or the corresponding displacement is prescribed at each end. 

(see (10-94)), 
x, [if rTAu dA] dx, = >di APi (12-17) Stretching (F1, ul) 

F1 , 1 + b = 0 
where Erepresents the actualstrain matrix, and As denotes a system of statically 
permissible stresses due to the external force system, APi. We express the e + F1 = l (12-22) 

integral as 
F t or ut prescribed at xl = 0, L 

J.f r A S dA = E (ej AFj + kj AMj) (12-18) 
A j=1 Flexure in X1-X2 Plane (F2 , M3, u2 , (03) 

and determine ej, kj, using A as defined by the engineering theory. For example, 
taking F2, + b2 = 0 

Au, = AF + 2 -x2 
AM 3 (a) 

F2 

3 + F2 = 0AFt AM 2 
M3,1 + mn

U2 , 1 - )3
leads to (12-23)

M, ° el = -A e IdA .-. + k = 03, 1 

k2 = I X3el{dA (b) u2 or F2 prescribed at xl = 0, L 
M3 or (03 prescribed at .x = 0, L 

k 3 2 1 dA Flexure in te X1-X3 Plane (F3 , M 2, u3 , 0)2 ) 

F3,1 + b3 = 0Once the extensional strain distribution is known, we can evaluate (b). 
Using (12-18), the one-dimensional principle of virtual forces takes the form M2, 1 + n 2 - F3 = 0 

F3fjL [(ej AFj + kj AMAi)]dx = di APi (12-19) 
GA = u3, 1 + C2 

The virtual-force system must satisfy the one-dimensional equilibrium equations (12-24) 

(12-4). One should note that (12-19) is applicable for an arbitrarymaterial. M2+ k2 = o2, 1 

When the material is elastic, the bracketed term is equal to dV*, and we can 
a3 or F3 prescribed at xt = 0, L

write it as 
02 or M2 prescribed at x = 0, Lx,[dV* dx 1 = Zdi APi (12-20) 



340 341 ENGINEERING THEORY OF PRISMATIC MEMBERS CHAP. 12 

Twist About the Shear Center (MT, el, u2 , u13) 

MT, + mr = 0 

MT 
GJ -CO, 1 

Mr or co1 prescribed at x = 0, L (12-25) 

mT = ml + b2 x3 - b3x 2 

Y3(01U2 

= --X2( 1U3 

12-5. DISPLACEMENT METHOD OF SOLUTION-PRISMATIC MEMBER 

The displacement method involves integrating the governing differential 
equations and leads to expressions for the force and displacement parameters 
as functions of x. When the applied external loads are independent of the 
displacements, we can integrate the force-equilibrium equations directly and 
then find the displacements from the force-displacement relations. If the applied 
load depends on the displacements (e.g., a beam on an elastic foundation), 
we must first express the equilibrium equations in terms of the displacement 
parameters. This.problem is more difficult, since it requires solving a differential 
equation rather than just successive integration. The following examples illus­
trate the application of the displacement method to a prismatic member. 

Example 12-1 

We consider the case where b2 = const (Fig. EI2-1). This loading will produce flexure 
in the X-X 2 plane and also twist about the shear center if the shear center does not lie on 
the X2 axis. We solve the two uncoupled problems, superimpose the results, and then 
apply the boundary conditions. 

Flexure in X1 -X2 Plane 

We start with the force-equilibrium equations, 

F2 1 = -b2 (a) 

M3, = -F2 (b) 

Integrating (a), and noting that b2 = const, we have 

F2 = F2lx,= - b2 x1 (c)0 

For convenience, we use subscripts A, B for quantities associated with x1 = 0, L: 

Filxl=o = FAj Fjlx,=L = FB etc. (d) 

With this notation, (c) simplifies to 

F2 = FA2 - b2x ! (e) 

Substituting for F2 in (b), and integrating, we obtain 

M3 = MA3 - xlFA2 + --b2x1 (f) 

SEC. 12-5. DISPLACEMENT METHOD OF SOLUTION 

We consider next the force-displacement relations, 

M3 
(g)

EI 3 

F2 
U2,1 = 03 + GA (h)

GA2 

Integrating (g) and then (h), we obtain 

(tA3 + in(XlMA3A3 XXMFA - 2 + b2xl)
El, 
XK xN ( x~ "i 1b3 

U2 = UA2 + XOA3 + FA2 -A2 I + MA 3 E3 +2-- (i) 

The general flexual solution (for b2 = const) is given by (e), (f), and (i). 

Fig. E12-1 

X2 tb2 

X2 

X3 
Centroid 

I _1 
A I 

Twist About the Shear Center 

The applied torsional moment with respect to the shear center is 

mT = b2x3 (j) 

Substituting for mT in the governing equations, 

MT I = -MT 

(k)MT 
c1, t J 

and integrating, we obtain 

MT = MAT - b2 .x3x1 

(1) 
C01 = AI + GJ (XIMAT - 2X3 X 

The additionalcentroidal displacements due to twist are 

u3 = -x-0) (m) 
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Cantilever Case 

We suppose that the left end is fixed, and the right end is free. The boundary conditions 
are 

UA2 = A3 = OA1 = 0 

(n)FB2 = MB3 = MBT = 0 

Specializing the general solution for these boundary conditions requires 

FA2 = b2L 
M,3 = b2L2 (o) 

MAT = b2 X3 L 

and the final expressions reduce to 

F2 = b2(L - x1) 

M3 = - Lx + Xb2 

Mr = b2 3(L - x) 

+u2 = X3(01 + b2LxI 6E +GA2 b2I- + 12 GA2 () 

U3 = -X2(sI 

b2 xiL2 xLL x3 
2EI3 = 2 +3 

b2x3Xl 1 
=-- (L - ½x) 

It is of interest to compare the deflections due to bending and shear deformation. 
Evaluating u2 at xl = L, we have 

L 
1 72 4 

UB2[bendigl b2 
4 = 8 E 3 

I h2L
2 (q) 

[lB2 sheardeforl.on -- GA 

(5s E 13 

,Bn G L
2
A 2 

As an illustration, we consider a rectangular cross section and isotropic material with 
v = 0.3 (d = depth): 

E 
- = 2.6
G 

13 6 I3 d2 (r) 

A2 5 A 10 

-, = 1.04 (L)
3)3L 

By definition, d/L is small with respect to unity for a member element and, therefore, it is 

SEC. 12-5. DISPLACEMENT METHOD OF SOLUTION 

reasonable to neglect transverse shear deformation with respect to bending deformation 
for the isotropic caset. Formally, one sets 1/A 2 = 0. 

Fixed-End Case 

We consider next the case where both ends are fixed. The boundary conditions are 

UA2 = )A3 = OAl = 0 

1
UB2 = B3 = B1 = 0 (S) 

Specializing (h), (i), and (k) for this case, we obtain 

b2L 
FA2 =-2

2 

b2 L
2 

MA3 = 12 (t) 

MAT = 2 b2X3L 
2 

The final expressions are 

F2 = b2 -2 x 

/L2 LI 2 

\12 2 2/ 

MT = b2 (3 
L -

X1 

b2 2 
"2 = 0 3 + 2 (LxI1 -X2) + (L 2 - 2L + X) (u) 

2GA 2 24E13 

U3 = -X 2(01) 

2
L;13 3(03 = b2 L X - L X2 + 

6 
X3 

EI3 k42 4 

b2-T3 
go = GJ (Lx1 - 2) 

Example 12-2 

We consider a member (Fig. E12-2) restrained at the left end, and subjected only to 
forces applied at the right end. We allow for the possibility of support movement at A. 
The expressions for the translations and rotations at B in terms of the end actions at B 
and support movement at A are called member force-displacement relations. We can 
obtain these relations for a prismatic member by direct integration of the force-displacement 

t For shear deformation to be significant with respect to bending deformation, GIE must .be of 
the same order as I/AL 2 where A, is the shear area. This is not possible for the isotropic case. 
However, it may be satisfied for a sandwich beam having a soft core. See Prob. 12-1. 
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relations. In the next section, we illustrate an alternative approach, which utilizes the 
Integrating (c) and setting x =L, we obtain 

principle of virtual forces.t 
L 

Fig. E12-2 UB = UA1 + - FB 

X2 L L 2 

O9B3 = (.43 - MB3 + 2I FB2 
EI3 2E1, 

2I 2, OB2 L L
UB2 = UA2 + LOA3 + 2-E

, 
MB3 + -_j 

3 
MBT + (G + 3I FB2 

t L L2 (d)FA2 FB2, UB2 
E12z 202 I 

+ L L3B 2 B T 

Al UB3 UA - -2 --- 2E ­3 

D.0t 2E12 GJ +\GA3 3EI2 / r3 

M1B , obi 
C)BI = C.A1 + -

L 
MT

GJ 

93, UB 3 Finally, we replace MBT by 

IB 3, WCB3 

X3 
MBT = MB 1 X31iB2 - X2FB3 (e) 

and write the equations in matrix form: 
The boundary conditions at x = L are 

I 
L[FJ]X,=, = FBj (a) AE 

tl1I FBI 
[Mil].,=L = MBi 

Integrating the force-equilibrium equations and applying (a) lead to the following expres- L L3 i 
sions for the stress resultants and couples: 

1(B2 GA2 3E13 _35X2 L
2 

_ 

Fj = Fj (j = 1,2, 3) +Lx2/GJ GJ GJ 2EI3 
MT = MBT 

M2 = l2 - (L - xt)FB3 
(b) 

L L3 
I 

M3 = MB3 + (L - xt)FB2 11B3 GA3 3E1 2 L- ,2 
r'. 

Using (b), the force-displacement relations take the form 
GJ + LT2/GJ GJ 2EI2 

1 - X3L X2 L L 
AE WBI r,- MB IGJ GJ 

C3, 1 = - [MB3 + (L - xl)FB2] L2 
L 

. I1 
E13 (082 

r-r 'VfB2EI2 Li 2U2, 1 = 93 + 
GA 2

FA2 + 
GJ 

MBT (c) I 
2
L

O)B3 
2EI3 MB3 

+ {uAl , UA2 + LOA43, uA3 - LOA2, WA41, 91,2, C9A3} (f)1 

The coefficient matrix is called the member "flexibility" matrix and is generally denoted 

CS, I = 
1 
JMBT by fB. 

We obtain expressions for the end forces in terms of the end displacements by inverting 

t See Prob. 12-1l. f. The final relations are listed below for future reference: 
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AE Example 12-3 
FB1 = - (UB - A1) 

We consider next the case where the applied loads depend on the displacements. To 
12EI3 6EIJ 12EI13 

(UB2 - UA2) - (CB3 + (0A3) L3 (oBI - (oA1) simplify the discussion, we suppose the shear center is on the X2 axis and the member is 
FB 2 = _L3 

loaded only in the X,-X2 plane. The member will experience only flexure in the X1-X2 

12E1 6EI~ 12EIX 2 plane under these conditions. 
3FBL3= 2 (UB3 - UA3) + -L2-(CB2 + OA2) + L3 (( - OA1) 

(h) The governing equations are given by (12-23): 

MB1 = -- + (x 13 + X22) (1 -- (O41) 
F2, + b2 = 0 (a) 

F2 = -M 3 - m3 (b) 
12EI*33 6EIY. 3 . 

° 
L3 (UB2 - UA2) + (O)B3 + 0CA3) (03,1 = k + -M3 (c)

E13 
12EIY 2 , 6EI* 2 - F2 

+ L3 (UB3 - UA3) + -l-2---(COB2 + C02) U2, 1- (03 = G (d) 

6E12 6EI*52 An alternate form of (a) is 
MB2 = (UB3 - UA3 ) + --- (O1 - A1) 

m3. 1 + 13, - b2 = (e) 

Once M3 is known, we can, using (b), find F2. + (4 + a2 ) -
L 

COB2+ (2 - a2) 
L 
o4 2 Now, we solve (d) for 03 and substitute in (c): 

6EI, 6EIW. 3 
MB3 = lj7(u.2 - UA2) + L--(os1 - (A1) 0)3 = U2. I -

F2 

3 A2 
(f)

F2,1+ (4 + a3)-- CB3 + (2 - a3) I-o.,3 (03, 1 2 ,11 .U z2, 11 - G
b2 

L L 
GA 2 GA 2

where Then,
12EI22 12EI3 

°a2 GA3L a3 GA 2L 
M3 = E13(u2, ii + - b2 - k ) (g)

GA 2 
2 13 and 

1+ a2 1+ a3 

A 2h .k (h)
We introduce the assumption of negligible transverse shear deformation by setting F2 = -m3 - EIl3 111 + 1 

a2 = a3 = 0. Finally, we substitute for M3 in (e) and obtain a fourth-order differential equation involving
The end forces at A and B are related by 

u2 and the load terms: 

FAj = - Fsj (j = 1, 2, 3) d4U d2 b2] c di2 
AlI = - Bl (i) dx-4 + ((_/?'-I-- b 2 ) = 0 (i) 

1 I(~x:\GA- El 3 \dx, 
MA 2 = -MB2 + LFB3 

2 

The problem reduces to solving (i) and satisfying the boundary conditions:
i MA3 = -MB3 - LFB2 

We list only the expressions for MA 2, MA3: F2 or u2 prescribed at x 
M3 or 03 prescribedj at xl- O L (j) 

iMA2 
L 

(UB3 -
-

A3) + L( - (O1 - COAl) Neglecting transverse shear deformation simplifies the equations somewhat. The re­
sulting equations are (we set 1/GA 2 = 0) 

+ (4 + a2 ) - 2A2 + (2 - a2 )--- 0)B2 
(03 = U2, 1(j) 

° 
= - 6E 

2)+ - (O)B1 
- Ol) 

F2 = - 3 - E 3

(k)L2 (U2 - ZU
6El1 M3 = E13(u2, 11 -

(.

k ) 
- k 1)2 ,11 1 

EI* EI* 
d

4
u2 d

2 
1 (din3 ) =O+ (4 + a3)L CA3 + (2 - a3) L (OB3 - k + Li3 k,dx- _b= 0L L 

_jx_'f~~ 
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As an illustration, consider the case of linear restraint against translation of the centroid, 
e.g., a beam on a linearly elastic foundation. The distributed loading consists of two q = const 

Fig. E12-3A 

terms, one due to the applied external loading and the other due to the restraint force. 
We write 

b2 = q -ku 2 (1) , ---- -ri] 
XI 

where q denotes the external distributed load and k is the stiffness factor for the restraint. 
We suppose m3 3 == 0, k is constant, and transverse shear deformation is negligible. 
Specializing (k) for this case, we have X2 

(03 = U2, I 

M3 = EI3u2 , 1 (m) 
Application 2 

F2 = - EI32. 1 The boundary conditions at x1 = 0 (Fig. E12-3B) are 

d
d. 

4u2 
+ --

k 
U2 = 

q 
(n) U2, 1 = 0 

= -P/2F2 = -EI 3 u 2,1 1 
F2 or u2 prescribed I and the solution is 

(o) P;.M3 or (03 prescribed at x1 .= 0, L 
112 = --- e '(cos Ax1 + sin Axi)

2k 
The general solution of (n) is 

The four basic functions encountered are 
u2 = u2, p + e-Z'x(Cl sin Ax1 + C2 cos Ax) + e(C 3 sin 1.x1 + C4 COS AX1) 

(P) At = e-"i(cos Ax + sin Ax) 
A = k 4 

I/2 = e-x sin x = -- V' 
where u2,, represents the particular solution due to q. Enforcement of the boundary (12-26)
conditions at x = 0, L leads to the equations relating the four integration constants. ¢3 = e-"(cos Ax - sin x) = 

The functi6n e- `x decays with increasing x, whereas ex increases with increasing x. 
- x 1For Ax > 3, e A 0. If the member length L is greater than 2(3/A) = 2Lb (we interpret -

Lb as the width of the boundary layer), we can approximate the solution by the following: ¢4 = e cos Ax = -- - ¢ 
2), 

0 x < Lb: u2 = u2,p + e- X'(Cl sin Axl + C2 cos Ax 1) Their values over the range from Ax = 0 to Ax = 5 are presented in Table 12-1. 

LB < XI < L - Lb: 2 = U2, p (q) 
L - Lb < xl < L: u2 = U2,p + exl(C sin Axl + C4 cos Ax1) Fig. E12-3B

3 

The constants (C1, C2) are determined from the boundary conditions at x = 0 and 
(C3, C4) from the conditions at x1 = L. Note that C3 and C4 must be of order e - L since xI 
u2 is finite at x = L. 

Application I X2 

The boundary conditions at xi = (Fig. E12-3A) are 
12-6. FORCE METHOD OF SOLUTION 

U = 

M3 = EI 3u2 , 1 = 0 In the force method, we apply the principle of virtual forces to determine the 

Since q is constant, the particular solution follows directly from (n), displacement at a point and also to establish the equations relating the force 
redundants for a statically indeterminate member. We start with the one­

u2, p = q/k dimensional form of the principle of virtual forces developed in Sec. 12-3 (see
The complete solution is Equation 12-19): 

,2 = k(1 - e
- X ' 

cos A1x)
k jIx[E(ej AFj + kcj AMi)]dx, = di APi (a) 
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Table 12-1 Introducing (12-28) in (12-27) and canceling APQ leads to 
Numerical Values of the ¢i Functions 

de = -R, Q 'k + fZ [E(efj 2 + kMj, )dx (12-29)
.X1 2 /4 Ax This expression is applicable for an arbitrary material, but is restricted to the 

0.0 1.000 0.000 1.000 1.000 0 linear geometric case. Since the only requirement on the virtual force system 
0.2 0.965 0.163 0.640 0.802 0.2 is that it be statically permissible, one can always work with a statically deter-
0.4 0.878 0.261 0.356 0.617 0.4 minate virtual force system. The expanded form of (12-29) for the linearly0.6 0.763 0.310 0.143 0.453 0.6 elastic case follows from (12-21):0.8 0.635 0.322 -0.009 0.313 0.8 
1.0 0.508 0.310 -0.111 0.199 1.0 
1.2 0.390 0.281 -0.172 0.109 1.2 d =- -ERk,, k + e + / 'o1.4 0.285 0.243 -0.201 0.042 1.4 
1.6 0.196 0.202 - 0.208 --0.006 1.6 
1.8 0.123 0.161 -0.199 -0.038 1.8 '+ + F2 3 Q + MT Q2.0 0.067 0.123 -0.179 -0.056 2.0 F,(2A2) M, (12-30)
2.2 0.024 0.090 -0.155 -0.065 2.2 
2.4 -0.006 0.061 -0.128 -0.067 2.4 3) M.3 QI dxIi'~~~I2)2.6 - 0.025 0.038 --0.102 -0.064 2.6 + 0 + M2) M2.Q + ElM·]~
2.8 -0.037 0.020 -0.078 -0.057 2.8 where 
3.0 -0.042 0.007 -0.056 -0.049 3.0 
3.2 -0.043 - 0.002 -0.038 -0.041 3.2 0o= 1 W ,
3.4 -0.041 -0.009 -0.024 - 0.032 3.4 
3.6 -0.037 -0.012 -0.012 -0.024 3.6 
3.8 -0.031 -0.014 -0.004 -0.018 3.8 ko j, JJ x ° dA 
4.0 -0.026 -0.014 0.002 - 0.012 4.0 
4.2 -0.020 -0.013 0.006 - 0.007 4.2 
4.4 -0.016 -0.012 0.008 -0.004 4.4 k ° = - I V2 ° dA4.6 -0.011 -0.010 0.009 - 0.001 4.6 
4.8 - 0.008 -0.008 0.009 0.001 4.8 
5.0 - 0.005 - 0.007 0.008 0.002 5.0 Finally, we can express (12-29) for the elastic case in terms of V*: 

where ej, kj are the actual one-dimensional deformation measures; d = g dpX - Huh-
OPQoP* (12-31)I 

di represents a displacement quantity; 
APi is an external virtual force applied in the direction of di. 

This form follows from (12-20) and applies for an arbitraryelasticmaterial. 

The relations between the deformation measures and the internal forces depend Example 12-4 
on the material properties and the assumed stress expansions. The appropriate 
relations for the linear elastic engineering theory are given by (12-13). If 

We consider the channel member shown in Fig. E12-4A. We suppose that the material 
a displacement is prescribed, the corresponding force is actually a reaction. 

is linearly elastic and that there is no support movement. We will determine the vertical 

We use ak, ARk to denote a prescribed displacement and the corresponding 
reaction increment, and write (a) as Fig. E12-4A 

x,Z(ej AFj + kj AMj)]dx 1 - dk ARk = di AP (12-27) X2 
where d represents an unknown displacement quantity. 

To determine the displacement at some point, say Q, in the direction defined P 
by the unit vector ft, we apply a virtual force APQtq, and generate the necessary 

C 

internal forces and reactions required for equilibrium using the one-dimensional 
force-equilibrium equations. We express the required virtual-force system as 

AFj = Fj.QAPQ 
AM = Mj, APQ (12-28) center 

ARk, R,Q APQ k--q 
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displacement of the web at point Q due to- Initial Deformations 

t. the concentrated force P 

2. a temperature increase AT, given by 

AT = alxl + a2xlx2 + a3X 1X3 

The initial extensional strain due to the temperature increase is 

El = AT = (alxl + a2 IX1X2 + a3 x1x3 ) (d) 

The equivalent one-dimensional initial deformations are 

Force System Due to P 

Applying the equilibrium conditions to the segment shown in Fig. El 2-4B leads to 2e,° dA= axI 

.F2 = -P 

MT= +Pe (a) 
2k= ffSjX3 dA = a3XI (e) 

M3 

F1 

= 

= 

-P(L - x1 ) 

F3 = M2 = 0 
k° =--J X2*; dA = -a~x 

Fig. E12-4B 
Determination of dQ 

L-x Substituting for the forces and initial deformations in (12-30), we obtain 

dQ -
'L/2fP 

X° tGA2 

Pe2 

+ GJ L+ [0 2 
x1 

P 
± (-x
+ E-3 (L ­3 .x)] ( -pdxxl)}dx 

P_ L e 2 L 5 L3 a, 2 (f) 
2G 2 2G 

+ 2GJ 
48 El-
4 +l- 8 

4 
-48 

Example 12-5 

Virtual-Force System 

We take ldQpositive when downward, i.e., in the - X2 direction. 

we must apply a unit downward force at Q. The required internal 

To be consistent, 
forces follow from 

When the material is nonlinear, we must use (12-29) rather than (12-30). To illus­

trate the nonlinear case, we determine the vertical displacement due to P at the right end 

Fig. E12-4C: Fig. E12-5 

F2,Q - - I X2 
Px2 
? 

I 

L 
MT, Q = e (b) P 

X2 

O>x, A 2 M3,(Q == . - X 

F,Q = F3 ,Q = M2 ,Q = 0 

X3 
I 

L 
- <x 
2 

L 
Fj,Q 0 

{ MJQ =0 

(j= 1,2,3) (c) 

Fig. E12-4C Centroid (and 
shear center) 

-L lI 
e Lxl 2~~~~~~~ 2 - 0 

Shear center axis 
of the member shown in Fig. E12-5. We suppose that transverse shear deformation is 

t 

1143, t | i / negligible, and take the relation between k3 and M3 as 

MT,Q li ... 
i 

k3 = a + a3M3 (a) 
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Noting that only F2, Qand M3, Qare finite, and letting e2 = 0,the general expression for This system is statically permissible. Substituting (a) in (12-27), and noting

dQ reduces to r that APi = 0, we obtain 
dQ = jk 3M3. Q dxi (b) 

Now, f,'x[ (eiFj,k + kJMi,k)] dx = Y JiR, k (12-33) 
M3 = -P(L - x) Taking k = 1, 2, ... , r results in a set of r equations relating the actual de-M3,Q = -(L - xl) (c) formations. One can interpret these equations as compatibility conditions,

Then, 
3 

since they represent restrictions on the deformations. 
k3 = -Pal(L - x) - P a3 (L - X1)

3 (d) To proceed further, we must express the deformations in terms of Fj, Mj. 
Substituting for k3 in (b), we obtain In what follows, we suppose that the material is linearly elastic. The com-

L3 L5 patibility conditions for the linearly'elastic case are given by 
dQ= Pal 1 - + p

3a3 -­3 5 

f [(e AE) F1 , k + F2 , k + F3 k + t MT, k� 

We describe next the application of the principle of virtual forces in the + (k2 ± EI )M 2, + (k3° q--9M3 ldvl =d.R 
(12-34) 

analysis of a statically indeterminate member. We suppose that the member 
± 

is statically indeterminate to the rth degree. The first step involves selecting 
r force quantities, Z 1, Z 2, . . , Z,.. These quantities may be either internal forces 
or reactions, and are generally called force redundants. 

A more compact form, which is valid for an arbitrary elastic material, is 
Using the force-equilibrium equations, we express the internal forces and * = - ORir

reactions in terms of the prescribed external forces and the force redundants. Ia27 dx, = _ izk (k= 1,2,...,r) (12-35) 

The final step involves substituting for F, Mj using (12-32). We write theFj=Fj,o + E Fij.kZk resulting equations ask= I 

r 

M = Mij,o + E Mj,kZk (12-32) 
k=1 Y fkjZj = Ak (k = ,2 ., r) (12-36)j=1 

Ri = Ri, o + E Ri, kZk 
where 

k=l 

fJFl kThe member corresponding to Z = Z2 = '" = Z, = 0 is conventionally fkjfik F1 
1 1f| + -G-AF 2, jF 2 F3,jF3 kcalled the primary structure. Note that all the force analyses are carried out on 

1 1Ithe primary structure. The set (FJ,o, Mj, o, Ri, o)represents the internal forces + - M, jMT, k ±-
1 

M2, 
i M2

' k + iM 3, jM3, k dlM
and reactions for the primary structure due to the prescribed external forces. 
Also, (F1 k, Mj, k, Ri, k) represents the forces and reactions for the primary 

-structure due to a unit value of Zk. One must select the force resultants such Ak iRi, AE Ik X2 F2 k G ) F3 k 

that the resulting primary structure is stable. 
Once thethe force redundants areare known, find the total forces fromtotal forces from + ( MT,k + + EI )M 2 k + 0)EIjM kdnce orce redunants Known, we canwe can tind te 

(12-32). It remains to establish a system of r equations relating the force(12-32). It remains to establish a system of r equations relating the force
redundants. With this objective, we consider the virtual-force system consistingredundants. With this objective, we consider the virtual-force system consisting The various terms in (12-36) have geometrical significance. Using (12-30), 

Zkofof AZk and the corresponding internal forces and reactions,and the corresponding internalforces and reactions, we see that fjk is the displacement of the primary structure in the direction of 
Z due to a unit value of Z,. Since fjk = fkj, it is also equal to the displacementAFj = Fj,k AZk in the direction of Zk due to a unit value of Zj. Generalizing this result, we can 

AMj = Mj, k AZk (a) write 
ARi = Ri, k AZk (di)Pj= = (di)p,=1 (12-37) 
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where i, j are arbitrary points, and P, corresponds to d,, i.e., i has the same Fig. E12-6B 
direction and sense. Equation (12-37) is called Maxwell's law of reciprocal 
deflections, and follows directly from (12-30). The term Ak is the actual dis- X2 X2 

placement of the point of application of Zk, minus the displacement of the 
primary structure in the direction of Zk due to support movement, initial strain, 
and the prescribed external forces. If we take Zk as an internal force quantity R3 , d3 

(stress resultant or stress couple), Ak represents a relative displacement (trans­
lation or rotation) of adjacent cross sections. 

One can interpret (12-36) as a superposition of the displacements due r4 l4 

to the various effects. They are generally called superposition equations in R2, d2 
elementary texts.- If the material is physically nonlinear, (12-36) are not /. - I Z = 
applicable, and one must start with (12-33). The approach is basically the 

- z1=o$ 
same as for the linear case. However, the final equations will be nonlinear. 
The following examples illustrate some of the details involved in applying the 

t RI, WIforce method to statically indeterminate prismatic members. 

Force System Due to Prescribed ExternalForces (Fj.o, Mj. o, Ri, o) 
------- Inql 4 d2I--·1 

This loading (Fig. E12-6A) will produce flexure in the X1-X2 plane and twist about 
Fig. E12-6C 

the shear center; i.e., only F2, M3 and MT are finite. The member is indeterminate to the 
first degree. We will take the reaction at B as the force redundant. I __ 

M3 ,0 

Fig. E12-6A I 1 B 
=- -I 

X2 Yv 
A2 MT,o F n 11 I

--. C"" ""'" al PAc . 
olical;;cl!bilIGI asI; 

q 

1 -- rr -- I~~~~~qeII I 
q 

11 
X1 X3 

L 
, -

.. 
I 

1. - Y. 
. 

_~--
I 

Shear F2,o = -q(L - xl) R1 ,o = 0 
center 

MT, = qe(L - xl) R2, = qL 

(b)
M3, 0 = -(L - x1)

2 R3, 0o=-
qL

2 

2 2 

Primary Structure F1,o = F3.0 = M2, 0 = 0 R4, 0 = qeL 

One can select the positive sense of the reactions arbitrarily. (See Fig. E12-6B.) We 
work with the twisting moment with respect to the shear center. The reactions are related Force System Due to Z = + I(Fj. , Mj, 1, Ri. ) 
to the internal forces by 

Fig. E12-6D
R = Z1 

M3,1. k 

eR3 = -M3]x, = (a) (I 71tI 
R4 = +MT],=O AlIT, 

Lr,-i,,,1 'I I 
Shear center axis 

t See, for example, Art. 13-2 in Ref. 3. ----- L-xl I---------
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F2,1 = +1 R,, = +1 

Example 12-7
MT, 1 = -e R2, = -1 

M3,1 = +(L -- xi) R3, = -L (c) This loading (Fig. E12-7A) will produce only flexure in the X1 -X2 plane. We suppose
F, 1 = F3,1 = M2,1 = 0 R4, = -e the material is physically non1linear and take the expression for k3 as 

0k3 = k3 + aM 3 - a13 M
3 

(a)
Equation for Z1 To simplify the analysis, we neglect transverse shear deformation. 

We suppose that the member is linearly elastic. Specializing (12-36) for this problem, 
Fig. E12-7A 

X2fl l Z 1 = A1 

fIl = fL (F2,1)2 + -J(MT, )2 +E (M3 , )2]dx (d) q X2 
4 rL 

[1F2 F 21 ---- MTOMT, 1 
(1A, = Y iRi, -f [+GJ2 J EI3 M311i=1 O 

and then substituting for the forces and evaluating the resulting integrals, we obtain X3 

2
L Le L

3 

J + 13fi = 2GAz GJ 3EI, 
2qL2 [

A2 
e L2 

Sh, 

2A1 = 31 - 2 - La23- 4 + + -- + -- 1 (e) 
2 GA 2 

GJ 4E13 j t- - L- - >1jL 
-| k (L - x)dx1
0 

Primary Strutcture 
The value of Z1 for no initial strain or support movement is 

R1 = Z R2 = -(F2)x1=o R3 = -(M3)x,=O (b)
3F1 + 4E 2J_+ __ 

Z = qL +3E (1, 3 e/3 / (f) Fig. E12-7B
4E 13 e2/.1 X2 

R3,d3 t 
Final Forces B 

XI 
The total forces are obtained by superimposing the forces due to the prescribed external 

system and the redundants: R2, 2 t 
F2 = F2,0 + Z1F2,1 = -q(L - xt) + Z 1 

Z = 

MT = qe(L - x) - eZ 1 

M3 = 2 (L - x1)2 + (L - x)Z2 t R1, l 
R = Zt (g) 
R2 = qL- Z1 ForceSystem De to PrescribedExternalForces (see Example 12-6) 

qL 2 

F2 ,0 = -q(L - x)R3 =-- LZ1
2 (c) 

R4 = e(qL - Z1) 
M3, = -(L - X)

2 

2 R 
2R1, 0 =0 R2, =qL R3O 
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ForceSystem Due to Z1 + 1(see Example 12-6) 
Fig. E12-8A 

F2 ,l- +1 M3 ,1 = L - x 

Rl,1= +1 R2. 1 -1 (d) 

R3 , 1 = 
· 

-L 
X? x,~~~~~~~~~~~~~~Y

'LL 

Compatibility Equation 

Since the material is nonlinear, we must use (12-33). Neglecting the transverse shear She; 

deformation term (e2), the compatibility condition reduces to 

i 1c3M3 1 dx l = ,RiR, (e) 

We substitute for k3 using (a): 

fL . , 
j (aiM 3 + a31V3)JlV3, 1 aXli = 

-. 
Lzii, 1 

. [ L 
- 0-I--1 

o: ' 
. 3 

A 
1 

(f) 
x- X3 

b 

Now, 
M3 = M3 ,0 + Z1M3.1 ( 

= -q (L -xl) 2 + Zt(L - xl) 

Introducing (g) in (f), we obtain the following cubic equation for Z1 : 
Fig. E12-8B 

/_ r 5 / . .,,r 6\ /n. 1.3 31,,1a2L 
7 
\ X2 

3( 5 4 3 28 

qL4 34 L) +,al-d2L - L - °(L)dxl (h) 

For the physically linear case, 

al a3 = (i) X1 

and (h) reduces to 

Z, 3= 3qL 3E13 [l+ -j [d
8 

- -

L 3 
LL -J--

fo 
V-()k°(L - x)dxi 

3~~ x3 

Example 12-8 
X3 

The member shown (Fig. Et2-8A) is fixed at both ends. We consider the case where the 

material is linearly elastic, and there are no support movements or initial strains. We take 

the end actions at B referred to the shear center as the force redundants. Fig. E12-8C 

Z1 = FB2 

Z2 = M13 (a) 
<M3I0 f f f | Shear center axis 

Z3 = MTB MT,Ob 

The forces acting on the primary structure are shown in Fig. E12-8B. 
F2,o | Px3 

Initial Force System 

F2 .0 = P M3. 0 = P(a ­ ) (b) ib a -xl b 

MT, O = Px3 
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Z = +1 Cornpatibility Equations 

The compatibility equations for this problem have the form 
Fig. E12-8D 3 

M3 ,1, Y AjZj = Ak (k 1, 2, 3)

(I 
l 

j=l
MT,1 

T| · - ­

fkj = [i F2 ,jF 2 , k + - MT, MT, k + I M3, M3,k dl 

F2,1I Shear center axis (f) 
Ak- = [(F.F2° 

J
+ ( 

]XIT 
+ M '-) M3, k dxM.(

L\&JGA 
)F 

, + I~x-- -L-xl _.._ 

Substituting for the various forces and evaluating the resulting integrals lead to the fol­
lowing equations: 

F2 ,1 = + M3 1 = L-
Pxg E1 E(c) 

MT, 1= 0 GA I) + Z =(:)-P[G + 31(a + (g 

LZ1 + ( Z =.... (g) 

Z2 = +1 _ L\- Pa
2 

Fig. E12-8E Finally, solving (g), we obtain 

6E13 
. aLGA2 

MT,2 ( I Z = -P I+ -
12F131l"-

L2 GA2_ 
F2,2 (h) 

2 + 6EI, ­

1L___- L -xl --
a b aLGA2 Pax3Z2= eP- Z3 = 

1F - - -I~ Z2--L2 12EI, L 
+ P¥27 

M3 ,2 = +1 F2,2 = MT, 2 = O (d) Application 

Suppose the member is subjected to the distributed loading shown in Fig. E12-8G. 

-3 = +1 We can determine the force redundants by substituting for P, a, and b in (h), 

P = q dx, 

Fig. E12-8F a x (i) 
b = L-xl 

M3,3 
and integrating the resulting expressions. The general solution is 

I-S- - e z I 
--- ~7 2 2(2 6Exz+, 

_ (L - q dxtZ = L2 xx + LC [X(L - + x )xLMT,3 F2 ,3 I + LC LGA2
_ ... _ _ .. . . , _ ._ __ . _ _ . I 

L 6E13L- - L --xX1 - Shear center axis Z = L21 
C x(L - x,) + LGAx (L - x) q dxI (j) 

Z3 = - xlq dxl 
MT, 3 = +1 F2 ,3 = M3 ,3 = (e) "fo:' 
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where 
E = -x 2k 312EI3 

L2GA 2 i all = Eel1 
(a) 

As an illustration, we consider the case where q is constant. Taking q = const in (j), We relate k3 to M3 by substituting for a in the definition equation for M 3: 
we obtain 

= -if 
qL 

M 3 
A 

x2a1 1 dA 
Z1 -_ 

2 
(b)

M3 = (EcI3 c + EfI3. f)k 3Z = L2 (k) 
To simplify the notation, we drop the subscript and write (b) as x3qL 

Z3 = 2 M = (El)equ,,k3 (c) 
where (EI)equiv is the equivalent hoimogeneous flexural rigidity.Fig. E12-8G 
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PROBLEMS and noting that F2 = M 3, 1, (d) becomes 

12-1. The accompanying sketch shows a sandwich beam consisting of a 
core and symmetrical face plates. The distribution of normal stress over the '12 b(EiE 
depth is determined by assuming a linear variation for the extensional strain: b(EI)equiv JJ (f) 
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PROBLEMS 367 

(a) Apply Equations (e) and (f) to the given section. 
(b) The flange thickness is small with respect to the core depth for a typical 

beam. Also, the core material is relatively soft, i.e., EC and G are X2 
Prob. 12-3 

small with respect to Ef. Specialize part a for Ec= 0 and tJ/h << . Also 
determine the equivalent shear rigidity (GA2)equiv, which is defined as 

q = const 

(v*) 2 12 dA
2G d F

2 (GA2)quiv 

(c) The member force-deformation relations are 

E 

/'2 

(GA 2)equiv X -eH 

k, M3 
(EI)equiv 

Refer to Example 12-1. Specialize Equation (q) for this section and 
discuss when transverse shear deformation has to be considered. Xl 

12-2. Using the displacement method, determine the complete solution 
for the problem presented in the accompanying sketch. Comment on the 
influence of transverse shear deformation. R 

I 

i 
Prob. 12-2 

X2 i. q 
Prob. 12-4 

(a) 

T 
(b) 

X - b b--- i P 

X1 
II 

I 
(c) 

12-5. The formulation for the beam on an elastic foundation is based on 
a continuous distribution of stiffness; i.e., we wrote 

12-3. For the problem sketched, determine the complete solution by the 
displacement method. 

12-4. Determine the solution for the cases sketched. Express the solution 
in terms of the ' functions defined by (12-26). 

(aI
Note that k has units of force/(length)2, 

We can apply it to the system of discrete restraints diagrammed in part a 
of the accompanying sketch, provided that restraint spacing c is small in 

b2 = - ku2 (a) 
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comparison to characteristic length (boundary layer) Lb, which we have taken as Evaluate this distribution for 

3 3 a = 24 ft L = 64 ft c =1 ft I = It 

Lb (k/4Ei) 4 (b) 
12-6. Refer to E; ample 12-3. The governing equation for a prismatic 

beam on a linearly ellastic foundation with transverse shear deformation in-
A reasonable upper limit on c is cluded is obtained by setting b2 = q - ku 2 in (i). For convenience, we drop 

Lb (c) the subscripts: 
15 

d4U k d2u k 

Letting kd denote the discrete stiffness, we determine the equivalent distributed dx4 GA dX
+ -- u Ilii dni 

d2 ( (a)2 El 
stiffness k from . . (ri We let 

\ fk = kd/C k k 

Evaluate Lb with (b), and then check c with (c). 
and (a) takes the form 

-El = 4 
'
4 2 GA 2 4(A (b) 

d2
Prob. 12-5 d4 u2 u 

442 dX2 + 4 4 u = (c)-X 

Note that is dimensionless and IAhas units of 1/length. The homogeneous 
solution is 

u e-a(Cl cos bx + C2 sin bx) + e+X(C3 cos bx + C4 sin bx) 

where (d) 

( c - e-- · (c c -- a = (1 + )/2 

;(1 - )1/2b = 
(a) 

To specialize (d) for negligible transverse shear deformation, we set = 0. 
(a) Determine the expression for the boundary layer length (e- 3 0). 
(b) Determine the solution for the loading shown. Assume L large with 

respect to Lb. The boundary conditions at x = 0 are 

0 = 0

Ta/2 I I I 
r 

1-Cc c F2 = -P 

Investigate'the variation of Mmna and Umax with . Consider ~ to vary
iIt \L,E, 1 from 0 to 1. 

a[2 Prob. 12-6 
t E 

I P 

7 /
//// 

.xI _x 

(b) 

Consider the beam of part b, supported by cross members which are fixed 
at their ends. Following the approach outlined above, determine the distribu- I L .. '--­
tion of force applied to the cross members due to the concentrated load, P. 
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12-7. Refer to the sketch for Prob. 12-3. Determine the reaction R and 
centroidal displacements at x = L/2 due to a concentrated force PT2 applied
to the web at x1 = L/2. Employ the force method. 

12-8. Refer to Example 12-7. Assuming Equation (h) is solved for Z1,discuss how you would determine the translation u2 at x = L/2.
12-9. Consider the four-span beam shown. Assume linearly elastic be­

havior, the shear center coincides with the centroid, and planar loading.
(a) Compare the following choices for the force redundants with respect 

to computational effort: 
I. reactions at the interior supports
2, bending moments at the interior supports

(b) Discuss how you would employ Maxwell's law of reciprocal deflections 
to generate influence lines for the redundants due to a concentrated 
force moving from left to right. 

Dwlh 40 O
I[--·~~~IL 0 L L 7 L__~~r __ 

~I 

. 
IIII 

i@7 i757 i~~~~ffi7 <X7i7___A 

12-10. Consider a linearly elastic member fixed at both ends and subjected 
to a temperature increase 

T = a + a2 x2 + ax3 3 

Determine the end actions and displacements (translations and rotations) at 
mid-span.

12-11. Consider a linearly elastic member fixed at the left end (A) and
subjected to forces acting at the right end (B) and support movement at A.
Determine the expressions for the displacements at B in terms of the support
movement at A and end forces at B with the force method. Compare this 
approach with that followed in Example 12-2. 

~̂ '~-~- "-·'··lpl·IlL.... 
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. t dI lltue 
Torsion-Flexure of

a Prismatic Member 

13-1. INTRODUCTION 

The engineering theory of prismatic members developed in Chapter 12 is 
based on the assumption that the effect of variable warping of the cross section 
on the normal and shearing stresses is negligible, i.e., the stress distributions
predicted by the St. Venant theory, which is valid only for constant warping
and no warping restraint at the ends, are used. We also assume the cross 
section is rigid with respect to in-plane deformation. This leads to the result 
that the cross section twists about the shear center, a fixed point in the cross 
section. Torsion and flexure are uncoupled when one works with the torsional 
moment about the shear center rather than the centroid. The complete set of
governing equations for the engineering theory are summarized in Sec. 12-4. 

Variable warping or warping restraint at the ends of the member leads to
additional normal and shearing stresses. Since the St. Venant normal stress 
distribution satisfies the definition equations for F1, M2, M-3 identically, the 
additional normal stress, au,must be statically equivalent to zero, i.e., it must
satisfy 

ffa' , A = ff-V2(y d = xxa, A = (13-1) 
The St. Venant flexural shear flow distribution is obtained by applying the
engineering theory developed in Sec. 11-7. This distribution is statically equiva­
lent to F2, F3 acting at the shear center. It follows that the additional shear 
stresses, faf 2 and Ur 3 , due to warping restraint must be statically equivalent
to only a torsional moment: 

.aj1 2 dA = O 
fS13 dA (13-2) 

To account for warping restraint, one must modify the torsion relations. Wewill still assume the cross section is rigid with respect to in-plane deformation. 
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