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12-7. Refer to the sketch for Prob. 12-3. Determine the reaction R and
centroidal displacements at x; = L/2 due to a concentrated force Pi, applied
to the web at x; = L/2. Employ the force method.

12-8. Refer to Example 12-7. Assuming Equation (h) is solved for Z;,
discuss how you would determine the translation u, at x; = L/2.

12-9. Consider the four-span beam shown. Assume linearly elastic be-
havior, the shear center coincides with the centroid, and planar loading.

(a)} Compare the following choices for the force redundants with respect-
to computational effort:
1. reactions at the interior supports
2. bending moments at the interior supports
(b) Discuss how you would employ Maxwell’s law of reciprocal deflections
to generate influence lines for the redundants due to a concentrated
force moving from left to right.

Prob. 12-9

[ : |
12-10. Consider a linearly elastic member fixed at both ends and subjected

to a temperaturce increase
T = Ay + QzXz + a3X;y

Determine the end actions and displacements (translations and rotations) at

mid-span.

12-11. Consider a linearly clastic member fixed at the left end (4) and
subjected to forces acting at the right end (B) and support movement at A.
Determine the cxpressions f[or the displacements at B in terms of the support
movement at 4 and end forces at B with the force method. Compare this

approach with that followed in Example 12--2.
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Restrained

Torsion-Flexure of
a Prismatic Member

13-1. INTRODUCTION
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In what follows, we develop the governing equations for restrained torsion.
We start by introducing displacement expansions and apply the principle of
virtual displacements to establish the force parameters and force-equilibrium
equations for the geometrically linear case. We discuss next two procedures
for establishing the force-displacement relations. The first method is a pure-
displacement approach, i.e., it takes the stresses as determined from the strain
(displacement) expansions. The second method is similar to what we employed
for the engineering theory. We introduce expansions for the stresses in terms
of the force parameters and apply the principle of virtual forces. This cor-
responds to a mixed formulation, since we are actually working with expansions
for both displacements and stresses. Solutions of the governing equations for
the linear mixed formulation are obtained and applied to thin-walled open and
closed cross sections. Finally, we derive the governing equations for geomet-
trically nonlinear restrained torsion.

13-2. DISPLACEMENT EXPANSIONS; EQUILIBRIUM EQUATIONS

The principle of virtual displacementst states that
{{fs™ 8¢ d(vol) = [[{b” Au d(vol) + {{p” Au d(surface area) (a)

is identically satisfied for arbitrary displacement, Au, when the stresses (o) are
in cquilibrium with the applied body (b) and surface (p) forces. We obtain a
system of one-dimensional force-equilibrium equations by introducing expan-
sions for the displacements over the cross section in terms of one-dimensional
displacement parameters. This leads to force quantities consistent with the dis-
placement parameters chosen.

We use the-same notation as in Chapters 11, 12. The X, axis coincides with
the centroid; X,, X, are principal incrtia axes; and X,, X3 are the coordinates
of the shear center. We assume the cross section is rigid with respect to in-plane
deformation, work with the translations of the shear center, and take the dis-
placement expansions (see Fig. 13-1) as

1= Uy + WXz — w3Xy + f
= Uy — wy(x3 — X3) (13-3)
3 = U + 0y(X; — X3)

PSS T
N

where ¢ is a prescribed function of x,, x3, and— -

1. uy, ug,, ugy are the rigid body translations of the cross section.

2. wy, w4, w3 are the rigid body rotations of the cross section about the
shear center and the X,, X5 axes.

3. f is a parameter definining the warping of the cross section. The
variation over the cross section is defined by ¢.

Note that all seven parameters are functions only of x;. For pure torsion

+ See Sec. 10-6.
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(ie., the St. Venant theory developed in Chapter 11), one sets f = w,; ; = const
and ¢ = d?,. For unrestrained variable torsion (ie., the enginee;irig theor
developed in Cha}pter 12), one sets f = 0. Since there are seven displacemcn}t,
parameteljs, application of the principle of virtual displacements will result in
seven equilibrium equations.

X3
Ugs
T Shear center
T T T T T T @ e Uiy
X2
| @
5 I
3 | %3
i
{
— X,
w3
Centroid

Fig. 13—1. Notation for displacement measures.

The strain expansionst corresponding to (13-3) are
81 = U1+ W21X3 — 3,1 + [ ¢
& =83 =y;3 =0
Yiz = U — 03 = 0 (X3 —X3) + [,
V13 = Usz 02 + @1, 4(X2 — X)) + [
Using (13~4), the left-hand side of (a) expands to
fUGT ogd(vol) = [ [F, Auy ( + Fy(Aug, « — Aws)
+ 1:3(Alls3.1 + AU)Z) + A{z AO)Z, 1 -+ M3 ACU:;‘ 1 (b)
-+ MTACUI’I + M¢ Aj,l + MR Af]dxl
where the two additional force parameters are defined by
ng = ”o‘“qﬁ dA
Mg = ”(Ulzd’,z + 0130, 3)dA

Note that M, has units of (force) (length)* and My has uni
: . nits of moment.
quantity M is called the bimoment. ‘ o The,

(13-4)

(13-5)

T on is restricte 1 g y. P
metr h
Ihls dCIIVatI e d to 1 near geo. The nonlinear strain ex ansions are deuved
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To reduce the right-hand side of (a), we refer the transverse loading to the
shear center. The additional load terms are

my = §p1¢ dS = distributed bimoment

. (13-6)
M, = {{p1¢ dA = external bimoment at an end section (x; = 0, L)
Then
{J§p” Au d(vol) + {{p” Au d(surface arca)
== jxl[bl Aul + b2 AusZ + b3 Aus3 + my A(Dl + My AC()Z (C)

+ ms ACU3 + my Af]dx1 -+ ipl Au1 -+ FZ Ausl _
+ F3 Aus3 -+ MTAQ)I + Mz ACOZ + M3 A(U3 + Md? /—\f].n»':O,L

The definitions of bj, mj, my, Fj, M, My are the same as for the engineering
th?i?a;ll\y, we equate (b), (c) and require the relation to be satisﬁefd fqr arbitrgry
variations of the displacement parameters. This step inv‘olves first mtggratmg
(b) by parts to eliminate the derivatives and thf:p equatmg the coeflicients of
the displacement parameters. The resulting equilibrium equations and bound-
ary conditions are as follows:

Equilibrium Equations

F1,1+b1:0
F2’1+[)2=0
F3,1+b3=0

Mg +mp =0
MZ,IAF3+mZ=0
M3,1+F2+m3:0
M¢,1~MR+m¢,=0

Boundary Conditions at x; = 0 (13-7)
U, = Uy or F, = —F,
Uy = U, 0T Fy,=—F,
Uy = Ug3 -~ OF F3y= —F,
Wy = @ or My = —~Mr
Wy = @ or M, = —M,
w3 = @3 or My = —M,

w -
f=7 or My=-M,

|

Boundary Conditions at x; = L

These are the same as for x; = 0 with the minus sign replaced with a plus sign.

For example: _ _
f=7 or My=+M,
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We repognize the first six equations as the governing equations for the
engineering theory. The additional equation,

M¢Y1—MR+WI¢:O 0<X1<L d

f=f o My=FM, x=00L @

is. due to warping restraint. Also, we see that one specifies either f or the
bimoment at the ends of the member. The condition f = f applies when the

.end cross section is restrained with respect to warping. If the end cross section
is frec to warp, the boundary condition is My = + M, (+ for x; = L).

To interpret the equation relating M and the bimoment, we consider the
definition for My, ’

Mg = [{(012¢. 2 + 013¢.3)dA ©
Integrating (¢) by parts leads to

My = §p:¢ dS — [[$l015,2 + 013, 3)dA ]
Utilizing the axial stress equilibrium equation,
O32,2 + 0133 + 01,1 =0 8
we can write
Mg = §p1¢p dS + [{doyy, ( dA )
= nld, + ]\/Id,,‘ .

We see that (h) corresponds to the axial equilibrium equations weighted with
respect to ¢,

[J012,2 + 013,53 + 011, )P d4 + $(P1 — 02012 — U3013)P dS =0
U )
Md),l +md,——~MR=()
In most cases, there is no surface loading on §, i.e., p; = 0 on the cylindrical
boundary. We will discuss the determination of stresses in a later section. We
simply point out here that My involves only the additional shear stresses due

to warping restraint since the St. Venant shearing stfesses correspond to
611 = 0.

13-3. FORCE-DISPLACEMENT RELATIONS—DISPLACEMENT MODEL

To establish the relation between force parameters and the displacement
parameters, we consider (13-4) to define the actual (as well as virtual) strain
distribution and apply the stress-strain relations. We also consider the material
to be isotropic and suppose there is no initial strain. The stress expansions are

031 = Egéy = Eglus, 1 + X303, 1 — Xow3,1 + 1]
012 = Gy12 = Glug, 1 — w3 — 01, (x5 — X3) + f,2] (13-8)
033 = Gyia = Glug, 1 + w2 + 01, 1(x2 — X3) + fo.3]

T Mg = M, = Ofor St. Venant (pure) torsion. We neglect Mz and M, for unrestrained variable
torsion.
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where E; denotes the effective modulus. Although our displacement expansions
correspond to plane strain (¢; = &3 = 0), the in-plane stresses vanish on the
boundary. Therefore, it seems more reasonable to use the extensional stress-
strain relations for plane stress. In what follows, we will take E.; = Young’s
modulus, E.

Consider the expression for oy;. The term involving ¢ is due to warping of
the cross section. This additional stress must satisfy (13—1), which, in turn,
requires ¢ to satisfy the following orthogonality conditions:f

[{¢p dA = [[x2¢p dA = [[x3¢pdA = O (13-9)

Assuming (13-9) is satisfied, and noting that X,, X3 are principal centroidal
axes, the expressions for F';, M,, M3, and the M, reduce to:

Fy = EAduy 4
M2 = EI;(JJZ 1

. 13-10
M3 = E]3(1)3_1 ( )
My = EI,f

where
I 6 = §£4)2 dA
We have included the subscript r on E to keep track of the normal stress due
to warping restraint. Inverting (13-10) and then substituting in the expression

for oy, lead to

F, M, M, M,

= —— e — ——— 3—
011 A -+ T X3 I X, + I,f, (l) (1 11)

The expressions for F,, Fa, My, and My expand to

1
EFZ = Alug, 1 ~— 03 + X301, 1) + S,
1 ' -
‘(*,:Fs = Az, ) + 03 — a4, 1) + fS3
1 13-12
”G*M1=[1CO1,1 + f15 ( :
Mr =M; + X3F; — X;F;
1 S, S3 , ”4
—G—MR = EZFZ -+ 62.F3 + 14,601,1 + Id,f
where '
S; ={[¢.,d4

1, = polar moment of inertia = I, + I3
Iy = [[(x20, 35 — x3¢,5)dA

g = [J@% + 6204 — (53 + 5)

tFy = M, = M3 = Qfor g,, due to warping restraint.
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Also, the expressions for the shearing stresses can be written as

F, s
O12 = 7+ G[*Xsa)IJ +f <¢’2 - 7;—)

F S
013 = Zg + G[XZ(J)I,l + f(¢.3 — mj—)]

The essential step is the sclection of ¢ which, to this point,-must satisfy only
the orthogonality conditions (13-9). To gain some insight as to a suitable form
for ¢, let us reexamine the St. Venant theory of unrestrained torsion. We
suppose the section twists about an arbitrary point (x5, x4), instead .of about
the centroid as in Sec. 11-2. The displacement expansions are

(13-13)

Uy = —wy(x3 — x5) 3 = wy(x; ~ x3)
i = w; ¢, fa)
where w; ;| = M;/GJ = const. Operating on (a) leads to
gy = 0
M, _ ‘
02 = T [¢:,2 = (x5 — x's)] (b)

M
i3 = ‘3‘1{(/);% + (x; — x5)]

The equation and boundary condition for ¢; follow from the axial equilibrium
cquation and boundary condition,

Vi =0 ind4

opr . ,
s En2(X3 — X5) = o(Xy — x5) onS (©
We can express ¢; as
¢t = C — xix; + X4X3 + ¢, (d)

where C is also an arbitrary constant. The boundary condition and expressions
for the stresses become

¢,

5;; = OpzX3z — an}xl
M, '

12 = A (¢, 2 — x3) (e
M

013 = 71(05:,3 + X3)

Since ¢, depends only on the cross section, it follows that the stress distribution



378 RESTRAINED TORSION-FLEXURE OF PRISMATIC MEMBER CHAP. 13

and torsional constant are independent of the center of twist. Also, one can
showt that

, {[pe,2d4 = {{pe,3dd =0 0
—“(xzfﬁr, 3 — X3¢, 2)dA = [5[((15: 2?4 (¢, 5)7]d4

Suppose we take ¢ = ¢;. The constants (C, x4, x5) are evaluated by requiring
&, to satisfy (13-9), and we obtain

C

i

i .
—Z§‘¢t dA
X, = ..IL [fxa: dA ©
2
<5 = 7 [xaidd
3 .

Now, one can show] that the equations for xj, x5 are identical t.o the e‘quations
for the coordinates of the shear center when the cross section is consxdereq to
be rigid with respect to in-plane deformation. That is, the warping function
for unrestrained torsion about the shear center is orthogonal with respect to
1, X2, X3.

Summarizing, we have shown that

¢ = C — X3X; + X2X3 + ¢, = (13—14)
is a permissible warping function. The cross-sectional propert_ics and force-
displacement relations corresponding to this choice for ¢ are listed below:

Cross-Sectional Properties

S; = X34 Sy = +X,4

fo=—1s (13-15)

J=L+I,=1 -1

I&? = “[((f)t, 2)2 + (d)t S)Z]dA

Shear Stresses
F
013 = ‘j + G(—x301,1 + fobe,2)

(13-16)

F
013 = 713 + G(Xza)l, 1+ fd)t, 3)

+ See Sec. 11-2 and Prob. 11-2.
1 See Prob. 13-1.

AR AT
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Force-Displacement Relations

MT = Gllwl’l b GI:I:f + E3F2 - 552F3

Mg = GI{(f — wy,1) — X3F2 + X2F;

F

'6;21‘ = U, — w3 — X3(f — wy,1) (13-17)
F

'G*% = U, + 02 + X2(f — @1,1)

We introduce the assumption of negligible restraint against warping by
setting E, = 0. Then, M, = 0, and the seventh equilibrium equation reduces
to Mg = 0. Specializing (13-17) for this case, we obtain

RN xar _ (13-18)

F, (1 = F3( X,X3
U 1 = W3 + - — + =5+ = -5
s2, L 3 G (A ;;) G Z

. Fz X7X3 F3 1 T%
Usp = 2 F G( 1;;)+ c\a'1

The shearing stress distributions due to F,, F'3 do not satisfy the stress boundary
condition

and

(13-19)

%p2012 + 3013 = 0 onS (a)

However, one can show that they satisfy
§(‘xn2012 + ay3013)dS = 0 (b)

for arbitrary F,, F3. Equations (13-19) are similar in form to the results
obtained in Chapter 12, which werc based on shear stress expansions satisfying
(a) identically on the boundary.

Finally, we point out that torsion and flexure are uncoupled only when
warping restraint is neglected (E, = 0). Equations (13—17) show that restrained
torsion results in translation of the shear center. We will return to this point in
the next section.

13-4. SOLUTION FOR RESTRAINED TORSION—DISPLACEMENT
MODEL

To obtain an indication of the effect of warping restraint, we apply the
theory developed in the previous section to a cantilever member having a
rectangular cross section. (See Fig. 13-2). The left end (x; = 0) is fixed with
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A~ 'T
2 X2

X; —r

]

- o

Sect. A-A

Fig. 13-2. Restrained torsion-cantilever with rectangular cross section.

respect to both rotation and warping while the right end (x, = L) is free to
warp. The boundary conditions are
X = 0 wy = f =0 ( )
x =L M =M a
M,/) = O

i i restrai rsion:
For convenience, we list the governing equations for restrained to

Equilibrium Equations (See (13-7)) .
Ml,l + my = O ((C;
MR = M¢’1 + m¢,
) t
Force-Displacement Relations (See¢ (I13-10) and (13-12). Note tha
F, =F; =0).
M¢ = ErId)f, 1
y d
M1:G110)1,1+G1¢f . ()
Mp = Glyw, + GI;f

Boundary Conditions (for this example)

Atx1=0, f:a)1=0 (e)
Atx1=L, M1=M
1=0

. - ‘
We start with (b). Integrating (b) and enforcing the boundary condition a

xy = Lleads to My = M (13-20)
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Next, we combine (c) and (d):

Glyw; | + GI;f = E,I f, (g)
Solving (f) for wy, 1, o ¢ o
M I
Wy, 1 = EE - I‘If (b
and then substituting in (g) lead to
— I .
Jon =Pf =2y )
- E11,
where 7 is defined as
- G (1,)?
2 - "o '_'\25____ .
A% = El, [14, 7 (13-21)

Note that 72 has units of (1/length)®. The solution of (i) and (h) which satisfies
the boundary conditions (¢) is (we drop the subscript on x for convenience)

f= (—,A% {1 = cosh Ix + tanh L sinh Ax}

ML oo _ ol
Wy = o5 {-—Ex + I [sinh Zx + (1 — cosh AX)tanh lL]} (13-22)
732
J = »I-i[—lj,; QI?LL}

1
The rate of decay of the exponential terms depends on 1. For I ~ 25,
We can take tanh IL ~ 1, and the solution reduces to

S =l - ey

GJ’
" , (13-23)
W, = AJ_ .I_d’ac + 14’ (1 e—fx
LG AT )
As a point of interest, the St. Venant solution is
dah M .
[ = A - )]

We see that 1/7 is a measure of the length, L,, of the interval in which warping
restraint is significant. We refer to L, as the characteristic length or boundary
layer. By definition,

e~ 0 (13-24)
In what follows, we shall take

Lb%

(13-25)

>l A

The results obtained show that 7 is the key parameter. Now, 1 depepds on
the ratio G/E, and on terms derived from ¢, the assumed warping function. If
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iont trained torsion defined by
© - functionf for unrestraine
we take ¢ = ¢F°, the warping

(13-14), the various coefficients arc related DY

Wl 13-26)
J=1 —1I§ (
Jo=1J

. 1 )
t this p() nt, we KGStﬂCt th.e dlSCUSS an 1 TS 1 (S g
A h nt, 1011 to a XGLt A gu a eCt O( n (sec E 1 3 2

do = ¢ We evaluate the yarious integrals defined by
and ¢ = Or -
the results as

J = K]a3b

Iy = +K§;§a3b _—
Il = Kl(l b

14, = K¢03b3

K, =Ky — Ko

1 m
expression for 7 takes the for o

K1
F=\E) b

i

KJIS“,;{ 1/2
o Kike iall
K, is essentially
.4 in Table 13-1. We see _that A ;
jents are tabulated in Ta o e,
- tc;netfﬁcgse:;fmmg E ~ 266G and K; = 32, we find 4 /
constant. AS

l]le in uence (){ wa pln estra. nhncd O a 1on O
g T tr lnt 18 CO t. e
ﬂ T f t C(H(l(’, ()1 (]

p - & [ ra rOCtaIlgulal Ccross SCCUOU wWe W IH
de th I/X‘“ll()u h thlS Te’iuit Wwas del “/ed (¢] 9
g

Yy ~Wd 0O SS § eC( 1008,

(13-29)

Table 13-1
K4
b Ké
- KJ K¢ K1 K/
a

o311 156 336
éii 65 450 316
8y 323

noo 425 964 332

\Ne cons: (le IleXt the pl()blem ()[ catin € ce te E W st. VVC ufll € ﬂle

i — & and large 2L:
solution corresponding 1o ¢ = ¢i° an g

M —-%x
et (13-29)

M - —{i 1 - e"i")}
®1=GJ {’? 71, ¢

= < io and d) reduces to d’t\ccmroid
P = ular SCCtl n 1ishear center

= Xy = X Qfora rectang

i C Xg X3
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The translations of the shear center follow from (13-17):

' Usa 1 = f3(_f - wl,x) (13_30)
Uz, 1 = _x2(f - wl,x)

By definition, the translations are zero at the center of twist. Setting i1, = it3 =

0 in (13-3) and letting x5, x5 denote the coordinates of the center of twist
lead to

L = gx% t =
Xy =gxX, X3 =gX3

L _Ll=ze™
g TR

We see that the center of twist approaches the shear center as x increases. The
maximum difference occurs at x = 0 and the minimum at x = L.

(13-31)

oo = —2 = 1
gx-ﬁ() _{é:_]
I
11 (13-32)
gx= e
- Lo de
ALLy

For unrestrained warping, E, = 0,71 = oo, and g = 1.

13-5. FORCE-DISPLACEMENT RELATIONS—MIXED FORMULATION

We first review bricfly the basic variational principles for the three-dimen-
sional formulation. The principle of virtual displacements requires

{[fo™ 0 d(vol) = f[{b" Aud(vol) + [fp" Au d(surface area) (a)

to be satisfied for arbitrary Au and leads to the stress-equilibrium equations
and stress-boundary force relations. Note that ¢ is a function of Aua and is

obtained using the strain-displacement rclations. The stress-strain relations
can be represented as '

£T 06 = OoV*

(b)
since, by definition of the complementary energy density,
‘ * av*
&i(o) = B0 Vij(0) = 'a‘(;; ©

By combining (a) and (b), we obtain a variational principle which leads to both
sets of equations. The stationary requirement,

o[{[f6™e — BTu — V*)d(vol) — [[p”u d(surface area)] = 0 (13-33)
considering o, u as independent quantities, € = £(u), and p, b prescribed, is
called Reissner’s principle.t

t See Ref. 11 and Prob. 10-28. Reissner’s principle applies for arbitrary geometry and elastic
material. This discussion is restricted to linear geometry. The nonlinear case is treated in Sec. 13-9.
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The essential point to recognize is that Reissner’s principle allows one to
work with ¢ and w as independent quantities. In a displacement formulation
(Sec. 13-3), we take ¢ as a function of u, using the stress-displacement relations
¢ = Dz = ofu), and 6”¢ — V* reduces to V, the strain-energy density. In a
mixed formulation we start by introducing expansions for the displacements.

The Euler equations for the displacement paramecters are obtained by ex-
panding (a). This step leads to the definition of force parameters and force-
equilibrium equations. We then generate expansions for the stresses in terms
of the force-parameters from an equilibrium consideration. The relations
between the force and displacement parameters are obtained from the second
stationary requirement:

{5 [ff(eT 66 — 8V*)dAJdx, = 0
. Thefirststep was carried out in Sec. 13—2 and the expanded form of | 6¢"o dA4
is given by (b) of Sec. 13—2. Letting V* represent the complementary energy

per unit length along X, and using (13-4), the stationary requirement on the
stresses (Equation 13-34) expands to

5F1u1, I + 5F2(u32’ 1~ (U3) + 5F3(lls3_ 1+ 602) -+ 5M2(02Y 1

+ (5M3CO311 + 5MTQ)171 + 5M¢f,1 + 51\/[1(/. —oV* =0
In order to proceed further, we must express ¥* in terms of the force parameters
(Fy, Fy, ..., Mg). Equating the coefficients of each force variation to zero
results in the force-displacement relations.

Instead of applying (13-34), one can also obtain (13-35) by applying the
principle of virtual forces to a differential element. We followed this approach
in Chapter 12 and, since it is of interest, we outline the additional steps required
for restrained torsion. One starts with (see Fig. 13-3)

oV*dxy =) d;oP; = [ffu” opdA]., + [[fu” ép dA],, +ax, ()
The boundary forces are the stress components acting on the end faces. Taking
u according to (13-3) and considering only My, My, Mg, we have
ffopTudA = +f 6o"udA
= i(élwrﬂ)l + 6M¢f)
where the plus sign applies for a positive face. The virtual-force system must

be statically permissible, i.e., it must satisfy the one-dimensional equilibrium
equations. This requires

(13-34)

(13-35)

(b)

oMy = const
d _ ©
d‘g(élwd,) = oMy
Then,
d .
ZdiéP,~=dxl{f,15M¢ +fEbM¢+col,15MT} d

= dxl{f_l 5M¢ '{‘féMR + U)l,léMT}
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The i
intmdufi;s}tg Iz}rloecee;lsix;?b(rt;ased on (.13~34)) Is more convenient since it avoids
: um equations. However, one has to h i
_ : , ave the strain-
displacement relations. In certain cases, e.g., a curved member, it is relatiitlallly

My —\—I My
_5M¢ dxl 5M¢ + 511/[%1 dxl
e

——
b}

wy Wy + wy 1dx,
f f“"f,ldXI

Fig. 13-3. Virtual force system.

easy to establish the force-equilibrium equations by
conditions to a differential element. We obt
by.applymg the second procedure {princip
to introduce strain expansions.}
In wh: ~onsi cri
what follows, we consider the material to be homogeneous linearly elastic

Zilld ISOtIOpIC. IO Smlph \ the t] Cthll)Cllt we a]S() Supp()se t]lC[e 1S no ]Illt]al
f 5

_ 1 1
* T e 2 e, 2
vV 5E Ha“ dA + 5 ﬂ(a}z + 0%3)dA

It remains to introduce expansions for the
forcg parameters such that the definition e
are identically satisfied.

Considering first the normal stress, we can write {

' applying the equilibrium
ain thg force-displacement relations
le of virtual forces) without having

(13-36)

stres:s components in terms of the
quations for the force parameters

F, M, M M
(j'l = e Dy — Mj ¢ — ¢
AT, T et 7,9 (a)

where ¢ satisfies the orthogonality conditions: §

6 d4 = [[x2 da = [fxspda = 0 (b)

Note that we have im
due to o expands to

. L (FF M2 e 2
(V*)mx :ﬁ(~i+h2+_j : Md’
22470 ") T, (©

ased inci i i
on the principle of virtual forces is not applicable for the geometrically

posed a restriction on ¢. The complementary energy -

+ The approach b
nonlinear case.

I See (l,“li) Problcm 3 eats t ¢ of a nonh 6) terial
H 3 13-8 s the ase of materis
¢ nonhom gencous ]
Sfy = JWZ = 1M3 =0 for Tr1 due to Warping restraint. “
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Finally, substituting for (V'*),,, in (13-35), we obtain

_F ~,_M_}_
=R YT d
oy =M o My N

3,1 EI3 o1 Er1d7

These expansions coincide with the corresponding relations obtained with the
displacement model (see (13-10)).

The shearing stress distribution must satisfy the definition equations for
F3, F3, My and My identically. We can obtain suitable expansions by adding
a term due to warping restraint to the results for unrestrained torsion and
flexure. We write

0yj = (T{j + Gillj + Ulij (13-37)
where ¢f; is the flexural distribution due to F,, Fi; o ; is the unrestrained
torsion distribution; and ¢}; is the distribution due to restrained torsion.

Since we are assuming no in-plane deformation, the flexural distribution for
a thin-walled section can be obtained by applying the engineering theory
developed in Sec. 11-7. For a solid section, we utilize the results of Sec. 11-5,
taking v = 0.

- The shear stress distribution for unrestrained torsion is treated in Secs. 11-2
through 11-4. Since the restrained-torsion distribution is statically equivalent
to a torsional moment, we havc to distinguish between the wnrestrained and
restrained torsional moments:

My = M% + My
oty = ) (133
o1 = 9(M¥)

It remains to determine ¢}; We follow the same approach as in the engi-
neering theory of flexural shear stress, ie, we utilize the axial cquilibrium
equations and stress boundary condition:

O12,2 + 013,3 = — 011, in A (a)
Q2012 + 0p3013 = 0 on s

Differentiating the expression for ¢y and noting the equilibrium equations,

we obtain
F, F Mg
g =—="X3 + X3 + —— b
N A Ry (b)
Since ¢ satisfies (a) for arbitrary F,, F3 and ¢" corresponds to ¢y = 0, it
follows that ¢” is due to My:

R .
02,2 + 033 = “T¢ (in 4)
¢

2072 + Un30h3 =0 (on S)

(13-39)
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T . ..
he orthogonality conditions on ¢ and boundary condition on ¢” ensure thatt

Fy=fotadd =0 ;= ffohsda =0

(13-40)
We solve (13-39) and then evaluate M% from
| 7= [{l~C(v = %015 + (x, — X2)o}3]dA ©
Noting (13-40), we sce that My = M. F inally, we write {c) as |
My = +CyMp (13-41)

where Cy isa cross-sectional property which depends on ¢. With this de

MTZ ?“'}“ C(b}‘/IR

finition,

| (13-42)
When the cross section is thin-walled, we neglect oy, and (a) reduces to
Ois,s = =044, -
ois=0  atafreeedge @

We take ¢ and %, to be constant over the

. " ‘ thickness ¢ a i
flow ¢" = ot Equation (d) becomes nd work with the shear

Il

q’s
g =9

The orthogonality conditi iti
y 10ns on ¢ and boundary condition on ¢ ensure that

M
M-‘[WB— (’f)r
® (13-43)
at a free edge

Py = fagq dS = 0

Fy = fuq dS = 0 (13-44)

Finally, we determine Cy by evaluating M?% and equating to (13-41)

We consider next the ¢
, omplementary energy densi i
form of the shear contribution as ¥ - Wewrdte the erpanded

{
B S u A
shear = 5% ﬂ[(o'lz + 0l + 01 + (of, + o3 + 0%3)*]d4
=VE+VEL7r+ 78, 4 Ve + 7x -

We have evaluated 7% 7* and 7%
‘ | , Vi Ffu In Sec. 11-5. F i
results are summarized below (See Equation 11-98) o convemience, these

- (2005, 50

+ P
6\4, T Ay, A,
_" (Mu 2
e ZGTJ) ®
Vi =0

T See Prob, 13-2.
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388
The coupling term, 1/423, vanishes when the section has an axis of symmetry.
g the cross section is rigid with

Also Vi = 0 is a consequence of our assumin

respect to in-plane deformation.
We evaluate VF, using (13-39) ((13-43) for the thin-

the results as

walled case), and write

- 1 1 C
® r )2 ¥ \2 = ¥ 2 —_
7= e ﬂ [ + Gilda =g M7 (13749

where C,isa dimensionless factor which depends on ¢.
The coupling between unrestrained and restrained torsion is expressed as

- 1 C
VE = — 40 . VA = —— MM 13-47
. ij (0120124‘0&3)13) oy e { )
It is obvious that C, =0fora thin-walled open section since 6" is an odd
function of n whereas o" is constant over the thickness. We will show later
that it is possible to make C,, vanish for a closed section by specializing the

homogeneous sotution of (13-43). Therefore, in what follows, we will take

Cuy= 0. .
Finally, we write the coupling

_ i
Vii=4 .U (04204, + ols0'a)dA
7

between flexural and restrained torsion as

] (13-48)
= E;—j()(;;,.FzMR + X27F3MR)

where x; have units of length. If X is an axis of symmetry, X3, = 0 since o’
is symmetrical and ¢ is antisymmetrical with respect to the X, axis.

We substitute for 7* in (13-35), replace My with Mt + C ,Mp, and equate
the coefficients of 0, SF, SMY, and SMg. The resulting force-displacement

relations are
F F Xar
L(,}_ + 23 + %‘MR)

Usp,1 — W3 = G\ A, Ars
1 [ F, Fs Xor
= e | —— + ~“IM
TG (A” taT R> (13-49)
M
w1 = E—f

G 1
Cowy, 1 + f= aMR + ?}’j (x3,.F2 + 3, F3)
The corresponding relations for the displaceme
Up to this point, we have required ¢ 1O satis
and also determined ¢’ such that there is 10 €nergy ©
¢ (Cyr = 0)- If, in addition, we take

$ = —(C—X3%2 + Xpxs + G) = — i

nt model are given by (13-12).
fy the orthogonality relations
oupling between ¢* and

SEC. 13~

13~6. RESTRAINED TORSION-—MIXED FORMULATION

thent -
C¢ = +1
M = + Mg (13-50)

Note that ¢i° is th i
at ¢; e warping function for unrestrai i
, : strained torsio
cenoter. We discuss the determination of ¢ in Secs. 13~7 andnlgb%m the shear
ne neglects shear deformations due to flexure by setting -

1 1 1

A, Ay Ay (13-51)

Simll arl S/‘ %% i y
g

C, = X9p = X3, =
r N2r A3r — 0
This ass i i o
umption leads to the center of twist coinciding with the shear center and
= —Cym,
W1
N | | (13-53)
e now has to determine M7 from the equilibrium relation
I | M;‘ = Md’vl ~+ fn¢ (a)
f M% is known, it is more convenient to work with |
M7 = My — MYy (b)

In what fo 3 i i
llows, we outline the solution procedure for restrained torsion and

hSl rCSultS f()[ various 1()ad1l1 . V\e thell dlSCu S t]le ap[)hcall()n to (’p(:“ a (l
S
g S 11

13-6.
SOLUTION FOR RESTRAINED TORSION—MIXED FORMULATION

‘We suppose onl i i

_ s y torsional loading is applied i '

ove SUPPOSe ' pplied. The force-displacem -

v thraézici ek:qy sef.tmg F,, Fs, W2, W3 equal to zero an% C :e-nfkrle l?n
ience, we summarize the governing equations gelow

Lquilibrium Equations
My +my=0 | ‘ (a)
: a
My =My, {b)
Force-Displacement Relations (¢ = — ¢ )
o

M, = ErId;f 1
M’;‘ = (;J(J)L 1

. GJ c
MT:'E—(le-i—f) ()

EX
S " . . .
t See Prob. 13-3. We include the minus sign so that C, will be positive
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Boundary Conditions

My . or wl} prescribed at each end (d)
M, or  f ~
Tyanslations of the Shear Center
X3 ¥ ; - ?f}_’__ v (6}
usz1=—G§jMT Ms3,1~GJM1

We start by integrating (a):

IMT = Cl - Sﬂl'p dX1 = C1 + M'rp (13—54)

Substituting (c) in (b) and (13-54) leads to the governing equations for @, and f:

G,
1+ Co +f= 7 (Cy + M) (6)
C.E,f 11~ Gllwy, s + ) =0
After some manipulation, (f) becomes

Erl, Cyxy c +“_1~le dx,
o= —gphtor T [N @©

il

/12
L= A "C‘J(Cl + My,

where A2 is defined ast 1
e (13-55)

2=t
© T TEd,

Cs =

i i 13-4
Equation (g) corresponds to {h), (i) of Sec. 13 _ .
the gen%ral solution for f and m; has the following form:

X . Cy +
f = Cscoshix + C, sinh Ax — e »

1 X
w1 =%x + C, +‘(‘J:j S\MTP(I?"

(13-56)

c,df,

- % (Cs sinh Ax + C, cosh AX) — FE

. _
where f, is the particular solution due to My, Wehave dropped the subscrip

on x; for convenience.

L= 30
1 The corresponding paramater for the displacemcm»model formulation is 7 (see (13 0
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The significance of 4 has been discussed in Sec. 13—4. We should expect,
on the basis of the results obtained there, that AL will be large with respect
to unity for a closed section. We will return to the evaluation of A in the next
section. In the examples below, we list for future reference the solution for
various loading and boundary conditions.

Example 13-1

Cantilever—Concentrated Moment

Fig. E13-1
/

Xl""“»M

The boundary conditions (Fig. E{3-1) are
x=0 o =/f=0
x=L My=M (@)
fx=0

Starting with (13-54), we set My, = 0 and C, = M. The remaining constants are deter-
mined from

wy=f=0 atx=0

fe=0 atx = L ®
and the final solution ist
M cosh A{L ~ x)
/= Ef[_l TSk AL "]
=M x Z inh AL inh (L
D= T | ¥ T Teoshag (S AL — sinh AL = x))
=-Cs . (13-57)
My =M|——— (L —
M, Toosh il sinh A( x)]
cosh AL — x)
My =M 1'— Ci——
T [ cosh AL ]
My = M — My

+ The corresponding solution based on the displacement model is given by (13-22), (13-26).
The expressions for f differ by a minus sign. This is due to our choice of ¢. We took ¢ = ¢i°
in the displacement model and ¢ = —¢@;° in the mixed model.



392 RESTRAINED TORSION-FLEXURE OF PRISMATIC MEMBER CHAP. 13

Note that C, = 1 when the complementary energy term due to the restrained torsion

shear stress {0”) is neglected.
The translations of the shear center are obtained by integrating

X3y - Xae -
= bij Mt Us3 x = Ezj My (c)

Usz, x

and requiring #;, us3 to vanish at x = 0. We write the result as
Uspy = X3,U Ugy = Xyplt
M (13-58)
U= | Mpdx =—x—w
[ Mrac =2 |

J
Let x}, uj denote the coordinates and translations of the center of twist. By definition,

Uy = Uy — wi(xs — X3) =0 @
U5 = Uy + 0y(xy — X)) =0

Substituting for u,; and w;, we obtaint

xh — X3 = —gXar Xy — X3 = gxa,
g= -1+ = X (13-59)
— ——% _[sinh AL — sinh A(L — X
Toon il [sinh AL — sinh A( xX)]
The limiting valuesf of g occur at x = 0, L.
1
g)x=0 = 1 R 1
Cs
1 (13-60)
glcrz = ‘—”—:‘—"'r
C,tanh AL

Note that x; = 0 if X, (j # k) is an axis of symmetry for the cross section. Also, x5, =
X3, = 0 if we neglect shear deformation due to the restrained shear stress and, in this
case, the center of twist coincides with the shear center throughout the length.

Example 13-2

We consider next the case where warping is restrained at hoth ends; the left end (x = 0)
is fixed and the right end rotates a specified amount w under the action of a torsional
moment. The boundary conditions are

x=0  w=f=0 ‘ (a)
«w

=90 (b)

x =1L ) =

T See (13-31), (13-32) for the displacement model solution.
i There is no twist or translation at x = 0. We determine y(0) by applying L'HGspital’s rule
to (13~59).
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To simplify the analysis, we suppose there is no distributed load. Starting with the

_ general solution,

‘zM'p = Cl
_ G
f = Cycosh ix + C, sinh jix — —L
GJ (©
Cix C, .
w, = Yers + Cy — - {Cs sinh Ax 4+ C, cosh Ax}
and enforcing the boundary conditions leads to the following relations:
C, 1 —-¢
C =t C4=C3< S‘)
¢ = cosh AL s = sinh AL
c, = CSF4
C,L C 21 = o)
o, {1 L [‘T“}} =o
C I —-c
= 5} {cosh AX + (—-—»ﬁ) sinh Ax — 1}
s (13-61)
w =—Ci ‘c+§f l-c inh A
t=E7 g L (1 — cosh Ax) — sinh Ax]}'
My=C =M
Mt = C, {1 - C; [cosh AX + (-l;€> sinh Ax]}
s

C —
My = EJy (2 ) dsinh i + (275 cosh 2
GJ s

We write the relation between the end rotation, w, and the end moment M. as

W = M L
TGJ

where L,,; denotes the effective length:

2 .
L,=1L [ [ - ;Ef (‘,_‘_)]
AL s (13~62)

= L{l - C,C))

The following table shows the variation of €, with AL. For IL > 4, C; ~ 2/AL. Note
that C, = 1 if transverse shear deformation due to restrained torsion is neglecrted.

LG

05 098
1 924
2 .76
360
4 4
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Example 13-3

Uniform Distributed Moment-Symmetrical Supports

The general solution for my = constant (we let my = m for convenience) is:

My =C, — mx
Cs . C4,~ ‘-_Q- Kl—‘c—
f=—-L—cosh/L\+fsmh/L,\ GJ+GJ )
(a
c, il G A B sinh ix + C4 cosh Ax)
w1=67“+C2“67<2+/:2 L (oAt G

We consider the boundary conditions to be identical at both ends and measure x from the
midpoint (Fig. E13--3). Symmetry requires

MT. - 0} atx =0 (b)
f=
and (a) reduces to
Mg = —mx
C .
= sinh dx + éf‘j x (13-63)
m x> C, CCo .
w = C; — &7 {7 + ;_2} T cosh Ax

We treat first the case where the end section is fixed with respect to both rotation and
warping. Requiring (13-63) to satisfy :

f=0=0 atx=Lp2 @

results in
m

1
f = a {X - E} sinh ).X}

mL?* {1 x\? Cs .
- — s h /x — ¢
=G {8[1 4<L)]+2M‘L(°°S ~ )}

Mr = —mx
« C (13-64)
M4 = mL {— It E;S sinh /lx}
mC, AL .
M, = T3 {1 ~ 5 cosh Ax}

AL LA
¢ = cosh——z— s = s1nh~2—
The solution represents an upper bound. A lower bound is obtained by allowing the
section to wrap, ie., by taking .
w;=f,=0 atx=~2— (b)
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X, ; Fig. E13-3

mL g e ol . [ Xl"’“"’-mzL

T
o~
=
nNo
~
N
joe)

and the result is
m

1.
[ = o7 {x — = sinh lx}
mL? (1 x\? C,
wy = a {_8. [1 — 4 (Z) ] + EEW {cosh Ax — c)}
Mi=m {—-x + %sinh )ux}

M‘[ = —mx
(13-65)
) sh A:
My = m{% (1 - coﬁ: Aj}}
A .

13-7. APPLICATION TO THIN-WALLED OPEN CROSS SECTIONS

In what follows, we apply the mixed formulation theory to a wide flange
section and also to a channel section. We first determine the cross-sectional
properties corresponding to ¢ = — ¢i° and then obtain general expressions for
the stresscs in terms of dimensionlcss geometric parameters. Before discussing
the individual scctions, we briefly outline the procedure for an arbitrary section.

Consider the arbitrary segment shown in Fig. 13-4. We select a positive
sense for S and an arbitrary origin (point P). The unrestrained torsion warping
function is obtained by applying (11-29) to the centerline curve and requiring
the section to rotate about the shear center. T

, ¢ _ My é
O-tls centerline = "t— = T Psc + & tsc (13—66)
where p, is positive when translation in the + S direction rotates the position
vector about the + X, direction. The unrestrained torsional shear flow is Zero

+ By definition, k; = M%/GJ. We work with g" rather than 74 to facilitate treatment of closed
and mixed sections where one generates ¢" in terms of M%/J.
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for an open section. Then, taking ¢ = —¢@;° and integrating leads to
Y
¢ =dpt | peds (13-67)

Note that one can select the sense of S arbitrarily. Also, ¢ varies linearly with
S when the segment is straight. The constant ¢p is evaluated by enforcing the
orthogonality condition (¢; = F,; = 0),

[ptds =0 (a)

If the section has an axis of symmetry, ¢p = 0, il we take P on the symmetry
axis. The remaining orthogonality conditions (¢%; — M, = M3 = 0),

[t dS = [¢pxst dS = O (b)

are identically satisfied by definition of the shear center.t

X3

Shear center

X2

Fig. 13—-4. Notation for determination of the warping function.

When the section has branches, we apply (13-67) to each branch. One has
only to require continuity of ¢ at the junction point. As an illustration, consider
the section shown in Fig. 13-5. The distribution of ¢ for the three branches is
given by

A—B ¢:¢P+fgpscd5
B—C  ¢=d¢s+|5peds ©
B—D ¢ =¢g+[5pcdS

We are taking the origin at B for branches B — C and B — D.

T See Prob. 13-1.
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The shear flow due to MY is obtained by integrating (13-43) and noting
(13-50). Forconvenience, we let '

=77 (13-68)

With this notation, the resulting expression simplifies to
S

7=+ | pras=a+0, (13-69)

We start at a free edge and work inward. A +g¢ points in the +S direction
(sec Fig. 13-5). Then, a + g corresponds to —¢’, ie. ¢" acting in the —§
direction. If the section has an axis of symmetry, ¢ is an odd function with
respect to the axis and g is an even function.

X3

X,
Fig. 13-5. Example of a section with branches.
Once ¢ and §" are known, we can evaluate I, and C, with (13-10), (13-46):
I, = {f¢p? d4 = [¢*tdS
C = X/I{}:J [(672)* + (075)*}dA

J [, _.,dS
=7 @) —

(13-70)

In order to evaluate x,,, xa,, we need the flexural shear stress distributions.
We let ¢ be the distribution due to F; and write

g = —Hgd (13-71)
I :
ji=2 k=3

j=3 k=2
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The coupling terms are defined by (13--48), which reduces to

dS  F,Mj F3MY

Jqfq'—t— =~ xS x (@)

for a thin-walled section with ¢ = — ¢§. Substituting for ¢" and ¢/ results in
J gy A8

Xoy = ﬁ q q(3) T )

2 (13-72)
X3, = J "'F(Z)c—lf?
3¢ 1314) q4q ¢

If X, is an axis of symmetry, ' is an even function of x3, §? is an odd function,
and x3. = 0. By analogy, x,, = 0 if X3 is an axis of symmetry.

The definition equations for C,, Iy, X2, and x3, apply for an arbitrary thin-
walled section. When the section is closed, we have only to modify the equa-
tions for ¢, 7', and . We will discuss this further in the next section.

Example 13-4

Symmetrical I Section

The I section shown (Fig. Et3-4A) has two axes of symmetry; it follows that the shear
center coincides with the centroid and the warping function is odd with respect to X, X.

Fig. E13-4A
X3
t
S - A
— L |
h X2
] (o f
_JL. I I
s
| J
1 b |
Applying (13-67), we obtain .
¢ =0 for web
(a)

}
= % S for flange

Note that the sense of S is reversed for the bottom flange.
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The shear flow vanishes at § = +b/2. Applying (13-69) and starting from pt. 4, we find
S 2
. b*ht 25\?
q' = TdS = =] -
e’ i [ %) } ®

The distributions of ¢ and ¢" are shown in Fig. E13-4B, where the arrows indicate the
sense of ¢" for + M.

Fig. E13-4B

&

2

ht
16
-

+%&&. 44—-;..'4/__4_
4

b

T

_{kar @

Plot of ¢ Piot of ¢

We express the cross-sectional properties in terms of i, ¢, and a shape factor ¢:

& = b/h
J = he? (1 4+ 2¢
J o= 3 (:)
th’
lo =54 ©

O

i

i\\t
TN
=) oo
\.../N

The dimensionless parameters occurring in the solution of the differential equations
for the mixed formulations are C; and AL (see (13-55)). Using (c) and assuming a value
of 1/3 for Poisson’s ratio, we write

3(1 + 282
2= ["“ 3 g"]

1
Co=—— (@)
1+¢ (—) )
h
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The coefficients &, &, are tabulated below:

b

¢=q ¢ &2

1 24 3
0.75 2.66 422
0.50 3.2 6.93

Since (t/h)* « 1 and & ~ 0(1), we see that Cy ~ 1. The warping parameter, AL, depends
on t/has well as L/h. This is the essential difference between open and closed cross sections.
For the solid section, we found that AL = O(L/h) and, since L/h is generally large in com-
parison to unity, the influence of restrained warping is localized.¥ The value of AL for an
open section is O(L//) 0(¢//) and the effect of warping restraint is no longer confined to a
region on the order of the depth at the end but extends further into the interior.

We consider next the determination of the stresses due to restrained warping. The
general expressions are

M,
oy = 12
¢
. q (e)
Ois = =7

Using the distribution for ¢ and ¢” shown above, the maximum values of normal and shear
stress are

) 6
l(f'n'max = Zh‘{é—; M,

¥ 3 r (f)
!alslmax = 5112—.1:2 MY

The shearing stress due to unrestrained torsion is obtained from

Ml( [ 3 Mu
0' = o [ e e
=77 he*1 + 28T ©
To gain some insight as to the relative magnitude of the various stresses, we consider
a member fully restrained at one end and subjected to a torsional moment M at the other
end. This problem is solved in Example 13-1. The maximum values of the moments are

tanh AL
AL atx =0 (h)

Md)lmax = _MLCx
MY |ax = CsM

We substitute for the moments in (f), (g) and write the results in terms of oy, the maximum

+ We defined the boundary layer length, Ly, (sec (13-24). (13-25)) as
Ly 4

et 0= — x —

L /L
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shear stress for unrestrained torsion:
|o§1],,, = (&3CH? tanh AL)o%,

0% = (54@ (,5)) % 0]
Mt
Om = ——
J

£y =388 L= (&)
The variation of these coefficients with b/ is shown below:

&=~ &3 s

2 15
0.75 2.11 1.67
0.50 231 2

Since C;, ¢5. and &, are of 0(1), it follows that
[0T1]m = 0(0"
: ()
la,lslm = (am)
The additional shearing stress (o4,) is small in comparison to the unrestrained value.
Therefore, it is rcasonable to ncg]ec.t the terms in the complementary energy density due

to ¢}, i.c., to take C, = D and C; = 1 for an open section. We will show in the next section
that this assumption is not valid for a closed section.

Example 13-5

Channel Section

We consider next the channel section shown in Fig. E13-5A. Since X, is an axis of
symmetry, x3 = x3, = 0. The expressions for the location of the centroid, shear center,

X Fig. E13-5A

® - |

|
Shear | | ' T T
center t
\ Xz j;

pany
a7

S_L. | S<——{
@
et
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and I, are
= ———é —
1+ 2
3¢
=b = be
1+ 6&
i3 (@
I, =—{1 + 6&
2 12( + .C)
b
&=~
© h

The dimensionless coefficient @ is essentially constant, as the following table shows:

. b _
<= ¢
100 0429
075 0409
050 0375

We determine ¢ by applying (13-67) to the three segments. Taking S as indicated above,
and noting that ¢ is odd with respect to X ,, we obtain:

Segment -2

Psc = _5
bh _ S (b)
Segment 2-3
Psc = +€

b 1+2S~
¢—’2‘— h ¢

The distribution is plotted in Fig. E13-5B. Sincee < 1/2, the maximum value of ¢ occurs
at point 1 (and 4).

We generate next the distribution of g, starting at point 1 (since g = 0 at that point)
and using (b):

Segment 1-2

I _ bht B 18%

- +bht? S+S2
T=\1)," 73 P

The distribution of ¢” is plotted in Fig. E13--5C.

Segment 2-3
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+e \ Fig. E13--5B
~J-u-9
Sl
e <§-
—e
Distribution of q‘)/l—)zlvl
Fig. E13-5C

SOOI

=

1\

D‘=%f(l~§>2%%.
My

T D Dy =i} 7 )4

L

o JQG)

2
Distribution of q’/ biy

The expressions for J, I, C,. C; and AL are written in the same form as for the previous

example:
J = ht? (————1 : 26) = ht3¢;

e 24387 L.
1¢‘h’[u(1+6§>]_h%%

o _ OV [+ 200 + 162 + 428 + 368 (1)

7 T }=(>£1 (d)

h 522 + 397 0
Cr
[GQ‘J
Erétj)

[ - =

oy

I

C, =

1+
AL = CM?
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The following table shows the variation of ¢; and ¢, with b/hfor G/E, = 3/8., i.e., Poisson’s
ratio equal to 1/3. Note that the comments made for the wide-flange section also apply

to the channel section.

P b z £

G = E G G2
1 2.33 2.55
0.75 2.65 3.39
0.50 34 5.24

In order to evaluate x;,, we need the flexural shear stress distribution due to F3. Applying
(11-106) leads to

Segment 1-2
ht
a3 =
q 7S
Segment 2-3 ()
bht St

= 22 s
q 5y

The distribution is plotted in Fig. E13-5D; the arrows indicate the sense of g for a +F3.

Fig. E13-5D
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1\ lo. T

(1445
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Distribution of q<3)/%1_t
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Substituting for 7', 7, and the cross-sectional constants in (13-72) leads to

£\2
X, = —bés (ﬁ)

t = (1 + 26(—=02 + 582 + 6£%)
P80+ 692 + 39

®

The coefficient is of order unity, as the following table shows:

¢ <
1 0.926
05  1.03

In Example 13-1, we determined expressions for the coordinates of the center of twist
in terms of x;, and C,. It is of interest to evaluate these expressions for this cross section.
The coordinates at x = 0 (sec (13-59), (13-60) ) are

x5 =0
Xy = Xz — X2)¢lx=0 (8
1
[gle=0 = —-1‘“:—1‘
C,
Substituting for C,, x,, and evaluating X,,
¢ 3¢
H=—A+e)=—b|—m+—]= b h
X2 ¢ e) 7(1 Y ¥ 65) &4 (b)
we obtain
xy = X(1 ~ &s) (i)
. &y : .
& =7
*TEE 0
Typical values arc listed below:
4 s Es

1 0.476 0.836
0.5 0.625 0.485

13~8. APPLICATION TO THIN-WALLED CLOSED CROSS SECTIONS

We treat first a single closed cell and then generalize the procedure for multi-
cell sections. Consider the section shown in Fig. 13~6. The + S direction is
from X, toward X (corresponding to a rotation about the + X direction).
Using the results developed in Sec. 11-4, the shear flow for unrestrained tor-
ston i
My 24

¢=5¢ = Tds (a)
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where A is the area enclosed by the centerline curve. The shearing stress varies
linearly over the thickness,

M C
o= — <2n + T) = Olopen + @

7 closed (b)

but the open-section term has a zero resultant.

X3
X3
Fig. 13-6. Notation for single closed cell.
Substituting for ¢* in (13-66), taking ¢ = — ¢¢°, and integrating from point
P lead to
s 5.ds
¢ = ¢pp + j Pse dS — Cj — (13-73)
Sp sp b
We determine ¢p by enforcing
§prdS =0 (©)
The two additional orthogonality conditions
$x,pt dS = §x3t dS = 0 (d)
are identically satisfied by definition of the shear center.t
The shear flow due to M4 is defined by (13-69),
My
R (©

S .
T =T+ |, $1dS =3+ 0,

+ Noting that x,t = dQ3/ds, we can write
$x,9t ds = —§Q3¢ dS
We merely have to identify this term as the moment of the flexural shear stress about the shear
center. See Prob. 11-12.
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where g is indeterminate. Our formulation is based on no energy coupling
between ¢" and ¢, ie., we require (see (13-47))

A dS
9 — = 0 (13-74)
Noting that g* is constant for a single cell, and using (e), we obtain

ds
Qs T
Jp = ———— (13-75)

‘dS -
-

The flexural shear flow distributions for F,, F; are generated with (11-110).
We merely point out here that there is no energy coupling between ¢* and ¢’ :

ds
§fl"qf*{— =0 ()

One can interpret (13-74) and (f) as requiring ¢/, ¢" to lead to no twist deforma-
tion, i.e., wy,; = 0. We have expressed the flexural shear flows as (see (13-71)):

j L =2 k=3
qflpj =qV = g J 3

T j=3 k=2 &)

Finally, the definition equations for the cross-sectional properties have the
same form as for the open-section:

Eq. 13-70 = I, C, (h)
Eq 13-72 = X2r X3,

Suppose X, is an axis of symmetry. Then, ¢ is an odd function of x5. If we
take the origin for S (point p) on the X, axis, ¢, = 0. Also, 7" is an even func-
tion of x; and x3, = 0. In what follows, we illustrate the application of the
procedure to a rectangular cross section.

Example 13-6

Rectangular Section—Constant Thickness

Applying (13-73) and taking ¢ = 0 at point (D shown in (Fig. E13-6A) leads to

_ 2abt
T a+b
-0 s = a(f:—‘—’>s W
' a +
a—b
2-@ d>:b(a+b>(a—3)

The distribution is plotted in Fig. E13-6B. Note that ¢ = 0 when a = b, i, a square

section of constant thickness does not warp.
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%, Fig. E13-6A

[ ® o

] is
L X,

2b
Centroid /

Fig. E13-6B

a—b
d/)(a EON )

~¢

~ab(45E)

I' Distribution of ¢

We determine Q,, by integrating (a),
a — b\ S?
= —_— = for segment 1-2
Qo = at (a + b) 2 (b)
a—b N
Q¢ = (Q‘P)Z -+ bt (a—:g) <aS el ‘5‘)

and evaluate ¢, " with (13-75):

Q
7 = B andl - _<"_‘_ﬁ) <@) (2a + b) (©
4 fﬁ as a+ b\ 6

for segment 2-3
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The distribution of 7" follows from (b), (c),

7opd(3) _Lf, 2
o2 renlG) 5(e )
2-® 72D{Lﬁ§@—%€3)—%<b%%» (@

and is plotted in Fig. E13-6C. Note that +7" corresponds to ¢" acting in the clockwise
(—S5) direction for + M. Also, D is negative for b > q.

Fig. E13—-6C

who
N
+
[T
(SN
—
Wi
N
|
Tia
A

§
T X

&
]
W
/D
+
wig’
N’

%
N

q'ID

qr(-}-}):‘ﬁ}’{;zt_]’ chi;g(a—b)

We introduce a shape factor {,

e (¢
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and express the various coefficients in terms of a, ¢, and {. The resulting relations are

! _Ad [P =0
*7 3 1+¢

AL+ S+
—5 1_c_C2+;3
sty

=
9(1+§+52> (0

R G e WL L
w-{e@) ) F- o

Xop = X3, = 0

v2
= 16a’t (T:r ) (neglecting the contribution of J°)
{

r

The variation of C,, Cs, and {, with b/a is shown in the table below:

/G 3
C = —Z Cr Cs (, (for "}};:“ = 8‘)
1 o 0 0.98
2 10.43 0.0877 1.27
3 441 0.185 1.39

We found

t 2
C,=0{~-
9
r 2
1+0 () (2)
h
t L
L= 0{-—
: 0()1 h>
for an open section. Our results for the single cell indicate that

TR
= h

Co»1 (h)
Cyx 1

n
t

for a closed section. We obtained a similar result for AL, using the displacement-model
formulation for a solid section. Since C. is due to the restrained shearing stress (¢"), we
see that shear deformation due to ¢" cannot be neglected for a closed cross section.
We discuss next the delermination of the normal and shearing stresses due to warping.
The general expressions are
M, . q" My,

roo= ot = = - i
11 I, ¢ O1s 7 H(bq (1
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The maximum normal stress occurs at point 2 while the maximum shear stress can occur
at either points [ or 3. :

We consider the same problem as was treated in Example 13-4, ie., a member fully
restrained at one end and subjected to a torsional moment M at the other end. We ex-
press the stresses in terms of o, the maximum shear stress for unrestrained torsion,

M C .
Rl P
0 J( + t) 3
which reduces to )
MC M :
W mrem = e k
=TT T YA )

since we are considering the section to be thin-walled. The maximum stresses are

. ™ .
11 lmax atpoint2 = $10m tanh AL

maxatlor3 — :2(7;:1 (U

. 3¢, V2

“- o)

. N

(o= 8Cs{— )| -
2= (7))

The variation of {; and <, with height/width is shown below. We are taking Poisson’s
ratio equal to 1/3. .

r
O1s

{=bja  {(point2)  {(point1) & (point 3)

1 0 0 0
2 - 1.04 —-0.35 +0.44
3 —1.51 —0.46 +0.65

For large AL, tanh AL ~ 1 and we see that both the normal and shear stress are of the
order of the unrestrained-torsion stress. In the open section case, we found the restrained-
torsion shear stress to be of the order of (thickness/depth) times the unrestrained shear
stress.

To illustrate the procedure for a multicell section, we consider the section
shown in Fig. 13-7. The unrestrained-torsion analysis for this section is treated
in Sec. 11-4 (see Fig. 11-11). For convenience, we summarize the essential
results here.

We number the cells consecutively and take the + S sense from X, to X,
for the closed segments and inward for the open segments. The total shear
flow is obtained by superimposing the individual ccll lows ¢Y, ¢5.

' =0 for an exterior (open) segment

, a
gt = constant for an interior segment @
We let
NI!!
q = _ji G (b)
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ql7Sl

Fig. 13-7. Notation for mixed cross section.

The constants C,, C, are determined by requiring each cell to have the same
twist deformation, w,, ;. Enforcing (11-67), 1

q" My
#Sd Gt (IS 2601_ IA] 2 GJ j ( )
for each cell leads to
aC = 2A (d)
where a, A are defined as
' ds
aj; = S, T
ads
Ay = Qa1 = “J s (e)
A = {Al ’ AZ}

The warping function is generated by applying (13-6):
¢ = —9F (13-76)
® 4 J\q"
a8 ¥ TP T \My)

We start at point P, in cell 1 and integrate around the centerline, enforcipg
continuity of ¢ at the junction points b, ¢, and d. For example, at b, we require

4)4}’11) = ¢'b]eb (f)

+ See also (11-32).
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which leads to a relation between ¢, and ¢p,:

b b C
¢b:¢e+jpscdszd)h+f (53"71*>d5 (g)

e Py
Repeating for points C and d results in the distribution of ¢ expressed in
terms of ¢p,. One can easily verify that ¢ is continuous, ie., ¢, determined
from segment ca is equal to ¢, determined from segment cda. Finally, we
evaluate ¢p, by enforcing ¥

[[pdd = fptas=0 (h)

where the integral extends over the total centerline. Note that ¢p, = 0 if P;
is taken on an axis of symmetry.
The shear flow for restrained torsion is obtained with (13-69):
é
=g = ¢t i
51 = ¢ (@)
The steps are the same as for the flexural shear determination discussed in
Sec. 11-7. We take the shear flow at points P,, P, as the redundants,

7, =¢ Jj=12 (13-77)
and express the shear flow as A
T =740+ 7. (13-78)

where 7, is the open section distribution and g, is due to Ci, 5. The dis-
tribution, G, has the same form as ¢*/(MY/J). We just have to replace C with
C". We generatc g, by integrating (i) around the centerline, and enforcing
equilibrium at the junction points. For example, at point b (see Fig. 13-7),

I = Gop, + Gpe )

Note that g, = 0 at points Py, P,, e and f.

The redundant shear flows are evaluated by requiring no energy coupling
between ¢* and ¢” which is equivalent to requiring ¢ to lead to no twist de-
formation, w,, ;. Noting (c), we can write

ds
§ q'—t— =0 i=12 (13-79)
Sj

Finally, substituting for §", we obtain
aC" =B

s (13-80)
B; = — qOT
S;

T See footnote on page 385.



414 RESTRAINED TORSION-FLEXURE OF PRISMATIC MEMBER CHAP. 13

Once ¢ and g are known, the cross-sectional properties (I , C,, X2y, X3,)
can be evaluated. Also we can readily generalize the above approach for an
n-cell section.

13-9. GOVERNING EQUATIONS—GEOMETRICALLY NONLINEAR
RESTRAINED TORSION

In this section, we establish the governing equations for geometrically non-
linear restrained torsion by applying Reissner’s principle. This approach is a
mixed formulation, i.e., one introduces expansions for both stresses and dis-
placements. The linear case was treated in Sec. 13—5. To extend the formulation
into the geometrically nonlinear realm is straightforward. One has only to
introduce the appropriate nonlinear strain-displacement relations.

Our starting point is the stationary requircment ¥

S[({[(cTe — bTu — V*)d(vol.) — {p"u d(surface area)] = 0 (@)
where o, u, are independent variables, & = gu), V* = V¥*o), and P, b are
prescribed.

We take the displacement expansions according to (13-3) and use the strain-
displacement relations for small strain and small finite rotations:3

i, = Uy + X3 — 03Xz + Jo
i, =ty — (X3 — X3)
iy = g + wi{x2 — X3) (13-81)

e = Uy + g+ 45.0)
Yip = fy, o + gy + U303,
Yis = iy, 5 + fl, 1+ 4lia3
The in-plane strain measures (€2, €3, y23) are of 0(w?), which is negligible
according to the assumption of small finite rotations. Actually we assume
G2 = 033 = 023 = 0, 1€, plane stress. Substituting for the displacements and
noting the definition equations for the force parameters, the first term in (a)
expands to
f”"T"; d(vol) = {¢ {F([us,1 + $ugz, 1 + Xswy, O 4 Sug, 1 — Xaon, V7]
+ Fylug  — @3 + (s, — F201,1)]
+ Fylug, + w2 — oyl + X301, 1)]
+ My[w,  — @y, 12,1 + X301, 0l (13-82)
+ Mi[ws,; — @1 153, 1 — T2@1, V]
+ MTC01,1 + Mcpf.l + Mkf
+ AMpw?, | + Mooyo;, }dxy

+ See ‘Eqs. 13-33 and corresponding footnote. We are working with Kirchhoff stress and

Lagrangian strain here. ) )
% See Sec. 10-3, Eq. 10-28. The displacement expansions assume small-finite rotation, e,

sin @ = w and cos @ ~ 1. To be consistent. we must use (10-28).
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where the two additional force parameters are

Mp = ”o‘ll(x% + ’C%)(JA
Mo = [[(x2012 + x3013)dA

The terms inyolving the external forces have the same form as for the linear
case, but we list them again here for convenience (see (13-6)):

ff{bTu d(vol) + [[PTu d(surface area)
{
Ln(b__l“l + Iz}“sz + bsuigy + mrwy + myw; + maws + g f)dx;
+ ]qul + Faug, + Faugs + Mroy + Maw; + Maws + Myfls <o

where the end forces (the barred quantities) are defined as previously, for
example, ,

(13-83)

File=r = ([ b1 dd)s,=1 etc.

It remains to introduce cxpansions for the stresses in terms of the independent
force parameters and to expand V* In the linear case, there are 8 force
measures, Fy, ..., M3, and M, My. Two additional force measures (Mp, M)
are present for the nonlinear case but they can be related to the previous,forge
measures. We proceed as follows. We use the stress expansions employed for
the linear case with ¢ = —¢i°. They are summarized below for convenience
(see Sec. 13--5):

b M, - My M,

7S P RS

o = G{j + oi; + oY

oij = fiMt

oy = fiMg @)
of; = hjpFy + hjafs

My = Mt + My

Mg = M}

Gy =

wherg é. f, g, hy and hy are functions of x,, x5. Introducing (a) in the definition
equations for Mp and M, leads to

Mp = B1Fy + foM;y + M3 + BsMy

1 ([ I
Br = i L (x3 + xDdA4 = —41—
1 ad
B2 = T x3(x2 + x3)dA
2 JJ (13-84)
-1
Bs = T j xo(x% + x3)dA4
1 r
By = ?;J P(x3 + x3)dA
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and¥
My = n2Fy + n3F5 + niMt + niM7y
e = “(iczhzk + Xshsk)d/:l (k=23 (13-85)
N2 = —3P3 N3 = +3f,

79 = [[(x2f9 + x3/9)dA
Certain coefficients vanish if the cross section has an axis of symmetry.f One
can readily verify that
MI’ = ﬂlFl (]3_86)
when the section is doubly symmetric. For generality, we will retain all the

terms here.
The complementary energy density function has the same form as for the

linear case:

L (PP MR M3\ 1 (M3
pro— (1, M2 My 1 (Mg
2E<A LT L) T,
| (F} 2F,F, FI\ 1 , ,.
(22 2l Y L (s 4 M) (13287
+ZG<A2+ A +A3 +2GJ(( ) + GIMT)*) ( )

Ml’ .
+ E.TT (x3,F5 + x3,F3)

We have shown that it is quite reasonable to neglect transverse shear deforma-
tion due to warping (C, = x,, = x3, = 0) for a thin-walled open section.

Substituting Equations (13-82)-(13-87) in Reissner’s functional and re-
quiring it to be stationary with respect to the seven displacement and eight
force measures leads to the following governing equations:

Equilibrium Equations
F 1,1 + bl = 0

d
K{Fl(usz’l +X3(D1,1)+ F2 “0)1F3 _wl,IMZ} + bz = 0
1

d .
——{Fy(uss,1 — X01,1) + F3 + 0 Fy — 0y, } M3} + b3 =0
Xm

(I + oMt | + (1 + niw)M7 | + mr
— Faug y + Faug 1 + oy(—f3F,  + B2F3. 1)
d _ _
+ Tx. {Fi(Rsths, 1 — Xpigz, 1 + Prooy, 1) + My(—ug 1 + 2P0, 1)
1

+ My(—ugz 1 + 2P0, 1) + MyPsw ) =0
Mz,l—F3+m2=0
M3,1+F2+M3=0
M(f,’l - M’T + my = 0

+ See Prob. 13-11.
1 See Prob. 13-12.
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where
Bl — ﬂ] + x% + Y% — (H[_]l\iearcemer ’
B: = %8, — %, /732%/334-32
Force-Displacement Relations
B U1+ sub | + sl X b B
AE o1 U2 b SUG, .+ @y, (R, — Xaolis 1 + %131(01, 1)
i Q + .f:z X3
Gl 4, 4, + 7 M7l =uy; — w; + iU, 3 — wl,lBS]_
S |
G| 4 T A, + M S U+ 0 + o[~y + wq,152]
M3
T T o 1+ niw;)
M, B (13-88)
Ef; = W2, 1 + o {—Ugy ; + Bawy, 1)
M; _
EI: = W3, + oy (U g + Bawy, )
Mﬁf_ - f 1 2
El, =J.1+ w1y

1
Gr [OMr + xaFa + 0 F3] = [+ 004(1 + i)

Boundary Conditions (+ for Xy =L, — forx; = 0)

uy prescribed or Fy = +F,
Usy prescribed or Fy(uy, ; + X301, 1) + F; — wFy — wy 1M, =
g3 prescribed or Fi(ug, 1 — Xp00; ) + F3 4 o Fy — 601:1M3 =
wy prescribed or Fy(Xsu,, , — XaUss, 1 + Broog, o) !

+ @ (2 F5 + 73F3) + (I + nfw)M4 + (1 + Him )My

+ Mzﬁ(—usz”, + 2B 1) + May(—ug , + 2301 1) + w4 WMy = + M
@, prescribed or M, = + M, ’ b
w3 prescribed or M5y = + 7,
J prescribed or M, = + M,

T

These equations simplify considerably when the cross section is symmetrical
and transve;se shear deformation is neglected.t We discuss the general soluti ;
of (13-88) in Chapter 18. The following example treats onebof the sim II: Iz
cases, a member subjected to an axial force and torsional moment P

T See Prob. 13-13.
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Example 13-7

We consider a prismatic member (see Fig. E13-7A) having a doubly symmetric cross
section, fully restrained at one end and loaded by an axial force P and torsional moment
M. We are interested here in evaluating the influence of axial force on the torsional
behavior. The linear solution (with no axial force) was derived in Example 13—1.

Xy Fig. E13-7A
Z
2 X e
P M
7
1 L N
I l

Equilibrium Equations (symmetrical cross section and no distributed load)

My = M,

Fi =0 (a)
d
T My Fifrwi1) =0
X1

Force-Displacement Relations

M} = GJw, ¢
. GJ
b= 'E“(f + wi.y)
r (b)
My = Elyf
Fy = AEu, ; + YEL 0} |
Boundary Conditions
xy =0 Uy =w; = =0 ©

Xy =L F, =P My =20 My + fiFwy,, =M

Integrating the last two equations in (a) and noting the boundary conditions, lead to

F, = const = P

d
M1 +ﬁ1F1w1,; = const = M ( )
The first equilibrium equation takes the form
2
. M
fo == Ll ©

GJ(L + P)
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where
P = F_ﬁi - Pl
GJ GJA
, GJ 1+ P
I

TELTTCO+ P

This expression reduces to Equation (g) of Sec. 13-6 when P = 0. Once f is known,
we can determine the rotation by integrating (d), which expands to

~ 1 GJ
wlyli:GJ<l+P+(—,>:I=A4—— c f (f)

when we substitute for M using (b).
The general solution is,

/= C, cosh ux + C, sinh ux —

— 1
Wy [GJ (1 + P+ E)]
f

GJ
—Cy e mxdt =L 9 e i+ Gy cosh
3 v{ FC,(E +P)f IJCr{ ¢ sinh px + zc?s ux}

M
GJA + P)
( ) ®

{We drop the subscript on x for convenience.) Finally, specializing (g) for these particular
boundary conditions result in

M

f = Ej(l—r 75 {~1 4+ cosh px — tanh puL sinh px}
M i 1 ®)
[N (VRS SRR I P - —
w1 GI0 T ‘:x‘ /L<1 e P)) {sinh jix + (I — cosh px)tanh pL}]

These equations reduce to (13~57) when P = 0.

A tensile force (P > 0) increases the torsional stiffness whercas a compressive force
(P < 0) decreases the stiffness. Equation (h) shows that the limiting value of Pis —1. We
let P, represent the critical axial force and o, the corresponding axial stress

U

p, = 94
11
GJ
GC( =
I

In order for o, to be less than the yield stress, (J/f,) must be small with respect to unity.
As an illustration, consider the section shown in Fig. E13-7B. The various coefficients
(see Example 13-4) are :
& = bfh
th® . . 3
11=12+13=—6'(2+3€+5)

3

J = ﬁ;—(l + 20 (0)]
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Fig. E13-7B
X3

t—r

and
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PROBLEMS

13-1. The shear stress distribution due to F, is given by (see (11-95))
Fy - Fy _
O12 =2 ®2r, 2 013 =2 Par, 3
Iy I3

where ., are flexural warping functions which satisfy

V2$2,A = —X;3 (ln A)
aéﬁZr %
i Q (on S)

Thjs result applies when the cross section is assumed to be rigid with respect
to in-plane deformation. The coordinate of the shear center is defined by

- 1 - -
Xslsc = X3 = *1-3 fj (X202 3 — X3¢, 2)dA (a)

Show that {a) reduces to
1
Xy = — JJ Xg(/)y dA
I3

where ¢, is the St. Venant torsional warping function. Hint: Sec Prob. 11-11
and Equation (11-97).
13-2. Verify (13-40) and (13-44),
13-3. This problem reviews the subject of the chapter in two aspects.
(a) No coupling between the unrestrained and restrained torsional dis-
tribution requires :
{fot:0%; + o¥a0i3)dd = 0 @

The unrestrained torsional shear siress distribution for twist about
the shear center (see Sec. 13-3, Equation (b)) is given by

1% jwu C
Giy = '71 [fF5 — x5 + %3]

o Mp ©
O13 = *:]“U)i,s + X3 — %] )

The restrained torsional shear stress distribution is determined from
(13-39). Verify that M} = My when ¢ = ¢ and (a) is enforced.
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(b) When the cross section is thin-walled, (a) and (b) take the form :

Prob. 13-9
ds
L ¢ — =10 ©

t

q" u Z\,{” a sc [

?:Ulslclz":}l<psc+‘5§ z) (d) - 1___” -'L—L'
t

where lpsc‘ is the perpendicular distance from the shear center to the

tangent at the centerline. Equation (d) follows from (11-29) and

Prob. 11-4. We determine ¢” from (13-43). Finally, the force param-

eters for the thin-walled case are defined as _ t T B S B S

7 = JqpwedS o | 4 i

Mg = fd'$p.sdS T
Verify that My = Mg when ¢ = —¢i" Consider the following cases: 21 ——] l——-L
1. Open section : (a) . r}

L

.

2. Closed section
3. Mixed section

13-4. Specialize (13~57) for 2L » 1 and compare M” vs. M“. Also evaluate , b)
w,; at x = L and compare with the unrestrained valuc.
13-5. Refer to Examples 12-2 and 13-2. Discuss how you would modify
the member force-displacement relations developed in Example 12-210 account l ! - —_— _
for restrained torsion. Consider Cy = 1, X3r = X3y = 0, and—— f - e e e e — 1
(a) warping restrained at both ends . : T
(b) warping restrained only at x = L A
13-6. Refer to Example 13-2. Determine the translations of the shear See part c.
center. Consider the cross section fixed at x = 0. Discuss how the solution . ¢ l —————

has to be modified when the cross section at x = L is restrained against T (@
translation.

13-7. Starting with the force-deformation relations based on the mixed b
formulation (13-49), derive the member force-displacement relations (sce
Example 12-2). Consider no warping at the end sections and take C, = +1. (c)
Specialize for—

(a) symmetrical cross section

(b) no shear deformation due to restrained torsion and flexure~—arbitrary i Prob. 13-10

cross section. ) »_ t ‘ :

13-8. Consider a thin-walled section comprising discrete elements of ; _—
different material properties (E, G). Discuss how the displacement and mixed _ @ @ I
formulations have to be modified to account for variable material properties. 1
Note: The unrestrained torsion and flexural stress distributions are treated n : 4 U S1 U S, ¢ a
Prob. 11-14 and 12-1. i

13-9. Determine the distribution of ¢, ¢, and expressions for I, C,, Xap _ ¢ ; J_

I

2h

-
1

h

x5, for the cross sections shown in parts a and b and part c—d of the accom- . .

panying sketch (four different sets of data). ] [
13-10. Determine ¢ and ¢" for the section shown. a4
13-11. Using the flexural shear distributions listed in Prob. 13-1, show

that .

)
Q
S

Ny = —3B3
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Hint: One can write

1 2 y2
o= 1 || v + i vaya
3
Also show that

3 = %ﬁz

13-12. Specialize Equations (13-84) and (13-85) for the case where the
cross section is symmetrical with respect to the X, axis. Utilize

”He(xz, X3)H (X3, x3)d4 = 0

where H, is an even function and H, an odd function of x;. Evaluate the co-
efficients for the channel section of Example 13-5. Finally, specialize the
equations for a doubly symmetric section.

13-13. Specialize (13-88) for a doubly symmetrical cross section. Then
specialize further for negligible transverse shear deformation due to flexure and
warping. The symmetry reductions are

Xy =X3 =0 Xor = X3, = 0
ﬁ2=53=/3¢=0 1/1“123&=0
ne=nz =n{=ny =0

13-14. Consider the two following problems involving doubly symmetric
€ross section.

(a) Establish “linearized” incremental equations by operating on (13-88)
and retaining only linear terms in the displacement increments.
Specialize for a doubly symmetric cross section (see Prob. 13-12).

(b) Consider the case where the cross section is doubly symmetric and the

initial state is pure compression (F; = —P). Determine the critical
load with respect to torsional buckling for the following boundary
conditions:

1. wy=f=0 atx=0,L  (restrained warping)
i
2. wy = -{~ 0 atx =0, L (unrestrained warping)

Neutral equilibrium (buckling) is defined as the existence of a nontrivial

solution of the lincarized incremental equations for the same external

load. One sets

‘ F1 = _P
L[2=u3:a)1:w2=(03:f20

and determines the value of P for which a nontrivial solution which
satisfies the boundary conditions is possible. Employ the notation
introduced in Example 13~7.

13-15. Determine the form of V, the strain energy density function (strain
energy per unit length along the centroidal axis), expressed in terms of displace-
ments. Assume no initial strain but allow for geometric nonlinearity. Note
that ¥ = V* when there is no initial strain.

14

Planar Deformation of a
Planar Member

14-1. INTRODUCTION: GEOMETRICAL RELATIONS
A member is said to be planar if—

1. The centroidal axis is a plane curve.

2. The plane containing the centroidal axis also contains one of the
principal inertia axes for the cross section.

3. The shear center axis coincides with or is parallel to the centroidal axis.
However, the present discussion will be limited to the case where the
shear center. axis lies in the plane containing the centroidal axis.

We consider the centroidal axis to be defined with respect to a global reference
[rame having directions X ; and X,. Thisis shown in Fi ig. 14-1. The orthogonal
unit vectors dcﬁnmg the orientation of the local frame (Y,, Y,) at a pomt are
denoted by I, 5, where £; points in the positive tangent directionand t; x f, =
t3. Item 2 requires Y, to be a principal inertia axis for the cross section.

X3

3 Xl

Fig. 14-1. Geometrical notation for plane-curve.
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