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Hint: One can write

b= 1 [ v + g v
3
Also show that
N3 = 3f,
13-12. Specialize Equations (13-84) and (13-85) for the case where the
cross section is symmetrical with respect to the X, axis. Utilize

”He(-\‘L X3)Ho(x2, X3)dA = 0

where H, is an even function and H, an odd function of x;. Evaluate the co-
efficients for the channel section of Example 13-5. Finally, specialize the
equations for a doubly symmetric section.

13-13. Specialize (13-88) for a doubly symmectrical cross section. Then
specialize further for negligible transverse shear deformation due to flexure and
warping. The symmetry reductions are

X =%X3=0 Xgp = X3, = 0
Br=fs=ps =0 1423 =0
Na=m=ni=n =0
13-14. Consider the two following problems involving doubly symmetric
cross section.

{a) Establish “linearized” incremental equations by operating on (13-88)
and retaining only lincar terms in the displaccment increments.
Specialize for a doubly symmetric cross section (see Prob. 13-12).

(b) Consider the case where the cross section is doubly symmetric and the
initial state is pure compression (I'y = — P). Dctermine the critical
load with respect to torsional buckling for the following boundary
conditions:

1. wy=f= alx =0,L (restrained warping)

2. wy = iij— =0 atx =0, L (unrestrained warping)

Neutral equilibrium (buckling) is defined as the existence of a nontrivial
solution of the linearized incremental equations for the same external
load. One sets
F1 = —P
Uy = Uz = W) 30)2:&)3:f=0

and determines the value of P for which a nontrivial solution which
satisfies the boundary conditions is possible. Employ the notation
introduced in Example 13-7.

13-15. Determine the form of V, the strain energy density function (strain
energy per unit length along the centroidal axis), expressed in terms of displace-
ments. Assume no initial strain but allow for geometric nonlinearity. Note
that ¥V = V* when there is no initial strain.

14

Planar Deformation of a
Planar Member

14-1. INTRODUCTION: GEOMETRICAL RELATIONS
A member is said to be planar if—

1. The centroidal axis is a plane curve.

2. The plane containing the centroidal axis also contains one of the
principal incrtia axes for the cross section. '

3. The shear center axis coincides with or is parallel to the centroidal axis.
However, the present discussion will be limited to the case where the
shear center axis lies in the plane containing the centroidal axis.

We consider the centroidal axis to be defined with respect to a global reference
frame having directions X and X,. This is shown in Fig. 14-1. The orthogonal
unit vectorsﬂdeAﬁning the orientation of the local frame (Y, Y;) at a point are
Elenoted by 1y, t;, where ¢; points in the positive tangent direction and £; x 7, =
t3. Item 2 requires Y, to be a principal inertia axis for the cross section.

X3

X

Fig. 14-1. Geometrical notation for plane curve.
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26 PLANAR DEFORMATION OF A PLANAR MEMBER
4

By definition, j ) P . i{& ) .
h=5 ="t

i i fi X T, = 13, it follows that
Since we are taking t, according to f; x t =Ts it foll

R dx, dxy . (14-2)

1,

b=t s

The differentiation formulas for the unit vectors are

= f i
4 R (14-3)
o Lo
das R
where 1 df - d?x; dx, dlyiz_ dxy
R=ds 7= Tis ds * s ds
R dS ds* ds

i i f,/dS points in the negative
e oamoms A1t a1 O ould take F — 7, the
normal vector defined by -

AR (14-4)
ds

dine to f1 X i = i3 but thi; choice is inconvenlgnée\:fggg
rathef than acc(ilf mgrvature Also, this definition degene_rates atanin on
the‘re ls. areversa ;fn dcgl =0 Ii’ the sense of the curvature 1§ constaqt, onf,kcvft1
pflnt’sllg;i;}:e&; 5( 1~X_z ffame so that 7, coincides with 7, to avoid working
alway:

Wltll a Ilegatlve 1{.
TO Complete the gCOrnetl lC&l tr eatment, we COnSlder the gcneral pal a]netllC

representation for the curve defining the centroidal axis,

% = x() (14-5)
X2 = X3(y)

here y is a parameter. The differential arc length is related to dy by
whe .

¢22+szTiwza@ (14-6)
as = + dy dy

[\C(.«()ldln to thlS deﬁllltl()]l the ‘I"‘S sense COI“CldLS Wlth the dlleCtl()n ()j
g 3

i ric i - a plane curve which
ize here for convenience the essential geometric relations for a p
T We summarize
are developed in Chapter 4.
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increasing y. Using (14-6), the expressions for 7, ts,

and 1/R in terms of yare
El = l(ﬁ{f + E{ﬁ‘

a\dy dy 2
. 1 i d
tz=—(~%ﬁa g?a>
o y dy
L _ 1/ di, (14-1)
R\ dy

i

&) —

T Ay

A planar member subjected to in-plane forces (X,
will experience only in-plane deformation. In wh
governing equations for planar deformation of an arbitrary planar member.
This formulation is restricted to the [inegr geometric case. The two basic

solution procedures, namely, the displacement and force mcthods, are described
and applied to a circular member.

We also present a simplified formulation

valid for a shallow member. Finally, we include a discussion of numerical

integration techniques, since one must resort to numerical integration when
the cross section is not constant.

( f]le dXZ dZXZ dx1>

-X 3 plane for our notation)
at follows, we develop the:

(Marguerre’s equations) which is

14-2, FORCE-EQUILIBRIUM EQUATIONS

The notation associated with a

positive normal cross section, i.e., a cross
section wh

0se outward normal points in the + S direction, is shown in Fig, 14-2.
€ same notation as for the prismatic case, except that now the vector

Centroidal axis

Fig. 14-2, Force and moment Components acting on a positive cross section.
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components are with respect to the local frame (Yy, Y,, Y3) rather than the
basic frame (X, X,, X3). The cross-sectional properties are defined by

A= [[dy, dy, = [[d4 )
Is = [[(y,?dA I, = [f(y3)* dA4 (14-8)

Since Y, Y3 pass through the centroid and are principal directions, it follows
that

{fy2dd = [[ysd4 = [[y,y;d4 =0 (14-9) -

When the member is planar (X,-X, plane) and is subjected to a planar
loading,
Fy=M; =M, =0 (14-10)

In this case, we work with reduced expressions for F. and M, (sec Fig. 14-3)
and drop the subscript on M;:

F.{. :Fllrl +F2le
M+ = M3[—3 == M?g, (14_11)

Note that Z; is constant for a planar member.
X2 : Fyt;

Y,

) Mt

Centroidal axis t3= 1 X f

X

Fig. 14-3. Force and moment components in planar behavior.

To establish the force-equilibrium equations, we consider the differential
volume element shown in Fig. 14—4. We define b and 7 as the statically equiva-
lent external force and moment vectors per unit arc length acting at the centroid.
For equilibrium, the resultant force and moment vectors must vanish. These
conditions lead to the following vector differential equilibrium equations:

T
il
[ws]}

-+

&%

— 14-12
dM , ( )
ds

i
Oy

+ 4Ly X Fy

SEC. 14-3. PRINCIPLE OF VIRTUAL FORCES ‘ 429

We expand b and 7 in terms of the unit vectors for the local frame:

b= by, + byt, )
7ﬁ= mfy,

Introducing the component expansions in {14—12), and using the differentiation
formulas for the unit vectors (14-3), lead to the following scalar differential

equilibrium equations:

ar, F, _

P

dF, F,

StRT b, =0 (14-14)
dM .

75— -+ ]2 +m =20

Note that the force-equilibrium equations are coupled due to the curvature.
The moment equilibrium equation has the same form as for the prismatic case.

bds

Fig. 14—-4. Differential element for equilibrium analysis.

The positive sense of the end forces is shown in Fig. 14-5. We work with
components referred to the local frame at each end. The end forces are related

to the stress resultants and stress couples by

Fgj = Filsy ‘
My = Mls, (14-15)
Fa= —Fls,

IWA = "‘MlsA ] = l, 2

14-3. FORCE-DISPLACEMENT RELATIONS; PRINCIPLE OF VIRTUAL
FORCES : :

We establish the force-displacement relations by applying the principal of
virtual forces to a differential element. The procedure is the same as for the
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prismatic case described in Sec. 12-3, except that now we work with displace-
ment components referred to the local frame at each point. We define itand @ as

il = Y uit; = equivalentt rigid-body translation vector at the
centroid. (14-16)
B =)y wi;

equivalent rigid-body rotation vector
For planar deformation, only u, u, and o, are finite, and the terms involving
U3, @, and w, can be deleted:

i

it = udly + uyl, (14-17)

@ = wyt; =wi;

The positive sense of the displacement components is shown in Fig. 14-6.

Fig. 14-5. Convention for end forces.

X2

llzfz

Centroidal axis

Xy

Fig. 14-6. Definition of displacement measures.

1 “Equivalence” refers to work. See (12--8).
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We define V* as the complementary energy per unit arc length. For planar
deformation, V* = V* (F,, F,, M). One determines V* by taking expansions
for the stresses in terms of F, F,, M, substituting in the complementary energy
density, and integrating with respect to the cross-sectional coordinates y,, y;.
We will discuss the determination of V* later.

Specializing the three-dimensional principle of virtual forces for the one-
dimensional elastic case, and writing

oy OV v ov*
av* = F — AF| + - iF, AF; + -}J\—[AM

14-18
=e Al + e, AF, + kAM { )

fead to the one-dimensional form
[sles AF{ + ey AF, + k AM)dS = > d; AP, (14-19)

where d; is a displacement measure and P; js the force measure cotrespondmv
to d;. The virtual-force system (AF,, AF,, AM, AP,) must be statically permis-
sible, i.c.,, it must satisfy the one-dimensional equilibrium equations.

-~

AF,

—aM, + & (a0)% ( )A/l?+ + S (ann, )48

;+ ' N dz; dS ‘ -~ d QS
( u— ) ] u U
M M as 2
PR - d:l :!S’
) w+ IS 7

= _dwds (.
©Y7Tas 2
Fig. 14—-7. Virtual force system

We apply (14-19) to the differential element shown in Fig. 14-7. The virtual
force system must satisfy the force-equilibrium equations (14-17),

d

—AF, =0
ds
, (a)
Z{§AM+ +fl XAP.—Q.:O
Evaluating )’ d; AP,
p NN . N )'03 ds
2. di AP = * E§+' *ds s ") (b)

duy  u, du,  uy dow
= -~ = Pl o — —+dS
{AF1<dS R)+Ar2<d5 TRTO) MG
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and then substituting in (14-19) results in the following relations between the
force and displacement parameters: :

_ovr duy
“T8F, Tds TR
avE  du, uy
I B 14-20
TSR TS TR (14-20)
g OV _do
oM dS

We interpret e; as an average extension, ¢, as an average transverse shear
deformation, and k as a bending dcformation. Actually, k is the relative rotation
of adjacent cross sections. In what follows, we discuss the determination of V*,

Consider the differential volume element shown in Fig. 14-8. The vector
defining the arc QQ, is

— 6‘7‘2 d’i (l{z \ d[;
Q1 = E; d} = (‘—i; + Va (1)7 + Y3 *("1‘; ) d_V (a)
Noting that
di :
dy i
di, o
2 b
dy R )
o =Y
for a planar member, (a) can be written as
Ya y y
S, = 1004] = « <1 - -R%> dy = (1 - RZ) ds . (©)

By definition, V* is the complementary energy per unit length along the
centroidal axis. Substituting for dS, in the general definition, we obtain

VEdS = ([ V*dS,dv,dys
Y2,¥3
(14-21)
7 * _ )
e

In general, V* = V* (g4, 0,5, 013). We select suitable expansions for the
stress components in terms of Fy, F,, M, expand V*, and integrate over the
cross section. The only restriction on the stress expansions is that they satisfy
the definition equations for the stress resultants and couples identically:

jjo‘u dA=F1 ”612 dA:F2 ‘ﬁ‘al_‘,dA:O
thfu d4 =0 "j,[yz(fu dA =M (a)
“(J’zam ~ Y301)d4 = 0

e
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The most convenient choice for ¢, is the linear expansion,t

oy =t M

u =7 Y2 T

}Vhere I E'I 3 .A logica.l choice for o, ; (when the cross section is thin-walled)

is th; distribution predicted by the engineering theory of flexural shear stress
distribution described in Sec. 11-7:

1
Uljzzq(Fz) q = F

(14-22)

(14-23)

where ¢ denotes the local thickness, and q is the flexural shear flow due to F,.
Both expansions satisfy (a). :

X,

FHv vt =Ty

o
///
0 s, - Py(y +dy)
-
— 7 dS

])

H)

-

31

Fig. 14-8. Differential volume element.

In what follows, we consider the material to be lincarly elastic. The comple-
mentary energy density is given by

. 1 i
V* = elo, + ?E“fo + 26(0%2 + o13) (a)

where ¢? is the initial extensional strain. Substituting (a) in (14-21) and taking
the stresses according to (14-22), (14-23) results in the following expression

+ This applies for a homogeneous beam. Co i : i i
‘ g - Composite beams are more conveniently treated with
the approach described in the next section. ¢
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for V*:

1 1 1 1
7% — 0 0; 2 e - M? F? 14-24
where

o

e =;11~Jj5?<1—%)d/1
k ::Tlﬂ,yze?(l *-%)dA
-

2 "
(e

If the section is symmetrical with respect to the Y; axis, I* = [ and_A* = A,.
The deformation-force relations corresponding to this choice for VV* are
Fy M duy U,

— 50 b . [ —
a=at oy T ERT A TR

(=}

p—

*

F, du, uy
L T S 4-25
T4 s TR (14-25)
F d
k=toy S Mo do

AER ' EI* ~ dS
Note that the axial force and moment are coupled, due to the curvature.
Inverting (14-25) leads to expressions for the forces in terms of the deformations:

EA . EI*

i — (e — O
Fi= 1= 5(91 ey) RO = 5)(’“ k%)
EI* o EI*
- BT e - T k= e
M= i@+ k-K) (14-26)
F2 = GA;‘eZ

I LT
R - Iy | Y
"= AR T AR [1 IR H vz ]

We observe that
1 A% d\?
AR <E> = 0(}3) (@

where p is the radius of gyration and d is the depth of the cross section. For
example,
I d*

= b
AR?*  12R? (b)

for a rectangular cross section. Then, & is of the order of (d/R?) and can be

neglected when (d/R)* « 1.
A curved member is said to be thin when O(d/R) « 1 and thick when O(d/R)* «
1. We set § = O for a thick member. The thinness assuraption is introduced

SEC. 14-4. PRINCIPLE OF VIRTUAL DISPLACEMENTS 435

by neglecting y,/R with respect to unity in the expression for the differential
arc length, ie., by taking
ds, ~ dS

Ve [ V* dA
A

(14-27)

Assuming a curved member to be thin is equivalent to using the expression
for V* developed for a prismatic member. The approximate form of (14-25)
for a thin member is

F du u
— 0t Tt 72
a=atr=us TR
F, du,  uy
-2 T M 14-2
“2 G4, "B TR Y (14-28)
M  dw
k=K 02 =42
CENTEITUS

To complete the treatment of the linear elastic case, we list the expanded
forms of the principle of virtual forces for thick and thin members. Note that
these expressions are based on a linear variation in normal stress over the cross
section.

Thick Member

F M .
0 1 - I,
+ == 4 ——— | AF| + = AF

¥ M (14-29)
0 L — 1S = Y d. AP.
+<k +AER+E1*>AM}(S Zd,AP,
Thin Member
F F )
0, 1 3 —2
[fla+E)an « L2,
(14-30)

+ (k° + EMi> AM} s =Y d, AP,

14-4, FORCE-DISPLACEMENT RELATIONS—DISPLACEMENT
EXPANSION APPROACH; PRINCIPLE OF VIRTUAL
DISPLACEMENTS

In the variational procedure for establishing one-dimensional force-displace-
ment relations, it is not necessary to analyze the deformation, i.e., to determine
the strains at a point. One has only to introduce suitable expansions for the
stress components in terms of the one-dimensional force parameters. Now, we’
can also establish force-displacement relations by starting with expansions for
the displacement components in terms of one-dimensional displacement pa-
rameters and determining the corresponding strain distribution. We express the
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stresses in terms of the displacement parameters using the stress-strain relations,
and then substitute the stress expansions in the definition equations for Fy, F,
and M. The effect of transverse shear deformation is usually neglected in this
approach. To determine the strain distribution, we must first analyze the
deformation at a point. This step is described in detail below.

Figure 14-9 shows the initial position of two orthogonal line elements, 00,
and 0Q,, at a point (¥, v,, y3). The vectors defining these elements are

- or .

QQI = —_}-5* dy = 0y d_}/ [1
7

00, :T\VZ‘ dy, = dy, 1, (14-31)
- ¥2

a2=(1——y-1%>a

We use a prime superscript to denote quaritities associated with the deformed
position of the member, which is shown in Fig. 14-10; for example:

4

7
1
'y

#(y) = position vector to point P(y) in the deformed position (point P).
tangent vector to the deformed centroidal axis.
= position vector to Q(¥, v, ¥3) in the deformed position {(point Q").

i

i

X3
Q2
21
dy2
Q aydy
1o
< *dy_~"p (v + dy)
+
74\)
P
::V (»)
Ta
I Centroidal axis
1y
)
.IYl

Fig. 14-9. Initial geometry for orthogonal curvilinear fine elements.

[

SEC. 14-4,
From Fig. 14-10, and noting (14-31):
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=t

. dv . lii .
PP = E—d} = <oft1 + %) dy = o dyt}

ey

S
00, = 2y = (Wl + {“2> dy (14-32)
oy cy
o7} . on
Q0; = ?.’ZdyZ =i+ =2 )dy,
(3%) ay,

The analysis of strain consists of determining the extensions and change in
angle between the line elements. We denote the extensional strains by g;
(j = 1, 2) and the shearing strain by y,,. The general expressions are

/R
- 070" (14-33)
$inyy, = -@3—925

100[ 10703

Now, we restrict this discussion to small strain. Substituting for the deformed
vectors and neglecting strains with respect to unity, (14-33) expands to

1 - (3172 1 aﬁz (?}122
g X —1 et ey T
: a ! 2Aar)* © oy
- Tﬁz 1 cuz ("uz
L P L e (14-34) -
¢y, 2 a.Vz ay;
. Qi 1. i, 1 o, ci,
Vg Ryt o= b oty b
CYy Uy oy a; Oy @y,

The nonlinear terms arc associated with the rotation of the tangent vector.
Neglecting these terms corresponds to neglecting the difference between the
deformed and undeformed geometry, ic., to assuming linear geometry.

The next step involves introducing an expansion for i, in terms of y,. We
express il, as a linear function of y,.

fy = i — wyyf, (14-35)

where o = w(y) and

i = wyfy + yf, = 0(y) (14-36)

is the displacement vector for a point on the centroidal axis. Equation {(14-35)
implies that a normal cross section remains a plane after deformation. One can
interpret @ as the rotation of the cross section in the direction from 7, toward
f,. This notation is illustrated in Fig. 14-11.

In what follows, we consider only linear geometry. Substituting for ii,, taking
y = §, and evaluating the derivatives lead to the following strain expansions:
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! O
& = m(ﬁ — y2k) e = s R 1811):2—0
du, Uy B
gy = 0 €y = —g*g + -R* — ) = }’})lzth:o (14 37)
1 dw

k

T2 =TT,RS ~ds

The vanishing of ¢, is due to our choice for ii,. One coul.d‘ inciude angddi-
tional linear term, fy,7,. This would give &, = B and additional terms in the

X

o
S+ e dy

Py

Xy
Fig. 14—10. Deformed geometry for orthogonal curvilinear line elements.
u;E

(uy —wy2)

Centroidal axis

Fig. 14-11. Displacement expansion.
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expressions for ¢; and y,,. Note that the assumption that a normal cross
section remains plane does not lead to a linear variation in extensional strain
over the depth when the member is curved.

We introduce the assumption of negligible transverse deformation by setting
e, = 0. The resulting expressions for w and k in terms of u, and u, are

62 = 0
)
du, oy
= TR (14-38)

k = fi_(g —_ El.l__lfi + _i (ﬂ)
ds — ds*  dS\R
When transverse shear deformation is neglected, one must determine F, using
the moment-equilibrium equation.

The next step involves expressing Iy, F,, and M in terms of the one-dimen-
sional deformation parameters e,e, and k. In what follows, we consider the
material to be linearly elastic and take the stress-strain relations for ¢4, o,
as: T

oy = Elg, — 3(1)) o2 = Gy, N

Substituting for ¢y, y4,, using (1437},

E
011 = 7775, (31 h _Vlk) - Eg(l)
1 — yy/R
14-3
e (14-39)
12 = TR

and then evaluating F, F,, and M, we obtain

dA - Y2 Ci/l .
Eey || ——— — Ek || =22 — E || &2d4
“ H I = y,/R ﬂ 1= /R ot

d
- Y2

v, dA ) y5dA
—FE Flc v 0
Fel j\J\l - }’Z/R + [ % ij‘ 1 — yZ“—“/R + y281 dA

The various integrals can be expressed in terms of only one integral by using
the identity

F,

]

M

i

1 y2/R
=1
[y R =TT R @
and noting that Y; is a centroidal axis:
fy2d4 =0 . (b)

+ The relation for ¢, is exact only when o;; = 033 = 0. We generally neglect 6,5, 033 for a
member.
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One can easily show that
dA I
_ = A 4
J‘J‘l — ¥4/R + R?
v, dA I
- = 14-41
”1 —y,/R R ( )
= v3 dA
1 —y,/R
For completeness, we list the mnverted form of (14—40),
e, = 60 + f_l + __M__
v EA '~ EAR
“ =G4,
F M
k =k 4+ -
T EaR T ET
where
I'"=r/{1+ I
B AR?
II
Ay, = A (1 + ——'“—2—)
AR (14-42)

-3 a5
<10

The expressions for e, are identical with the result (see (14-25)) obtained with
the variational approach. However, the result for k differs in the coefficient
for M. This difference (I or I") is due to the nonlinear expansion used for o4 .

Example 14-1

We determine I’ for the rectangular cross section shown in Fig. E14-1.

- [}zd/l b a2 yzd}z
- 1 — w/R ~¢izl‘“"2/1R

1+ d “
. 2R
= —R?%d + R%In —
1 — —
2R
To obtain a more tractable form, we expand the log terms, using
1+ x xS X7
1 =2{x+ -+t =+
n<1_x) (\+3+5+7+ ) (b}

e e e Y e 5
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This series converges for fx{ < 1. Then
A
L
In 2R d &3 3/dN* 374\
d"r o)t “L’(““) +“(“ o
L s\er) "7 3R @

and
, 3 /d\? 3 /d\*
1=[{1+-.,(__> o
20\ R F112 R + @

’{ Fig. E14—1

Y,

The relations listed above involv
is thick, we neglect (y,/R)?
by taking

€ exact integrals. Now, when the member
with respect to unity. This assumption is introduced

1
R =1 Y2 e J
" +R+<R)+ N1+?2£ (a)

in the expansions for 011,015 and I';

91, Y2 :
7 ~6‘1<1+}->—-k<y2+%>——3?

015

G ( * )

. 5 dA 3
"= Hl L—yz/R fj <V§ yR3> A

ek

2

(14-43)
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To be consistent, we must also neglect I'/AR* with respect to unity in t‘he
expression for A3 and I”. When the member is thin, we neglect y,/R with

respect to unity.
1

1 - y,/R ~
23! 0
e x ey — Yok — ¢
E 1~ V2 1
Iz
G

0
—

(14-44)

€y

Itis of interest to establish the one-dimensional form of the principle of virtual
displacements corresponding to the linear displacement expansion used in this
development. The general three-dimensional form for an orthogonal coordinate
system is (see Sec. 10-6):

{[f(o11 68y + -+ + 015 Oyia + *d(vol) = YP; Ady (@)

where P, represents an external force quantity and d; is the displacement quantity
corresponding to P We consider only &; and yy, to be finite, and express the
differential volume in terms of the cross-sectional coordinates y,, y3 and arc
Jength along the centroidal axes (see Fig. 14-9): :

d(vol) = dS, dy, dvy = (1 — }%) ds dy, dys (b)

Then (a) reduces to

J [ ” (01, 96 + 12 6712) (1 - %2-) dA] dS = P, Ad, (14-45)
S
A

We take (14—45) as the form of the principle of virtual displaccments for planar
deformation. | .

The strains corresponding to a linear expansion for displacements and linear
geometry are defined by (14-37), which are listed below for convenience:

g = ————(e; — V3k)
1 "—1y2/R (C)
Y12 = mez
du, Up
“4TUs TR
duz 111 d
e,; = —d"s: + 7€ - W ( )
dw
k = ES—'

Substituting for ¢, y;, and using the definition equations for Fy, F», and M,

]
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we obtain
jS[F1 dey + F, de, + M 5k]dS = ZPi Ad,; (14-46)

This result depends only on the strain expansions, i.e., (c). One can apply it
for the geometrically nonlinear case, provided that (c) are taken as defining
the strain distribution over the cross section. ‘

We use the principle of virtual displacements to establish consistent force-
equilibrium equations. One starts with one-dimensional deformation-displace-
ment relations, substitutes in (14-46), and integrates the left-hand side by parts.
Equating coefficients of the displacement parameters leads to a set of force
equilibrium equations and boundary conditions that are consistent with the geo-
metrical assumptions introduced in establishing the deformation-displacement
relations. The following example illustrates this application.

Example 14-2

The assumption of negligible transverse shear deformation is introduced by setting e,
equal to zero. This leads to an expression for the rotation. w, in terms of the transiation
components,
duy, Uy

©=3s TR @
and the relations for negligible transverse shear deformation reduce to
{s[F. ey + M SkdS = Y P; Ad; (b).
du;  uy
TSR
: dw d (du, + Uy <)
( = —— = e | —
as dsS\dS R
Substituting for Aw and the strain variations,
Auy d
Aw = — +—-
w R + s Au,
d 1
(561 = z_[—s; Aul - }i Au;_ (d)
d? 1 d
ok = ;{S“z‘ Auz + “Ed—S;Aul
and integrating by parts, the left- and right-hand sides of (b) expand to
Sy
L [F, Se, + M 6K]dS
M aM d
= Fy + = )Auy — — Aup + M — A
i(r L R) T e TR, ©
M dM d
— }(F] + E) Aul - -dST Auz + M ;l"'S‘AHZ ses.

e dFy 1 dM F, d&*M
——— Auy | — — + — | dS
+ LA {Au1 [ SR dS} + uz[ R + yra
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Se m c?m
Pi di = - _— T :
>PA LA {Au1 (bl + R) + Au, (bz dS)} as

= Mg _ _ du,
+ FBl + —I-g. AMBI -+ FBZ + mp AL‘BZ -+ MBA — (f)
B

and

The consistent equilibrium equations and boundary conditions for negligible transverse
shear deformation follow by equating corresponding coefficients of the displacement
variations in (e) and (f):

§,<8S<S§,
dF, 1 dM : m 0
il T 8 o
ds " Rds !
F, &M dm
BRI =0
RO T T
§=3S,
u,  prescribedor  Fy = —Fu4
. aM
u,  prescribed or = Fyo—~m (2)
dus rescribedor M = —M
s P = T
S=38,
Uy prescribed or Fy=Fp
. iM -
Uy prescribed or £d§ = —Fpgy; —m
d _
FuSi prescribed or M = My

Orne can obtain (g) by solving the last equation in (14~14) for F, and substituting in the
first two equations. .
Suppose we neglect 1;/R in the expression for :

()

This assumptiont is generally referred to as Mushtari’s approximation. The equilibrium
equations for the tangential direction reduce to
dF,

—s = h (1)

T See Ref. 5.
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The other equilibrium equation and the boundary conditions are not changed. Using
(h) instead of (a) eliminates the shear term, F,/R, in the tangential force-equilibrium
equation. ‘

14-5. CARTESIAN FORMULATION

We consider the case where the equation defining the centroidal axis has the
form x, = f(x;). The geometrical relations for this parametric representation
are obtained by taking y = x, in (14-7). They are summarized belowf for
convenience and the notation is shown in Fig. 14-12:

dS = dxl
af
tan 6 = ECT

5
fl

(If 2 1/2— 1
[”(Z&“{)] = cos b
. 1T, df\. ] 1 dF
= a[ * (a;) } " ady

1

il e]
fy=10; X1, =13
d*f
1 dx}
R “_"'[1 . (,‘f f_"“>2]3/2
dx
di, 1. di, 1.

B "R* AT TRM

In the previous formulation, we worked with displacement components and
external force components referred to the local frame. An alternate approach,
originally suggested by Marguerre,{ involves working with components re-
ferred to the basic frame rather than the local frame. The resulting expressions
differ, and it is therefore of interest to describe this approach in detail. We
start with the determination of the force-equilibrium equations.

Consider the differential element shown in Fig. 14—13. The vector.equilibrium
equations are

diF+ + P = 6
P x4 (14-48)
* ! —F-.f + ];l. - 0

dx, = dx; *

+ See Prob. 14-1.
1 See Ref. 6.
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X3

£}

xg = f(x1)

|
[
-
!
1

Yy

ds j—gl
6 dxl

d.\‘l

Xy

Fig. 14-12. Notation for Cartesian formulation.

X

pdx g

dX]

aFy dxy

dx‘

Fig. 14-13. Differential element for equilibrium analysis.

CHAP. 14
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where p, h are the external applied force and moment vectors per unit projected
length, i.e., per unit x;. They are related to b and m (see Fig. 14—4) by

pdx, = bdS = (ab)dx,

- . o (14-49)
hdx, = mdS = (em)dx,
Substituting for the force and moment vectors,
F, = Fii+ Fyiy = Nji, + Nyi,
M+ = M73 h = }773
P =piiy + paiy (14-50)
N, = F;cos@ — F,sinf C
N, = F,;sinb + F,cos 8
the equilibrium equations expand to
dN d .
L= - (F,cos 0 — F,sin6) = —p,
dx,  dx;
dN {
S . S (F sinf + Fycos60) = —p, (14-51)
dx,  dx; ,

:l(ﬁly.*. h) =F,= —N;sin# + N,cos 8

‘We restrict this treatment to an elastic material and establish the force-
displacement relations, using the principle of virtual forces,

le [0 4 dl_/-* dx1 = jxx [el AF& -+ ey AFZ + k AA/I}(X dX1 = Zdl APl (a)

where V* = V* (F,, F, M) is the complementary energy per unit arc length.
Consider the differential element shown in Fig. 14~14. The virtual-force sys-
tem is statically permissible, ie., it satisfies the force-equilibrium equations
identically:

d

—AF, =0
dxq (b)
d = - — -
a—_AM+at1XA}+:O
X1
Expanding ) d; AP,
- dii - — — do
Zdi API = [AF+ (;{x‘; + O!Zl X (L)) -+ AM+ ?d—x“l‘:l dxl (C)
and then substituting for the displacement and rotation vectors,
7= 0y ooy (14-52)

W = wi; = Wi,



448 PLANAR DEFORMATION OF A PLANAR MEMBER CHAP. 14

we obtain
) 'Y d
S d, AP, = (AN1 %-1- AN, 2 AP+ AM Jf’i) dx, ()

X4 dx, X4
Finally, substituting for Ny, N, in terms of Fy, F, and equating coefficients of
the force increments result in

ov* 5 o duy ) ﬁl_}}
ey = aF, = COs ‘0 i, + Sm(?cosﬁdxl
ov* . dv, L, duy
A Ly cos? B2 14-53
e, oF, sin 8 cos @ ax, + cos i ) ( )
ov*  do
= = ——cos 0
cM  dxy

The member is said to be shallow when 6% « 1. One introduces this assump-
tion by setting :

d
cosf ~ 1 sinf ~ tan 0 = ——f* (14-54)
dxq

in (14-50), which relate the cartesian and local forces.

X

o +oan (5 (

T ()

WAF'!- dxy
A |
= _du ¢dxg v2 e
R N A L =)
7 e g

= da axr) Q -
dx1 2

I dxl Xl

Fig. 14—14. Virtual force system.

Marguerre’s equations are obtained by assuming the member is shallow
and, in addition, neglecting the contribution of F, in the expression for N;.

SEC. 14-6. DISPLACEMENT METHOD OF SOLUTION 449
Marguerre starts with
N1 ~ Fl (a)
af
N, ~ F, + (E) Iy
and the resulting equations are
IF
S +p =0
dx,
dF, d df
—— e F e == O
dxq + dx, < Ydx, + P
dM
Fy=———m
dx (14-55)
. = ov* —dvt df dv, ‘
YUOF, T dxy | dxg dx,
o = o dv,
2TOF, Tdx, ?
i — r* do
7Y

One step remains, namely, to establish the boundary conditions. The generél
conditions are
Uy or N,
v, or N, ¢ prescribed at each end (14-56)
M or w

We obtain the appropriate boundary conditions for the various cases considered -
above by substituting for N, N, and w. For example, the boundary conditions
for the Marguerre formulation are

vy or Fy

1 .
v, = or F, + ;;{4 F, ¢ prescribed at each end (14-57)
“v1

w or M

14-6. DISPLACEMENT METHOD OF SOLUTION—CIRCULAR MEMBER

The displacement method involves solving the system of governing dif-
ferential equations which, for the planar case, consist of three force-equilibrium
equations and three force-displacement equations. If the applied loads are
independent of the displacements, we can first solve the force equilibrium
equations and then integrate the force-displacement relations. This method
1s quite straightforward for the prismatic case since stretching and flexure are
uncoupled. However, it is usually quite difficult to apply when the member is
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curved {except when it is circular) or the cross section varies. In what follows,
we illustrate the application of the displacement method to a circular member
having a constant cross section, starting with—

1. the exact equations (based on stress expansions) for a thick member
2. Marguerre’s equations for a thin member

The results obtained for this simple geometry provide us with some insight as to
the relative importance of transverse shear deformation and stretching deforma-
tion versus bending deformation.

When the centroidal axis is a circular segment, R = const, and the equations
simplify somewhat. It is convenient to take the polar angle 8 as the independent
variable in this case. We list the governing equations below for convenience
and summarize the notation in Fig. 14-15:

dFy, dM m
R 4+ = = —R*{I —
i T~ R <" +R)
d’M ) 5 dm
Eq.(14-19) = {5 — RFy = R%; — R (14-58)
B _1_11M .
2= "Rag " )
e —eO+Fl-+-~A~/[~~ 1 d% u
VUV T 4R T AER T R\ d6 2
FZ 1 duz
Eq. (14-25) = {e, = GaF E(—c—l-o + Lt1> - (14-59)
F M I dow
kmio g S M Ldo
CCOTERTEE TR W

Solution of the Force-Equilibrium Equations

We consider the external forces to be independent of the displacements.
Integrating the first equilibrium equation, we have

0 R

RF, = —M — R? f (bl + ”’)do +C (a)

where C, is an integration constant. Substituting for F; in the second equation
results in a second-order differential equation for M:

a*M 1 d

The general solution of (b) is
M=C + Cycos8 + C; sinf + M, (14-60)
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where M, denotes the particular solution due to the external distributed loading
and C,, C; are constants. Once M is known, we find F; using (a) and F, from
the moment equilibrium equation. The resulting expressions are

F, = :I%(Czcosé’ + Cysinf + M) — R‘[(bl + %)d@
0 (14-61)

1 dM
F2=—R—(—Czsin0+c3cos(9+ ”)—m

do

ds =Rdf

Fig. 14-15. Notation for circular member.

Integration of the Force~Displacement Relations

We start with (14—-59) written in a slightly rearranged form:

% — u, = Re§ + Z%(M + RFy)
% T é{% + Rw (@)
% — RK® + EI;’F [M + —A%z (RF 1)}
To determine u, and u,, we transform the first two equations to
%uei = u, + Re{ + ;IIE(M + RFy) (14-62)
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and
d*u
@ Y
R dF, dw 1
_ N A RAP R0 L RF
V=Gaoa T Ra R g M REY
R dF, 4, R? (14-63)
= — R?*]O — R)O ot e M
Gaz ap TN TRt g

I* dy’
5e=2ﬂ‘<‘f—"<f>

alzl——(se

We have previously shownt that J, is of the order of (d/R)?. It is reasonable
to neglect §, with respect to 1 but we will retain it in order to keep track of the
influence of extensional deformation. We solve (14-63) for u,, determine u,
from (14-62), and w from the second equation in (a),

I, 1 [du,

W= ———t+ ===+ u 14-64
G4 ' R ( 1> ( )

This leads to three additional integration constants. The six constants are

determined by enforcing the three boundary conditions at cach end. Various
loading conditions are treated in the following examples.

Example 14-3

Consider a member (Fig. £14-3) fixed at the negative end (A4) and subjected only
to Fg, at the right end (B). The boundary conditions for this case are
Fi=TFg; F,=M=0 at0=0
Uy =y, =w =0 atf0 =0

(a)

Specializing the force solution for no external distributed loading and enforcing the
boundary conditions at B, we obtain
Fl = FBI COS(OB - 0)
F, = Fy sin(0y — 0) (b)
M = RFg (1 ~ cos (05 — 0))

To sirhplify the analysis, we suppose there is no initial deformation. Using (b), Y takes
the form

F,R? '
LR ©
where
EI* d\?
= = O =
2 GA%R? (R) @

02=a1+5s=1"—5e+5»\‘

+ See Sec. 14-3, Eq. (14-26).
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Note that &, is associated with transverse shea

- deformari o .
and integrating e r deformation. Substituting for y in (14-63)

. FpR?
Uy = C 51 a4 i
5 4€C0s B + Cssin @ + “Ef [al + ?Z 0 sin(fy — 9)] (e)
The solution for u, follows from (14-62):
U = Cysinf — Cscos 6 + Ce
a;
+ NICh {8 + 5 {6 cos(6; — 6) + sin(fy — 6)]} ()

Next, we determine @ using (14-64),

_Cs  FyR? . :
@ = _E + e {0 + a, sin(fg — 9)} (®
Finally, the const: i J
atf = o% stants arc found by enforcing the displacement boundary conditions
~ FuR
Co= g
c. _ [« FpR
T2 TN TR v
_ FBIR:I' .
Co = —a, ~pje sin 0p

To determine the relative importance of stretchin

: g and shear deformation v i
deformation, we evaluate the displacements at ¢ e oppencing

= {y and write the resulting expressions

Fig. E14-3

Constant cross section
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in the following form:

2
g = “F—%l;;— (93 — sin 93)“ + bl (S(,)
a3 ) ‘
Uy, = %?— (2 05 — 2sin O + 5 sin O cos Op)(1 + b, 8, + b3 )
s \
Ugy = %—11-1}(1 — cos By — Lsin? Og)(1 — 3, 4 bady)
sin 0p
L0 — sin by
- —40, + 2sin 0y — +sin O cos Oy
b, = 36, — 2sin 0y + 4 sin O cos U
(05 — sin G5 cos Op)
bs = 30, — 2sin G + §sin 0 cos g
1sin? 0 . L+ costy
ba = 1~ cos 0y — +sin* By 1 — cosOp

The coefficients (by, . - ‘
to unity, i.e., when the segment is not shallow. Also, 9, :
that the displacements due to stretching and shear deformation

CHAP. 14

/

., by are of order unity or less when @ is not small with respect
and &, are of oxder (d/R)?. It follows
are of order (d/R)? times

the displacement due to bending deformation for a nonshallow member.

To investigate the shallow case,

series expansions,
’ et
sin@ =011 ——+-=— "

we replace the trigometric terms in (i) by their Taylor

6 120
0 : 2 . 04
cosh =1 — =+ -— —
2 ) 24 X 0
sinf cos @ = 0(1 ~§92 + .B(# _>
gz 2 o >
12 — A2 R = .
sin? § = 0 (1 3 + yE
and neglect 0% with respect to unity. The resulting expressions are
Fy, 8% 1 I*,
©p = e 05 5+7{5TS2
FunS [ [ L 1B ®
Up; =-E'I—;~ 9;3 56 + 3 G,!L%SZ + Asz
FuiS (051 EI" }
Upy = EI* 2 4 GA%SZ
Now,
I* d 2
._..,_2_ = 0 —_—
AS S 0

EI* (d>2
GAzS?  \S
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I* 1 [d\?
45’ T 12 <§>

EI* ‘: i(ﬁ)z 026 <g>2
GA%S?  10G\S ’ S

for a rectangular section and v = 0.3. Since (d/S)? « I for a member, we can neglect the
transverse shear terms in uy,, g, and the stretching term in wz. However, we must retain
the stretching term in g, since it is of the same order as the bending term. The appropriate

expression for ug, is
FpS® (03 I*
Upy = ok ,(J’ + > . | @)

SEC. 14-6.

For example,

(m)

EI* \20 = AS?

In sum, we have shown that the percentage of error duc to neglecting stretching and
transverse shear deformation is of the order of (d/R)? for a nonshallow circular member.
If the member is shallow (05 < ~ 15°), we cannot neglect stretching deformation. Actually,
the stretching term dominates when the member is quite shallow. The error due to ne-

glecting transverse shear deformation for the shallow case is still only of the order of
(d/R)*.

Example 14-4

The internal force distributions due to Fj, acting on the cantilever member shown
in Fig. E14~4 are given by
F, = —Fg, sin(@g — 0)
Fy = Fy; cos(fp — 0) (a)
M = Fg, Rsin(0; ~ 0)
We suppose the member is not shaliow and neglect stretching and shear deformation.
The force-displacement relations reduce to (we set 4 = A% = o in (14-59))

duy

=R

du

~d~§2* + uy; = Rw ()
dw RM
— = Rk ——
0 - T ER

Eliminating u, from the first two equations, we obtain

d?u, " . R?
"(‘[ojz—-i-uz.—zl{zk — Rey +_EFM
d
TR ©

1 (duy +
®=%\a *"

We determine u,, then uy, and finally w. Note that (c) corresponds to (14-62), (14-63)
and (14-64) with 4 = A, = oco. The final expressions (for no initial deformation or support



456 PLANAR DEFORMATION OF A PLANAR MEMBER CHAP. 14

movement) are

Fs,
Uy = ZEI* {(9 cos{fp — 0) — sin @ cos Oy}
F
uy = ZBEZI* {—2cos 0 + cos 85 cos § — O sin{fz — 0) + cos(fp — 0)} (d)

F
w = —:;‘217 { cos(0z — 8) — cos 05}

Example 14-5

We analyze the shallow parabolic member shown in Fig. E14-5 using Marguerre’s
equations. We consider the member to be thin and neglect tzansvcx se shear deformation.
Taking f = ax}/2 and py =m =0, the governing equations (see (14-55) and (14--57))

reduce to

dF,
dx; B
d*m X
W—GP1~P2=0 (a)
Y
dx _
F, dul do,
- o0 1 2
R FAR A o
dv,
= e b
® =05 (b)
M d*,
ko =10 4 = =2
¢ tE T e
vy, Uy, w prescribed at x; = 0
Ny=F, = NBI
aMm ) (c)
Nz zm o e aX11'1 =0 atx; = L
dxl
M =0
Integrating (a) and using the boundary conditions at x, = L, we obtain
Fy= Ny
aN
M=Br - - SR - @

Fy = paL — x1) — ax{Np,

We suppose ¢ = k° = 0 to simplify the discussion. Integrating the moment-curvature

relation,
d*v N
= N Y St @

SEC. 14—6.

DISPLACEMENT METHOD oF SOLUTION

1A const

P2 = const

o=20
LZ
(RJLY* (1

457

Fig. E14—4

Fig. E14-5 .
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and noting that v, = dv/dx; = Oatx, = 0 lead to the solution for vg,

1 L 1 aNm 2.2 _ _1‘ 4 f

EIUZS%<§L2X%”;X?‘*"l‘ix‘{)—‘——r L,‘&l 6X1 ()

The axial displacement is determined by integrating the extensional strain displacement
relation, oy P, @3
dx; AE dx,

U (®

vy = — %(%sz? - (%Lx‘{ + fgxf) + Npy [ﬁ— + é%(]fx? - é\?)]
We express the last term in (g) as
Sl (D)AIE) 6] »
AE 6 [ L' 5\L
= 2n/L? (1)

cr(4) 2 (0 o
q I 3

and we see that this term dominates when h is larger with respect to the cross-sectional
depth.

Now,

Then

14-7. FORCE METHOD OF SOLUTION

Our starting point is the principle of virtual forces restricted to planar

deformation,
{sley AFy + &3 AF, + k AM)dS — Zﬂk AR, = 2 d; AP; {14-65)

where the virtual-force system is statically permissiblf:, dy represen;[s a support
movement, and AR, is the corresponding reaction }ncrenle11t. The relations
between the deformation measures (e;, €3, k) and the internal forces (Fy, Fs, M)
depend on the material properties and on .whether one employs stress of d}si
placement expansions. This discussion is limited to a lincarly eliastlc materia
but one should note that (14-65) is valid for arbitrary material. Fgr con-
venience, we list the force-deformation relations below. The notation for
internal force quantities is shown in Fig. 14-3.

Avbitrary Linearly Elastic Member

o Fi M
¢ =T 4E T EAR
- f (14-66)
“ = Gi,
— F M
k=K + 2= + =

AER . EI
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where 2}, k°, 4,, and T are defined by (14-24) for the stress-expansion approach
and (14-42) for the displacement-expansion approach. ‘

Thin Linearly Elastic Member

F
1
elze?+___

AE
F,
== 14-67
“ =G4, (14-67)
M
== 0 [—
k =k +EI

where A,, ef, k are the same as for a prismatic member.

When the member is not shallow, it is reasonable to neglect stretching and
transverse shear deformation. As shown in Example 14-3, this approximation
introduces a percentage error of 0(d/R)?. Formally, one sets A = 4, = c0.
If the member is shallow, we can still neglect transverse shear deformation
but we must include stretching deformation. '

The basic steps involved in applying the force method to a curved member
are the same as for the prismatic case. However, the algebra is usually more
complicated, due to the geometry. We will discuss first the determination of
the displacement at a point. '

To determine the displacement at Q in the direction defined by 7,, we apply
an external virtual force, APyl,, generate a statically determinate system of
internal forces and reactions corresponding to AP,

AFj=F; AP, (=12
AM = M o AP, (14-68)
AR, = Ry, o AP,

and substitute in (14-65):
dQ = fs(elFlyQ -+ 62172'(2 + kA/IQ Q)dS - ZRk.Qa,‘ (14"69)

This expression is valid for an arbitrary material. We set e, = 0 if transverse
shear deformation is negligible and e; = ¢f if stretching deformation is
negligible.

Example 14-6

We consider the thin linearly elastic circular segment shown in Fig. E14-6A. We
suppose the member is not shallow and neglect stretching and transverse shear deformation.
The reactions are the end forces at A for this example, and (14-69) expands to

M
dg = J‘ (e?FLQ + <k0 + EI)M‘Q) dS + U Fai. o + BaaFaz o + @My o (a)
s

In what follows, we illustrate the application of (a)
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Fig. E14-6A
A
Fq
i, &
Fyy B

n
b
/R
To determine ug;, we take APy = AFp,. The internal virtual-force system corresponds

to Fg; = +1. It is convenient to work with n = 03 — 6 as the independent variable

rather than 6.
The force-influence coefficients (Fy o, F3, 0, M, o) follow directly from Fig. Ei4-6B:

Expressions for Displacements at B

Fi o= FI{APQ =41 = F1‘F5,=+1 = cos i
Fag =sinn (b)
M, o = R(1 — cos#)

Substituting (b) in (a) results in the following general expression for ug, :

Oz M
ug; = R J {e‘l’ cosy + R (ko + Ey) (1 — cos p)ds
0
+ﬂAL Cos 03 + T2 sin 0]; + (—[)41{(1 — CO§ 03)

©

Once the loading is specified, we can evaluate the integral. Terms involving the support

displacements define the rigid body displacement at B.
Taking APy = AFp,;, AMpg leads to expression for ug, and wp. We list them below

for future reference:

(523 : M
gy =RJ {——e‘fsinn-#R(ko+EI—>sinq}dﬂ~ﬂAlsin03+ﬁA2cos()B+<I;ARsinGB (d)

0

05 M
wp = By + RL (ko + Ei)zlrg

Solution for a Concentrated Loading at an Arbitrary Interior Point

We consider an arbitrary force vector, P, and moment, M, applied at point C as shown
in Fig. E14-6C.

SEC. 14-7.
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Fig. E14-68
\ )
Fga,ups
Rsing B
)Mg,wa
Fg1,upy
R(I—cosn)
/
s
Fig. E14-6C

nc
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PC=PCXEI+PCZEZ

M c= M, CEJ (e)

The expressions for the displacements at B due to an external loading are obtained by
specializing (¢) and (d) for no initial deformation or support movement and noting that

M = RP¢[1 — cos(y — nc)] + RPcysin(n — n¢) + Mc N = He

The solution for constant I is

Pc,R? : . . Oc L
Up, = i O¢ — sin Oc — sin @3 + sin e + 5 Cos e + ~2~sm O¢ cos Oy
PR3 0 1 .
+ —(é}—- (1 — ¢os B¢ + -iq sin e — 3 sin 6 sin 03)

McR? . .
+ £ (0 + sin e — sin b)

EI
Upgy = f%llﬁ <-cos 0g + cosne — % Oc sin e — —lzvsin Oc sin 03) ()
E%f—s (—;— Oc cos e — % sin O¢ cos 0,;)
+ RZ/[C (cos e — cos Op)
on = BFe 0 —inog + BF2 01— cospg + WMep,

If we take point C to coincide with B, ¢ = 0 and 0. = 6. The resulting equations
relate the displacement at B due to forces applied at B in the directions of the local frame
at B and can be interpreted as member force-deformation relations. It is convenient to
express these relations in matrix form:

g]/ B = f)}-g/'_g . (h)
g, R*[365 — 2sinfg | R*[1 — cosfy R[05 — sin05] | [ Fp,
+ 4sin g cos O] — 4sin? 0]
R . R? . ~
Upap = 27 Symmetrical 5 [65 — sin b5 cos ) R[1 — cos 5] 1K Fp,
Wp Op My

We call £, the member flexibility matrix.

We describe next the application of the principle of virtual forces in the
analysis of a statically indeterminate planar member. Let the member be in-
determinate to the rth degree and let Z,, . . . , Z, represent the force redundants.
Using the equilibrium equations, we express the internal forces and reactions in
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terms of the applied loads and the force redundants:

Fy=F o+ Z Fi.Zy
k=1

F, = Fzyo + Z Fz_ka
. (14~70)

M=A4V+ZA“4
k=1

Ri=R; o+ Z R 12,
K=1

Subst‘itgting the virtual f.o.rce system corresponding to AZ; (which is staticélly
permissible and sel.f—gguillbrating) in (14-65) and letting j range from 1 to r
lead to the compatibility equations relating the actual deformations:
IstesFy ; + e;F, ; + kM )ds — Y AR, ;=0 (@)
: a

J=1...,r

f When the material is linearly clastic, the compatibility equations take the
orm

(14-71)

kz:l./}kzk = AJ (/ = 15" . ,f’)
where
fo=fo=| (LF F 1
ik kj RV AR l.k+m(F1,AiM,k+Fl.kA/1,j)
1
b Py Fyh =M M )dS
Gd, »7 kT ETTE
— ) ? 73 1
Aj=LAR, ;- L(fl,,.e? + MR 4 = FyF
1 1 1
+ m(Fl,jM,O + Fi oM ) + ‘G‘Tz Fy oF, ; + ﬁjw.OM,J) ds

Weset] = 1,4, = A, and 1/AR = 0 for a thin member.

) Note that f}; is the displacement of the primary structure in the direction of
Z; dge toa unit value of Z,. Also, A; is the actual displacement of the point of
application of Z; minus the displacement of the primary structure in the direc-

tion of Z; due to support movement, initial deformation, and the prescribed
external forces.

Example 14-7

Consider the symmetrical closed ring shown in Fig. E14-7. From symmetry

bt
2 atfl =0 (a)
F,=0
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We take the moment at § = 0 as the force redundant. To simplify the al gebra._w‘e.suppose
the member is thin and neglect stretching and shear deformation. The compatibility equa-

tions reduces to
fuZy = A

fiy = fEiI»M}l ds )
5

1
A, ﬂLEM,OMJdS

It

Note that f,, is the relative rotation (3¢) due to a unit value of Z; and A, is'the relat.ive
rotation (%() due to the applied load. Equation (b) states that the net relative rotation

must vanish.

Fig. E14-7
M
. /'7},72
Iy

P2

) —— (
Z Z /"2/‘;;\1:1

1
6 R
B -

Now,
1\/[,1 = A/Ilzl'—'l = +1
b . ©
M,O=—2—R(l—c056) 00 =

We consider [ to be constant. Then, (b) reduces to

2
mas s “‘wse)‘m(m)
S 7 75 2

, @
PR
B "?(1 7)
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Because of symmetry, we need to integrate over only a quarter of the ring. Finally, the
total moment is

05 0
M:M,O+ZIM,1=17R<1_°°§ ) ©
. A

The axial and shear force variations are given by
Fy = —cos0
12

)

P
Fy = ~sin
2 zsln

When the equation defining the centroidal axis is expressed in the form
Xy = f{x;), it is more convenient to work with force and displacement quan-
tities referred to the basic frame rather than to the local frame, ic., to use the
cartesian formulation developed in Sec. (14-5). The cartesian notation is sum-
marized in Fig. 14-16.

X,

Fig. 14-16. Notation for Cartesian formulation.

The geometrical quantities and relations between the internal force com-
ponents are

df .
t = 2 = f"
an 6 e f
dx
ds = L
cos 8

14-72

Fy = —N;sinf + N, cos 0
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We first find Ny, N, and then determine Fy, F,. To obtain the equations for
the cartesian case, we just have to replace dS by dx,/cos 0 in the general ex-
pressions {(14-69) and (14-71}). In what follows, we suppose the member is
thin and linearly elastic.

When the member is not shallow, we can neglect the stretching and transverse
shear deformation terms. The equations for this case reduce to:

Displacement at Point Q

M 1
dy = J (e?FLQ + (ko + E) M, Q> a2 > Riodi  (14-73)

cosf 4
Compatibility Equations
ijkzk = AJ'
k

1 dx, '
I — M M, |-
T J <EI " ’“) cos 0 (14-74)

M o dx,
Aj = ;Rivjai - J‘Cl [Q?Fl,j -+ (kO -+ ﬂ‘) MJ]*C‘E)'S—Z)

We can express the terms involving F, (, in terms of N (, and N, (, since

Fi=cosON, +sin0N, (a)
Then,
dx
J [e?Fl,()] E‘(‘);&é = J EY[NL() +f,N2_“](lX1 (14“‘75)

One must generally resort to numerical integration in order to evaluate the
integrals, due to the presence of the term 1/cos 6.
. When the member is shallow, 0% « 1, and we can approximate (14~72) with

cos ) ~ 1

sinf ~ tan 0 = f”
ds ~ dx, ‘ (14-76)
Fy~ N; + f'N,
Fy~ —f'Ny + N,

We cannot neglect the stretching deformation term in this case. However, it is
reasonable to take F; =~ N,. We also introduced this assumption in the devel-
opment of Marguerre’s equations. The equations for the shallow case with
negligible transverse shear deformation and F, ~ N, have the forms listed
below:

Qo

Q

Displacement at Point ()

N M ~ -
(lQ = J [(e? + ;{é‘) Nl,Q + (’(0 +E7> M,Q:] dx1 —_ LRi‘Qdi (14—77)
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Compatibility Equation
;f}kzk = Aj

1 1
T = L [KE Ny Ny + EM,jM,Ic] dx, (14-78)

= Ni o M
AJ - EZRi,jai - JXI [(8? + ‘Z*E—) N1,j + (ko + —1_,:79> M’j] de

Example 14-8

Consider the two-hinged arch shown in Fig. E14~8A. We work with reaction com-

ponents referred to the basic frame and take the horizontal reaction at B as the force
redundant.

X2,z Fig. E14-8A

Xy, 01

g ,, 71

Primary Structure

We must carry out twoA force analyses on the primary structure (Fig. E14-8B), one for
Fhe External forces {condition Z; = 0) and the other for Z 1 = 1. The resulis are displayed
i Figs. E14-8C and D, respectively.

X, Fig. E14-8B

‘R4 = 21

Ry,dy

X1,0
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Fig. E14-8C
Ny
0

A o
ter «Q@

0
b
z“:
|
G
Nag
Mp
Fig. E14-8D
1
—_—
}(_h_
1 L
T
b
s
| |
)
; Nig
| ,
L
r +)
Ny
f= ’% xy
(H My

Compatibility Equation
We suppose the member is not shallow. The compatibility equations for Z, follow
from (14-74):

Mz, = Ay

Ly o dxy
= | — M? (@)
Ju L EI" 'cosf

. L y o ‘MO J\/I’l dx
= TR A= [ N (1 g ) o

. S——
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Using the results listed above, the various terms in (a) expand to

X L B P ody
i = L E;[f* "L‘M} o

_ h _ h
YR A= =Ty — ‘EUAz + T + T Us2

¢ 0, | 1 OM.l
: ei(Ny s + f'Nay) + k ) dx,

cos
’ L (b)
Y CIPE T L lax
= 4 e 4 — =Xy | —— | d
oLt L L") cosb !
L 1 MM d L 1 <f h b P J
] ¢y = | ————{f ==X || —= P> X
o EIcos® roth 1 B o Efcos@ Lt L “t !
) b i h
+ ] E‘I‘Egs'“ j-—'[,xl +P(’Cx —a) Xm
Once the integrals are evaluated, we can determine Z, from
Ay
Zy = — . (o)
! fll
Finally, the total forces are obtained by superposition of the two loadings:
Nj=N; o+ ZN;, =12 |
Ri=Rio+ZR, i=1273

R4=Zl

To evaluate the vertical displacement at point Q, we apply a unit vertical load at Q on
the primary structure and determine the required internal forces and reactions plotted in
Fig. E14-8E.

g2 Fig. E14-8E
} XQ1 ’ .
g
meI/L
Xy
-
1
. |
Xg1
1= ™) Nao
-
= LXQI i
Mo
X,
R ~a (1)
. Py = +1
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Applying (14-73), we obtain

— - = Yo
Uga = Ty + (Tpz — UAZ)T

Xo1 le L )
+ f dx, — = &lf dx,
L 0

0

o MY\ dx L M\ dx
- PO AR Bt SR o a2 1
fo Yl( i EI> cosg ﬁ»w(( EI) cos 0
L
o1 o, M\ dx,
X, { Kk )
+ LL tl( +El)cosG

A numerical procedure for evaluating these integrals is described in the next section.

©

Example 14-9

The symmetrical nonshallow two-hinged parabolic arch shown in Fig. E14-9A is sub-

jected to a uniform load per unit horizontal length, that is, per unit x;. The equation for
the centroidal axis is ’
4h x?
Xy = f=—|Xx4 —-= a
2= = < (- (@)

where h is the elevation at mid-span (x, = L/2). We take the horizontal reaction at the
right end as the force redundant and consider only bending deformation. Figures E14-9B
and C carry through an analysis parallel to that of the preceding example.

Determination of Z | and Total Forces

The equation for Z, follows from (14-74):

o,
A, o U YElcos@ pL?

Zomeh WO T =
U L(M o dx, 8h ®)
Y Elcos 0
Note that this result is valid for an arbitrary variation of EI. Finally, the total forces are
. pL?
N, =N ZN, | = =
1 o+ ZiNy 8h
L
Ny =Ny o+ ZNy =p Xy =y (©)

M=M,+ZM, =0

Since M = 0, the deformed shape of the arch coincides with the initial shape when axial
deformation is neglected. It follows that (c) also apply for the fixed nonshallow case.

When the arch is shallow, the effect of axial deformation cannot be neglected. The
expression for Z, follows from (14-78):

L 1 1 .
j‘ <<—A—E>N1'ON1’1 +EIV['OM'1>dX‘
0

Z, = — v i (@
J; </‘(@:N%A + EM,21>‘ZX1

SEC. 14—
7. FORGCE METHOD OF SOLUTION 4}1

X, Fig. E14-9a

P = const

| SN T T

Primary structure

‘ R],dl

? Rj.,d,

Fig. E14-9B

" f*\ M

7

Z
fr4

L 2 2
Mo =55 (=71 ) <BE,

Mo=0 Ny =p(x ~%)

Force System Due to P
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If E is constant, (d) reduces to
L 1 ”
pL? fo 7/ pL? 1
LT T T z T TS T+
) 1 1 1
8h "’dxl -+ \( __.fZ d,\fl
0 A 0o I (C)

L
1
j —-dx,
[

5 A
i A T—
1

~f[%dx

The parameter ¢ is a measure of the influence of axial deformation. /}s an il]u-s.tratmn, we
" consider 4 and I to be constant and evaluate § for this geometry. The result is

15 1 15 (p\?
s= L _2(p 6]
8 A 8 \n)

where p is the radius of gyration for the cross section.

5 Fig. E14-9C
2
i ! :

; - X1

40 0

Nip =+1 Ny =0 My =+f

Force System Due to Z; = +1

One should note that () applies only for the shallow case, i.c., for (f')* « 1. Now,

,_An(2x @
! =7:<1 L)

For the assumption of shallowness to be valid, 16(#/L)* must be small with respect to
unity. The total forces for the shallow case are

pl* 1
Ni=2i= -3 1375

L h
N2=P(X1‘“2“> ) ®

()= =D ()
-5/ (759) = T - D)

Sttt st e e
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Itis of interest to determine the rotation at B. The “Q” loading consists of a unit moment
applied at B to the primary structure (see Fig. E14-9D). Applying (14-77) (note that

Fig. E14-9D
X, . '
w\M
et
Nip=0
Mg =7t
1,0.}3
N X
1 B 1
L A
PQ =]

the stretching terms vanish since N 1,¢ = 0), we obtain

LM x, P/ 6 L x3
= | medxy = ) | 2 Z Xy, i)
©n L EIT* 773 (1 n 5)£ LI (Y‘ L) 1 @

When EI is constant, (i) reduces to
_ [JL"" d .
“8 = 24k (1 +o G

Since wy # 0, the results for the fixed end shallow case will differ slightly from (h).

14-8. NUMERICAL INTEGRATION PROCEDURES

One of the steps in the force method involves evaluating certain integrals
which depend on the member geometry and the cross-sectional properties.
Closed-form solutions can be obtained for only simple geometries, and one
usually must resort to a numerical integration procedure. In what follows, we
describe two procedurest which can be conveniently automated and illustrate
their application in deflection computations,

We consider the problem of evaluating

J = j” £(x) dx . (14-79)

T See Ref. 8 for a more detailed treatment of numerical integration schemes.
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where f(x) is a reasonably smooth function in the interval x, < x < x5 We
divide the total interval into n equal segments, of length h:

Xp — X4

h=1 (14-80)

n

If f(x) is discontinuous, we work with subintervals and use a different spacing
for each subinterval. For convenience, we let x4, xy,..., X, represent the
coordinates of the equally spaced points on the x axis, and fy, f1, .. .. f, the
corresponding values of the function. This notation is shown in Figure 14-17.

f(x)

fo f fZ f;:»-l Iu

A h I kB

~
=

X0 Xt X2 Xn1 Xn
Fig. 14-17. Coordinate discretization for numerical integration.

The simplest approach consists in approximating the actual curve by a set
of straight lines connecting ( fo, /1), (f1.f2), ctc., as shown in Fig. 14~18. With this
approximation,

Xie ]
Aaqizf S % 5 et + 0 (14-81)

X~ 1

Je = ‘ kfdx = Jy—1 + Ak

JXg

If only the total integral is desired, we use,
n-1 '
J f)dx = Z AJioy,i = h {%(fo W+ Y fi} (14-82)
i=1

which is called the trapezoidal rule.
A more accurate formula is obtained by approximating the curve connecting
three consecutive points with a second-degree polynomial, as shown in Fig.

14-19. This leads to
Xk +2

Ady ks = Sdx =

X

Jev2 = e+ Ay a2

]
*31-[1‘,; + Afisy + frra] (14-83)

To apply (14-83), we must take an even number of segments, that is, n must
be an even integer. If the values of J at odd points are also desired, they can

SEC. 14-8. NUMERICAL INTEGRATION PROCEDURES

be determined using

475

h
Y A LN : .
kbt 1 L fdn ~ ) (55 + 8fiss — fras] (14-84)

Finally, one can express J, as

h
Jo = sLo+ 4 +4f + 4+ + fu-1)

Al fit o fy)] 1459
Equation (14— ~85) is called Simpson’s rule.

f

k-1 Xpe

Yk +1

Fig. 14-18. Linear approximation.

f
f=f+ /7( ')fk+2fk+1 2fk+2) (h)<2fk fk+1+2fk+2)
/
fk fk:+! fk+2
l‘ | h h
Xk ! Xk 41 Xp 4o x

—

Fig. 14-19. Parabolic approximation.
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Example 14-10

Consider the problem of determining the vertical displacempr}t at Q for the §traight
member of Fig. E14-10. We suppose shear deformation is negligible. The deflection due

Fig. E14-10

Py =+1 l‘
X9
e 7
?1 7 1 )
l “““““““““ wo(1-7%)
Mo

to bending deformation (we consider the material to be lincar elastic) is given by
LM
= | ——M,dx (a)

where M is the actual moment and M, is due to the “Q” loading. Substituting for M o,
(a) expands to

LM Ye M e M XQJL M b
— Z —dx — —= | x—dx (b)
dQ:xQ(LE}dx J‘o EIdX>+L xEI 2 0 EJ

[P ;e,i
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To evaluate (b), we divide the total length into 1 equal segments of length A, number
the points from 0 to #, and let

Xi
Je = y— dx
o M ©
% M .
H, = X ==
! J; x5 dx
With this notation, fb) takes the form
1
di = x [Jn - Z’Hn] + Hy ~ xJ, (d)

If, in determining J,, H,, we also evaluate the integrals at the interior points, then we can
readily determine the displacement distribution using (d).

Example 1411

Consider the simply supported nonshallow arch shown. We suppose there is some
distribution of M and we want to determine the vertical defiection at Q. Considering

Fig. E14-11

only bending deformation, dy is given by

M L M
dy= | =Myds= | ([ Vur 4
JEI e L (EI c0s 0) M. g dx ®
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Now, the distribution of M, is the same as for the straight member. Then, the procedure
followed in Example 14—10 is also applicable here. We just have to replace M/EI with
M/EI cos 0 in Equation (c) of Example 14-10.
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PROBLEMS

14-1. Specialize (14~7) for the casc where v, = x;. Let x, = f(x;) and
let 0 be the angle from X to Y, as shown below. Lvaluate the various terms
for a parabola

f = Clxl + C2X%

Finally, specialize the relations for a shallow curve, i.e., where 0% « 1.

X, Prob. 14-1
Y,

Yy

Xy

14-2. Evaluate I* and 6 (see Equation 14-24) for the section defined by
the sketch.

14-3. Verify (14-34). ‘

14-4. Verify (14—41) and (14-42).

14-5. Discuss the difference between the deformation-force relations based
on stress and displacement expansions (Equations (14-25) and (14-42)).
Ilustrate for the rectangular section treated in Example 14-1. Which sct of
relations would you employ? :

© s e - e
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2t Prob. 14-2
d . b= 0.75d
2 £=4/20
| L1
M
14-6. Evaluate I' and I” for the symmetrical section shown.
; Prob. 14-6

L 4
l»

h=0.75d
t=d[20

— ==
—— |
14-7.  Consider a circular sandwich member comprised of three layers

as shown. The core layer is soft (E « 0), and the face thickness is small in

comparison to the depth (d, ~ d). Establish force-de : .
on strain expansions (see (14_37)))‘ orce-deformation relations based

Prob. 14-7

L7

T

d Core

1

777777,

| e s

—
T

14-8. Starting with (14-34) and (14-35),

. derive a set of nonli ‘ai
p . 4 nline
displacement relations for a thin member. ar strain

Assume small finite rotation, and
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linearize the expressions with respect to y, 1€ take

g = e — Yok
Y12 ® €2
Determine the corresponding force-equilibrium equations with the principle of
virtual displacements.
14-9. Refer to Fig. 14-10 and Equation (14-31). If we neglect transverse
shear deformation, 5 is orthogonal to i/, and we can write

Vv ,
(1 + &)y = (1 - Ri>a

_ 1dr - -
t’1:&,'&;=ﬁ111 + fata
iy = —Baty + Bii2 , (@
iy, 1 +e 3 di, . 1+en
R a5 R
_ 1it
al=(xt1+§;’;‘:(1+el)0€

(a) Verify that ¢, can be e){pressed as

[ S DO 0 2 S
n=7 5 R T PR R ()

1
= e, — V5k}
TR 6 T

Also determine e, and R’ for small strain. Express il in terms of the
initial tangent vectors,
i = uyf, + Ul
and take y = S (i, « = 1).
(b) Derive the force-equilibrium equations, starting with the vector equa-
tions (see (14-12) and Fig. 14-4),

dM.:. - - - =
—‘a‘"s-““'m'*‘tllx F+:0

and expanding the force vectors in terms of components referred to
the deformed frame: :

F, = Py + Fofy b= bidt + bal)

M. = Mi,
Assume small strain.

(c) Derive the force-equilibrium equations with the principle of virtual
displacements. Take the strain distribution according to Equation (b).

PROBLEMS 481

(d) Derive the nonlinear deformation-displacement and equilibrium equa-

tions for the cartesian formulation. Refer th i i
‘ S . ¢ translations an
to the basic frame, i.e., take dloading

3

~
=

= v‘[il + Uz‘iz
= piiy + palz

Specialize the equations for the case of a shallow member.
14-10. The accompanying sketch applies to both phases of this problem.

1)

Prob. 14-10
by = const
A
B
g
G 67\ R = const

(a) Dectermine the complete solution for the circular me
Utilize symmetry at point A(u, = w = F, = 0)and Lv;?lirgv?tehr(lgg-?g;
(14-59). Discuss the effect of neglecting extensional and shear de:
formation, i.c., setting (1/4) = (1/4;) = 0.

(b) Repeat (a), using Mushtari’s equations for a thin member with no
transverse shear deformation, which are developed in Example 14-2.

Show that Mushtati’s approximation (u du,/d0) i i
e (1t « du,/dO) is valid when the

14-11. The sketch presents the information relevant to the problem:
Prob. 14-11
pa = const
A

T
h

X2
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(a) Apply the cartesian formulation to the symmetrical parabolic arch
shown. Consider the member to be thin and neglect transverse shear
deformation.
(by Specialize (a) for negligible extensional deformation (set 1/A = 0).
(c) Specialize (a) for the shallow case and investigate the validity of
Marquerre’s approximation.
14-12. Referto Example 14-6. Determine ug, duetoa uniform distributed
loading, b, = constant.
14-13. Determine the displacement measures at B (see sketch). Consider
only bending deformation. Note: It may be more convenient to integrate the
governing equations rather than apply (14-69).

Prob. 14-13
Thin circular member
B
b cosf R ‘
0 \
A L B
14-14. Solve two problems with the information sketched:
Prob. 1414

Thin circular member

(a) Determine the fixed end forces and radial displacement at point B
with the force method. Consider only bending deformation and utilize

symmetry at B. .
(b) Generalize for an arbitrarily located radial force.

PROBLEMS 483

14-15. Refer to Example 14-7.

{a) Determine the radial displa
i placement at B defined in Fig. E14-
(b) Determine the force solution for the loading :h(;\nvxf e B14-7

, Prob. 14-15
P P
P
14-16. The sketch defines a thin parabolic two-hinged arch.
Prob. 14-16

X2

P (1
A B
% Xy
E* L }

2
F= =)
I=1,[cos8

{a) Determine the horizontal i

. reaction at B due t C
) ICJO'III'SldC; the arch to be nonshallow. © the concentrated foad.

tilize the results of (2) to obtain th i istri

esult es i
. %(x) ety olution for a distributed loading
c etermine the reactions resulti i
e ns resulting from a uniform temperature increase,

(d) Suppose the horizontal support at B is replaced by a prismatic member

extending from A to B. Assu i
. me the ¢ it i
e e onnections are frictionless hinges.
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14-17. Consider the arbitrary two-hinged arch shown. Discuss how you

Prob. 14-17

i

would generate the influence line for the horizontal reaction. Utilize the results
contained in Examples 14-10 and 14-11.

15
Engineering Theory of
an Arbitrary Member

15-1. INTRODUCTION; GEOMETRICAL RELATIONS

In the first part of this chapter, we establish the governing equations for a
member whose centroidal axis is an arbitrary space curve. The formulation is
restricted to linear geometry and ncgligible warping and is referred to as the
engineering theory. Examples illustrating the application of the displacement
and force methods are presented. Next, we outline a restrained warping for-
mulation and apply it to a planar circular member. Lastly, we cast the force
method for the engineering theory in matrix form and develop the member
force-displacement relations which are required for the analysis of a system
of member elements.

The geometrical relations for a member are derived in Chapter 4. For
convenience, we summarize the differentiation formulas here. Figure 15-1
shows the natural and local frames. They are related by

El =1
i, = cos it + sin pb (a)
{3 = —sin ¢ + cos Ppb

where ¢ = ¢(s). Differentiating (a) and using the Frenet equations {4-20),
we obtain

a ¢
as ="
E@— I 0 K¢ —Ksi ] {
7S cos ¢ sin ¢ 1
d{z (](]5 -
—CIS" = —'K CcoS (b 0 T+ -d's— t, (15——1)
dis . do -
7S K sin ¢ —(1 +g§) 0 ty

Note that a is skew-symmetric.
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