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14-17. Consider the arbitrary two-hinged arch shown. Discuss how you 
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I Engineering Theory ofAl 

would generate the influence line for the horizontal reaction. Utilize the results an Arbitrary Membercontained in Examples 14-10 and 14-11. 

15-1. INTRODUCTION; GEOMETRICAL RELATIONS 

In the first part of this chapter, we establish the governing equations for a
member whose centroidal axis is an arbitrary space curve. The formulation is
restricted to linear geometry and negligible warping and is referred to as theenUgineering theory. Examples illustrating the application of the displacement
and force methods are presented. Next, we outline a restrained warping for-!nulation and apply it to a planar circular member. Lastly, we cast the force
method for the engineering theory in matrix form and develop the member
force-displacement relations which are required for the analysis of a system
of member elements. 

The geometrical relations for a member are derived in Chapter 4. Forconvenience, we summarize the differentiation formulas here. Figure 15-1
shows the naturaland local frames. They are related by 

t, = t 

t2 = os 07i + sin 4)/ (a)
/:3 = - sin ¢)ir + cos ){h 

where = q(s). Differentiating (a) and using the Frenet equations (4-20),we obtain 

dtdA 

[dS 

dS- = K cos i 
dSd (15-1)a 

d 3 K sin 0+ d 2-(Tnd0* o+tt/' 
Note that a is skew-symmetric. 
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486 ENGINEERING THEORY OF AN ARBITRARY MEMBER CHAP. 15 SEC. 15-1. INTRODUCTION; GEOMETRICAL RELATIONS 487 

and the local vectors at Q are orthogonal when a2 3 = 0, which requires 
\ 

a2 3 = 0 

t d95 1 (15-6) 
dS R, 

It is reasonable to neglect y/R terms with respect to unity when the member 
is thin, i.e., when the cross-sectional dimensions are small in comparison toCentroidal axis 

Y 
Local reference directions 

X3 

as 

Fig. 15-1. Natural and local reference frames for a member element. 

The curvilinear coordinates' of a point, say Q, are taken as S and Y2, Y3. Li 
Letting R be the position vector to Q (see Fig. 15-2), 

R (S) + Y22((S) (S) (15-2)YJ2(S)+ 3t3
 '1T 

and differentiating, we find 

X2aR 

-= t (15-3))8y2 

OR 
X1 

8y3 

Fig. 15-2. Curvilinear directions.
The differential volume at Q is 

d(vol.) = (1 - 2a1 2 - y3a13)dS dy 2 dy 3 
Rc and Rt. We express d9/dS as 

(15-4)
= 1 ,n dS dy 2 dy 3R, do- = 0( (15-7) 

where y, is the coordinate of Q in the normal (i) direction and RC= 1/K is 
the radius of curvature. Also, 

where L is the total arc length and A is the total increment in 9i. The non­
orthogonality due to can be neglected when the member is only slightly
twisted, i.e., when

O' [2 = --Y3a2 3 = -Y3 + dS 
b 

/1 + dk) 
(15-5) L (15-8)3R ­

aS t, = y2 a2 3 Y2 -R where b is a typical cross-sectional dimension. In what follows, we will assume 
the member is thin, (15-8) is satisfied, and defines the orientation of the

1-See Sec. 4-8. principal inertia directions. 
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FORCE-EQUILIBRIUM EQUATIONS 
489 

Example 15-1 tdS 

The curvature and torsion for a circular helix are derived in Example 4-5: _dlF dS 

I 1 1 -F+ 

.K= - = 

we 2iRII tr 
./=~ -, -1~~2 R dS 2 

where R is the radius of the base circle and H is the rise in one full revolution. The helix ad' 2 
is thin when b/R << 1,where b is a typical cross-sectional dimension. 

Fig. 15-3. Differential element for equilibrium analysis. 
~~~~~~~~~'~~~~~~~~~~~~~~~~~~~~~~~~~ F!~r·IlI! ·Zl-

By definition, a member is planar if - = 0 and the normal direction (ii) is an axis of where F = F1, F2, F3} etc. The vector derivatives are
symmetry for the cross section. We take the centroidal axis to be in the X-X 2 plane
and define the sense of t2 according to t2 x 13 =i3. The'angle q)is constant and equal to d F+ dFT° ° either 0 (t2 = ii) or 180 (t2 = -fi). Only a is finite for a planar member: dS dS-t + FTat1 2 

a1 3 a2 = a1 2 -- = +K dM+ dclMT (a)
R=- dS-: =-- t + MatAlso, 

rv~~~~~lml~~~~~la(C· '2~~~~~~~~~Example 15-3 t x F+ = F2[ 3 - F3 2. = , -,F 3, F,2}rt 
0 _ _ 1 . .c' (b)Consider theConsider the case where the centroidal axis is straight and 4) varies linearly with S. uosttutlng in (15--9), and noting that a" = -a, leadInember sa-TheThe member isis said to be naturally twisted. Only a2 3 is finite for this case: librium equations: to theefollowing equi­

a12 = a1 3 = 0 
IdF 

a23 = = const = k ~d/S- aF + ) -0 

If bk << 1,we can assumeIf bk << 1,we canIf bk << 1,we canIf bk << 1,we can assume OR/OS is orthogonal tois orthogonal to tt,2, t3 . dM 0RIOS t3 

aM+ n + F3 O 

+F 
15-2. FORCE-EQUILIBRIUM15-2.15-2.15-2. FORCE-EQUILIBRIUM EQUATIONSFORCEFORCE EQUATINS 

To establish the force-equilibrium equations, we consider the differentialTo establishTo establishTo establish the force-equilibrium equations, we consider the differential
dF 

element shown in Fig. 15-3. We use the same notation as for the planar case.element shownelement shownelement shown in Fig. 15-3. We use the same notation as for the planar case.
dS - a12F2 - a1 3F3 + i = 0 

The vector equilibrium equations follow from the requirement that the resultantThe vectorThe vectorThe vector equilibrium equations follow from the requirement that the resultant dF2equilequil
morn(force and moment vectors must vanish:force andforce andforce and moment vectors must vanish: dS + al2 F1 - a2 3F3 + 2 = 0. (15-11)mrn( 

dF+ dF3 

dS-- = dS + al 3 F1 + a2 3F2 + b3 = 0 
(15-9) 

dM+ ii + ,+x F 6 dM-
+dS dS a2M2-a13 f 3 ±l = 0 

dM2We express the force and moment vectors in terms of components referred 
to the local frame, dS aM - a2 3M3 + 2 - F3 = 0O 

F+ = Flj = FTt dM 3 

M+ = MTt -dS- + a1 3 M1 + a2 3 M2 m3 + F2 = 0n 
(15-10)

b = bTt 
When the member is planar, a3 = a2 3 = 0 and the equations uncouplem = ImTt naturally into two systems, one associated with in-plane loading (b1, b2, in3, 
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490 ENGINEERING THEORY OF AN ARBITRARY MEMBER CHAP. 15 II SEC. 15-3. 
NEGLIGIBLE WARPING RESRAINT 

F1, F2, M3) and the other with out-of-plane loading (b3 , n,, n2 , F 3, M,, M2).The in-plane equations coincide with (14-14) when we set a1 2 = 1/R and the
out-of-plane equations take the form 

Now, we apply the principle
Fig. 15-4. We define a and Was 

of virtual forces to the element shown in 

//0 

dF -
z = Juji = ut = equivalent rigid body translation 

dM 2dS 

dM 1 
dS 

I+ R M 

-+ b 
dS 

1-
R 

+ m2 - F3 

= 

= 

O 

0 

(15-12) 

vector at the centroid 
w= Cjt j= Tt= equivalent rigid body rotation vector 

The virtual system satisfies the equilibrium equations (15-5) identically andtherefore is statically permissible. Evaluating C dAP, 

(15-15) 

d1i Pi ~L f+(- t7i+ M + )± -M1iJdS 

15-3. FORCE-DISPLACEMENT RELATIONS-NEGLIGIBLE WARPING 
RESTRAINT; PRINCIPLE OF VIRTUAL FORCES 

We consider the material to be elastic and define V* as the complementary 
energy per unit arc length. Since we are neglecting warping restraint, V* is a 
function only of F and M. We let 

= AFd - au + -o,)dS 
-+o2j 

+ (02 !· 

and substituting in (15-14) lead to the following force-displacement relations: 

+ AMT(td 
(a) 

-aco d 

du (0 

i= 1,2,3 (15-13) 
cS- au + )3 

k= {}= -Mj'Fi`G,/k.~,\ r/*" kjl am 
and write the one-dimensional principle of virtual forces as 

i 
k l 

k--d
dS 

o 
aS 

+ 0 (15-16) 

sdV * dS = Js(eT AF kT AM)dS = di APi (15-14) 81 

a * 
-a2U aI1 

du, 

dS a1 2 u2 
a13- a 3tU3 

duS 

&AM+ + 
e @2 dS + a 2 tt1-a23t13 0)3 

dS +2 2 

e3 
VdF 

c2F3 

du3 
-(8 + a1 3 1 1 + a2 3 U2 + (0)2 

k i,* do., 
3MI dS - a12 2 - 13 : 3 

;+ cS\/iIdS 61). k2 _ * 
OM2 = dS + a1 2 °)1 

33V 
- a230)3 

V* dco3 
O=M3 d-lS + a30)1 + a23C02 

Fig. 15-4. Virtual force system. I 
Once P* is specified, the eft-hand terms can be expanded. The form. of P*depends on the material properties, the particular stress expansios selected, 

and the member geometry. In what follows, we consider the material to belinearly elastic and approximation P* with the complementary energy function 
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case. which is developed in Sec. 
l~ll l.I1 

12-3: 
7+, M 

* = F,e ° + --
2AE 

2G 
2GA1 

F2 2 3F 2GJ (15-17) 

+ kM2 + 
M M2 + kM 3 + 
C2E 2 3 

I- -- M 
2E133 

where 

MT = M1 + F2 Y3 - F3 2 - torsional moment with respect to 
the shear center 

Y2, 73 = coordinates of the shear center with respect to 

the centroid 
-1y dA 

-- Y3F' c0A 

1 YA dA 

Note that (15.-17) is based on taking a linear expansion for the normal stress, 
(a)F M2 M3 I 

+ ---- Y3- --- Y2 (a)
and 12i1 th 

and using the shear stress distribution predicted by the engineering theory, 
"i. = tl + Clj (b 

where at is the unrestrained torsional distribution due t M anda is the 

flexual In addition to these approximations wedistribution due o F2, F3. 

also neglecting the effct of curvature, i.e., we are considering the member are 
to be thin. The approximate eordilacement relations for a linearly elastic 

thin curve member are 

0lF1 du1 - 2u - 013U3 
° e, e= +-E- dS 

- 03F MT - + a1 2 11 - a2 3 3 
+ --- y 3 dS 

e2 -GA2 

F3 = MT dS- + a 3 ul + a2 3 L2 + C02 
- - Y2 dS (15-18)

e3 = -4 GJ 

TMTk, d?i a1 2(02 - a1 3 c03 
kl GJ dS 

M2 d2 + a1 2 c01 - a23 0)3k 
k EI=2 dS 

EI3 dS 

SEC. 15-4. CIRCULAR PLANAR MEMBER 493 

When the member is planar, the shear center is on the Y2 axist and there is 
no coupling between in-plane (u1, u 2, c%) and out-of-plane (u3, C1), 2) dis­

placements. That is, an out-of-plane loading will produce only out-of-plane 

displacements. The approximate force-displacement relations for out-of-plane 

deformation for a thin planar member are 

F3 MT du3 +
GA 3 G.I2 = dS 2 

Mr dS9, 1 

=- GJkl dS R (15-19) 

M 2k2 =k E/d =+ 7dc 2 + 1 
-W, 

where MT = M - 2 F3. Note that flexure and twist are coupled, due to the 

curvature, even when the shear center coincides with the centroid. 

15-4. DISPLACEMENT METHOD-CIRCULAR PLANAR MEMBER 

Since the displacement method involves integrating the governing differential 

equations, its application is restricted to simple geometries. In what follows, 
to we apply the displacement method to a circular planar member subjected 

out-of-plane loading. We suppose the cross section is constant and the shear 

center coincides with the centroid. It is convenient to take the polar angle 0 

as the independent variable. The governing equations are summarized below 

and the notation is defined in Fig. 15-5. 

Equilibrium Equations (see (15-12)) 

dF, 
- + Rh3 = 0 

Lie~~~~~~~~~~~a 

M2 
+ Rm l = 0 (a) 

dM + M1 + Rn 2 - RF 3 - 0d-

Force-DisplacementRelations (see (15-19)) 

F3 1 du3 
GA 3 R dO 

(b)
MGJ RI (d 2 

k2 = k + R -( + ,) 
2 El, `( d 

t The shear center axis lies in the plane containing the centroidal axis, which, by definition, is 
a plane of symmetry for the cross section. 
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494 ENGINEERING THEORY OF AN ARBITRARY MEMBER CHAP. 15 SEC. 15-4. CIRCULAR PLANAR MEMBER 495
Boundary Conditions The solution of the force-displacement relations is also straightforward.

F3 or U3 
First, we transform (b) to 

M1 or oi, prescribed at each end (pts. A, B) (c) d 2(01 0 R 2 
RM2 or (02 -2 + (o1 Rk ° _;^ 1ml + L (1 + c,)M2EI2 

0)2 -The solution of the equilibrium equations is quite straightforward. We 
do)l RM t 

(f)integrate the first equation directly: 
du3 RF3 

F3 = C 1 - R R0b3 dO (15-20) dO GA3 R,°2 

The remaining two equations can be transformed to 
where c, is a dimensionless parameter, 

El2 
LdO2 + M = R F3 - 12 ) (d) GJ (15-22) 

which is an indicator for torsional deformation. Solving the first equation for
M2 =-d-- + m, (e) ol and then determining co2 and u3 from the second and third equations lead 

II 

We solve (d) for M, and determine M2 from (e). The resulting expressions are 
to 

w) = C4 cos 0 + C sin0 + ol,p 

M = CcosO + C3 sinO + M, )2 = - C4 sin 0 - C5 coscos ++ co RM 
M 2 = -C 2 sin O + C3 cos 0 + -

d (15-21) d 3 'dU R=P AJ (15-23)IM p + in (15-2 

where Ml, P is the particular solution of (d). 
LG4R,+ <111

I 
where co, is the particular solution for o. 

The complete solution involves six integration constants which are deter-F3 mined by enforcing the boundary conditions. The fbllowing examples illustrate 
the application of the above equations. 

Example 15-4 

The member shown is fixed at A and subjected to a uniform distributed loading. Taking 

Fig. E15-4 

b3 = const in (15-20), we obtain 

Fig. 15-5. Notation for circular member. 
F3 = C - Rb3 0 (a) 
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CIRCULAR PLANAR MEMBER 

The equation for M1 reduces to 497 

d2M + 
32 = -l) S1Sl0 + C4A2 COS 0 + {c[-1 cos

±M1 = R RC, - R2h (b)
c102 

Then, - s 0B sin 0 +) sin( )}sin-
M1, = RF3 = RC 1 - R2b30 (c) (d) 

3 3and the solution for M1 and M2 follows from (15-21), 
U = A + RwA1(i - cos 0) - RC&A 2 sin 0 

R3- I - c ii 
M, = C2 cos 0 + C3 sin 0 + RF3 

E -- cos OB- c sin - ct sin 

r c, + CM2 - - C2 Si l l 0 + C3 cos 0 - R
2
b3 

(d)
i - 0 rt cos(05 - 0) c + -E}1 + c, sin(0o -

The boundary conditions at B require 

F3 - M1 = M2 = at 0 = 0( 
merms intolving CO,, C)A2 and lA3 define the rigid body displacements due to support 
movement. Als, terms involving c, are due to tist deformation. The rotations and 

C1 = R, 30 (e 
C2 = -R2b 3 sin n Fig. E15-5A 
C3 = R2b3 cos 0 

F3 
Replacing O0 - 0 by , the final solution is 

F3 = R7b3t1 

Ml = K2b3[ -l- sin 1] (f)I 

M2 = - R2 h3[1 - cos q 

Example 15-5 
F 3 

-

The force system due to the end action, IFB3, can be determiled by applying the equi­
librium conditions directly to the segment shown in Fig. EI5-5A. This leads to 

F3 = F 3 

M1 = F3R( - cos j) FB3R[ - cos(0 - 0)] (a)i 

M2 = - FB3R sin j = - F,,R sin(0B -- 0) 

We suppose there is no initial deformation. Using (a), the equation for 0o1 becomes 
translation at B are listed below: 

I 

d2 -R (1+ c,)sin(0 - 0) (b) o() = ,At Cos 0B + wA2 sin 0B 

-
The particular solution of (b) is 

1 + 

Ei, 2 2 

Cl P= - --2E--(1 + C) [0 cos(0 ---0)] (c) 0oB2 -COA sin 0B + W42 cos O, 

2E12 
+Using the above results and specializing (15-23) for this support condition lead to the 
R2 {cfcCos -1] - sin2 0 

following expressions for the displacements: 83 = TiA3 + RJ.41 (lI - cos 0) - RcI 42 sin B 
(e) 

Co1 = COA cos 0 + A.42sin 0 + 
REn3 

- -
-- c, 

cos Bsin 0B - 2c, sin 0B 

+ E.- {[ 2 
2 

cos OB + C, sin 0 - -- 0 cos(0 - 0)}EI, 1 0 2I El, 
GA 3R

2 JJ1 
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498 ENGINEERING THEORY OF AN ARBITRARY MEMBER CHAP. 15 Since (d2/R) 2 << 1,we see that it is reasonable to neglect transverse shear deformation. In 

To investigate the relative importance of the various deformation terms, we consider general, we cannot neglect twist deformation when the member is not shallow. For the 

the rectangular cross section shown in Fig. E15--5B. The cross-sectional properties aret shallow case, we can neglect c, in the expressions for coB2, UB3. 

1 61 6 1 

A3 5 A 5 d2 d3 
r AIli""ll IJ-U 

k 
J =--d d3 (for d2 A d3) (f) Consider a closed circular ring (Fig. E15-6) subjected to a uniformly distributed twisting 

3 moment. From symmetry, F3 = 0 and M,, M2 are constant. Then, using (15-16), we find 

d2 d} 
2 12 M =O 

(a)
M2 = RmI 

Then, 
EI2 E!l dn~2-1 

Cl = '6 L P z The displacements follow from (15-18) 
£C-G J G L4J LJ:2 (g) 

= )2 = 0El_ E d3) '!) U3 

-d-A GL-- R RM 2 R2171l 
(b) 

C1 = = 
El2 El2 

The values of 4k and c, for d/d2 = 1, 2, 3 and v = 0.3 are tabulated below: 

c, = E12/GJ X2 
Fig. E15-6 

4k (for = 0.3) 

1 1.69 1.54 

2 2.75 3.8 = 2 =0 

7.43 3.16 

Fig. E15-5B 

Xi 

113 

15-5. FORCE METHOD-EXAMPLES 

In this section, we illustrate the application of the principle of virtual forces 

to curved members. The steps involved are the same as for the prismatic or 

planar case and therefore we will not reiterate them here. We restrict this 

discussion to the case where the material is linearly elastic, the member is thin 

and slightly twisted, and warping is neglected. The general form of the 

Y3 
expression for the displacement at an arbitrary point and the compatibility 

equations corresponding to these restrictions (see (15-14), (15-17)) follow. 

t The torsional constant for a rectangular cross section is developed in Sec. ll-3. 
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500 ENGINEERING THEORY OF AN ARBITRARY MEMBER 
Now, we consider the problem of determining the translations of the centroid at B due 

Displacement at Point Q
\ 

to the loading shown in Fig. E15-7A. It is convenient to work with translation components 

e +17 Fl + A F2, Q 
(vB2, vB3) referred to the basic frame, i.e., the X2, X3 directions. We suppose that the shear 

dQ -R,Q3 + + A 
Fig. E15-7A 

(15-24) Y2 Princinl inprti rlirpcti-n
L.I~,$I 

+_ F3, Q + ( MT, Q 

Q + (k3±+f-M 3 ,jdS+ ( + 'VI)M2 

Co,mpatibility Equations 
(a) 

-7. 1 Z . .Z, , 
= force redundants 

r 

Fj = F. o + 

(b) X2 r 

I Mj = Mj,o + 

Ri = Ri,o + 

.fkjZj= Ak (k= 1,2,...,r) (15-25) 

=-1 

where 
+ " ~ 

f,.: = fi. = F2'jF2'k A GA, 3 3F3,1[-Fi,jF,,k -t 
F 

(', 
-
,
'C-,'F,, 

1 

JKJ 

Lu/± I' lIJs 
1 Id jM3 -I+1. I,, + _- M 

/-,MS uentroilal axis 
+ ZT-/MT, M, k + -= M21J M2,, El3

uF 
) F 3 , k center coincides with the centroid and transverse shcar deformation is negligible. Spe­

= Eik Rik ai 1 cializing (15-24), and noting that M = 0 for a transverse load applied at the centroid, 

,ik dS the displacement expression reduces to 

+ M k (, M2, 
\ U.J / I 

dQ -E' ( M2M2, Q+ 3 M3M3, Q) d (b) 

MT = M 1 + 3F2 - 2F3 

The reduced form for out-of-plane deformation is obtained by setting Ft = Force Systems 
° k

F 2 = M 3 = e + = 0. The moment vectors acting on a positive cross section due to P2, P3 applied at B (Fig. 

E15-7B) are 
Example 15-7 (MP = P2(L - X1)13 

Consider the nonprismatic member shown below. The centroidat axis is straight but the (M)p, = -P 3(L - x 2 (c) 

orientations of the principal inertia axes vary. We take XI to coincide with the centroidal 
To find M2, M3, we must determine the components of M with respect to the local frame. 

axis and X2, X3 to coincide with the principal inertia directions at the left end (point A). 
These follow from Fig. E15-7C: 

.The principal inertia directions are defined by the unit vectors t2, t3
For P2, 

t2 = cos 012 + sin 13 (a) M2 = P(L - x)sin 4) 
t3 = -sin 2i,+ COs 4i13 (d) 

M3 = P2(L - xl)cos (P 
= 0 at xl = 0 
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502 
0 

c^"llule :]--Fig. E15-7B 

We rework Example 15-6 with the force method. Using symmetry, we see that 
2__. 
2 M = 0 

M2 = nt R (a) 

i2 Suppose the rotation in the direction of inm is desired. The virtual loading for this 
r -x 1 B displacement is mn= + 1. Starting with 

co, Amt dS - -rAM, dS (b)1 
13 

and substituting for M2 , we obtain 

p2 (L - i, R 2 

o El 2 (c) 
A)\ _ ., 

Fig. E15-7C 

Example 15-9 
12 

Consider the closed ring shown. Only Mt and M2 are finite for this loading. Also, the 
M2 t­

behavior is symmetrical with respect to XY and we have to analyze only one half the ring. 

Fig. E15-9 

X2 ISL 
2T2 

Z1 - ---

M3t3 -P3(L - Xl )2 

For P3, M2 = -P 3(L - x)cs 4) (e) 

M3 = +P (L - x)sin b 
I2,J are constant 

Determination of vB2 Due to P2 
(b),+ 1. Introducing (d) in 

The virtual-force system for B2 corresponds to P2 = 

i 
r>:. ,,r.2r /,1we obtain 

I s- 2= JoL'2 I3I |(L x,) dNL 
(f) 

VJ32 =EE I1, 

We take the torsional moment at 0 = 0 as the force redundant. The moment distributions 
areDetermination of VB3 Due to P2 

T 
The virtual-force system for VB3corresponds to P3 = + 1. Using (e) leads to M = -2 sin0 - Z, cos 0 = M, + ZM, 

(g) 
T (a)

VB3 -- { j (--- + (L )2 sin 4)cos 4)clx 
M2 = - cos 0 - Z1 sin 0 = M2, 0 + ZlM2. _ -2<0 /2

2 2 

^­
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Specializing (15-25) for this problem, 

AN ARBITRARY MEMBER CHAP. 15 SEC. 15-5. 

Primay 
FORCE 

tructure505 
METHOD--EXAMPLES 

fZ 

A, 

= 

= 

1+2l 

-2R h 11_ _~~GJ + 
-,t2 lI 1 -GEF13 

El- ]idO (b) 

The primary structure is defined in Fig. El 5-0B: 

R-ARl 
R Z1 R2 =RI-

R3 
Rl 

ft1 =2Rfi2R / =2L J + dO 1 = 3FA =3 = 
0 

d, 3 , = (a) 
and then substituting for MI, M2, 

A1 , = -RTI2(I (CJ
J, 1 GJ 

¼) sinocos 
E sin 0 Cos 0 d 

Fig. E15-10B 

-RT 

2 
1 

V\GJ _-
1'r. , : _ 

7 L2Ill 'IJ-r/22 k GS 

, 

L ....Ei2J 
(c) 

...... ~~~~~~~~~X2 
and it follows that Z, = 0. We could have arrived at this result by noting that the behavior 
is also symmetrical with respect to X2. This requires M2 to be an even function of 0. 

The virtual-force system for o)At is T = + 1. Using (15-24) and (a) leads to 

,/2[(T sin 0Osin T cos OY\cosO f1,O 
I 

f2w4 = 2R-,t121 2GJ 2 ± 2fEI,) 2-. j 

RT
8 

1 1 LGJ 1
El2 

(d) I 
Example 15-10 

We analyze the planar circular member shown in Fig. EIS-10A. The loading is out-of-
plane, and only F3, M1 , and M2 are finite. To simplify the algebra, we consider the shear 
center to coincide with the centroid and neglect transverse shear deformation. It is con­
venient to take the reaction at B as the force redundant. 

X2 Fig. E15-10A 

A 
A V 

ntiForce Analyses 

The force solutions for the loadings shown in Fig. EiS-IOC are: 

For P: 

F3 ,0 = +P 

'" ,o0= r[tL - cos(q - c)] 
M2, 0 = - PR sin(qi - tc) (b) 

For Z = + 1: . CdFq +s 

F3, = + I ) 

3,, 
Y~~~~~~~ Mi. 1 · = R(I - cos tt l 

2 1 -R-sinj -I (c) 
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Fig. E15-10C 15-6. RESTRAINED WARPING FORMULATION 

In what follows, we consider the member to be thin and slightly twisted. 

Referring to Fig. 15-2, these restrictions lead to 

dR 
dS (15-26) 

d(vol.) dS dy 2 dy 3 

Therefore, in analyzing the strain at Q (S, Y2, y3), we can treat the differential 
= + 

line elements as if they were orthogonal. The approach followed for the pris­

matic case is also applicable here. One has only to work with stress and strain 

measures referred to the local frame (, t2,73) rather than the global frame. 

Our formulation is based on Reissner's principle (13-33): 

b[ft(Tr - bTfi - V*)d(vol.) - prij d(surface area)] = 0 

a, ii = independent quantities 

E = (a) (a) 
p, b = prescribed forces 

V* = V*(F) = complementary energy density 
CoinpatibilitY Equation (15-25) 

We introduce expansions for ii, in terms of one-dimensional displacement 
and force measures (functions of S) and integrate over the cross section. The 

At 
jTI force-equilibrium equations follow from the stationary requirement with respect

(d) to displacement measures.
/,, R I i G+ Mug1 d1, We start with the strain measures, : {:, Y2. y; 3}. One, can show thatt 

Lo- + (k° -±ia ) M, tl d l s 
lt 'A-£ Ri tai- R ­

we obtain the following expressions 
Substituting for the internal force and reactions, 

for ftt and A1: I<- 1 _Vl 02St (15-27) 

Vi/ Lk- 3'13 t t - + t3l (i ) ,0- 2c, sin o0- - Sill OCo O 

Al = UB3 - A3 + R()A2 sin OB- RK(74( 1 
- COs OB) 

where hiis the displacement vector for Q (S, y 1, y2). We use the samse displace­
2 

+ R k0 
sin(0B - )dO ment expansion as for the prismatic case: 

= FItl + 1n2 t2 + it31 
PRII j 1 + COS(O0 - - sin 0 - sicn (e) 

EI2 1 = u + co2Y3 - (3Y2 + JC 

(Y3 -3 3) (15-28)ui2 = t -(s2 
+ sin Bcos 0,C-- cos 0o sin 0c} 

tI3 = Us3 + (c1(y 2 - Y2) 

+ 0 cos(OB - 0) - cos 0 sin 041 Expanding 
0 = 05(Y 2, Y3) 

EI2 fJTF dy2 dy 3 = .f((-, 1 + 12Y2 + O13y 1 3)dy 2 dy3 (a)Ct 

Note that we could have determined A and f, using the results of Example 15-5. -- -FSee Prob. 15-5. 
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-. 'JCv ....... 509
leads to 
are due to self-equilibrating stress distributions

Jflor dy2 dy3 = Fle1, F2e + F2
and b2, b3 

adg 
It is reasonable, 

3 e3 + MTkt + M2k 2 
ths case, b t O "''ess disributions.t It is reasonable, 

+ M3k3 + MRf + Mef,s based on the primary flexural shear stress distributions. 
el, e2,, k 3 (defined by (15-16)) (15-29) Expanding the stationary requirement with respect to force measures yields 

M = ff 1 I0 dy2 dy3 
the force-displacement relations, 

a * MR = ff[ 1 2 (0, 2 + a 1 2 ) + 1 3 (0, 3 + a1 3 )]dy2 dy el = -I k2 
aV* 

k3 = -
a V*3 eI -­0F

The equilibrium equations consist of (15-11) and the equation due to warping 
M, f,,~, amo 

restraint, eF+2 eb f elV* (15-35)JF= VMR = M,, (15-30) F2 + = 3 

k= -- OF*which can be interpreted as the stress equilibrium equation for the t1 OM~- kl q (1 + b) f ('~*direction 
weighted with respect to ¢. OMT M':..-

Now, we use the stress expansion developed for the prismatic ecase. The where ee 2 , k 3 are defined by (15-16). The corresponding unrestrained
derivation is discussed in Sec. 13-5, so we only list the essential results here. warping relations are (15-18). 
The normal stress is expressed as Example 15-11 --

Fl M2 
-

M3 
V 

M,/ 
,,(/) (15-3l) To investigate the influence of warping restraint, we consider a planar circular member1 M 

A 
+ -+ y - + having a doubly synetrical cross section (Fig. E-1 1), clampedat one end and subjected12 13 

where 0 = - ", the St. Venant warping function referred to the shear center. 
We write the transverse shear stress distribution as I 

Fig. E15-11 

a = 2 F2 +-I/ 3F3 + ,IM'- + //,MT (15-32)
Mr = MUT + MT 

i B 

(V's are functions of Y2, Y3.) The corresponding complementary energy function Al' 

is 

+ 3 +V* = fV* dy2 d 3 = 2E. I 

1 (F 2 + + -j(Mr)+ Cr(M)2 (1533) 
i to a torsional moment at the other end. We neglect transverse shear deformation due 

GJ1(F~y~r + 23 to restrained torsion. Theoverning euios for this loading (see Sec. 15-4) follow.+-
GJ 

(F2Y3r +-F3 Y2 )M II 
Equilibrim Equations 

Also, (15-32) satisfies (see(13-50)) dM = 

JJ(U1 2d, 2 + U1330 3)dy2 dy3 - M'. (b) 

2Finally, noting (b), we express MR as 
dOM

MR = (1 + b2,)M + b2F2 + b3F3 (15- 34) ,Al 1 dMl (a) 
i'i 

R dOwhere the b's involve the curvature (al 2,a 3). If the cross section is symmetrical, isi 
M = M + M~ 

A2 3 = Y3r = Y2,- = b = 0 (c) t See Prob. 15-6. 

I 
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Force-DisplacemnentRelations The rotation at B is 

=i (0B - sin cos O) + cKM2 = EI2k2 2 (d 2 + oi) R--M 

E,.I, (if (g)M-- R dO 
(b) K fj2t B+ sin O~cos 0sco+ I= _1 B B Ii + -rI 2 j -o --+ 2 cCs2 0, tanh 0 

f= -kl = - R (1do(R\-iJ -( ) 

M = GJk1 
If we set 

L LU
7 

Boundary Conditions 
R=-

On O . (h) 

and let 0,-0. (g) reduces to (13-57), the prismatic solution. The influence of warping
00 = o = o2 = f = O (c) restraint depends on and 0,. Values of K vs. - for 0) = 7r/4, iT/2are tabulated below: 

0 
= O M = M 

K I 
MOt = 0 for 0, = = , + I 2M2 = 0 1+7 

One can write the equilibrium solution directly from the sketch: 

K 1 __ 1M = I cos(OB - 0) M2 = M sin(0O - 0) (d) 
= _ +_ 2 for= 

We substitute for the moments in the force-displacement relations. K°°, I + I lr for 0 = 4 (i) 

2+-
Ej d2

k, t+ 1+--
= GJk1 - -R - = nEM1 M cos(On - 0) K, = - O, + sin 0, cos 0,)2


Idco~R 2 
d

2 

(e) 

i. for OB = /4 0B= r/2 
k2-(r 1)+ sin(03 - 0)2 1 0.179 0.500 

5 0.786 0.96 
and solve for k,, and then ol. The resulting expressions are 10 0.907 0.99 

G.I El 2 We showed in Chapter 13 that
EI 4, GJ 

M 
k, = {cos(0B- 0) - cos 01 [cosh 70 - sinh 70 tanh R0,B]} A = 0 (2) (open section)

E,.l
GJ + -

R
2
2 

(closed section)(f) ! 2 = 0 () 
(j) 

where t is the wall thickness and h is a depth measure. Since A= R and R/h >> I for 
a thin curved member, the influence of warping restraint is not as significant as for the 
prismatic case. 

1(EI2 J 
W(ap 0cos n'neglCe cr e)a i s t2t n +a 15-7. MEMBER FORCE-DISPLACEMENT RELATIONS-COMPLETE 

END RESTRAINT 
- 2 [sillh 7.0 - tanh 70B cosh 70 + cos 0 tanh MIJB] 

In the analysis of a member system, one needs the relations between the forces 
Warping restraint is neglected by setting E, = and = c. and displacements at the ends of the member. For a truss, these equations 
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reduce to a single relation between the bar force and the elongation. Matrix of g corresponding to the zero force measures. For example,notation is particularly convenient for this derivation so we start by expressing
the principle of virtual forces and the complementary energy density in terms F=>{F1F2 M3 }
of generalized force and deformation matrices. Y3 = 0 

Referring back to Sec. 15-3, we define 1 

-0 0 
Ia F/* ,i 

i 

A 
r9= - Uj F = f T,~= (15-36) 002____ I (15-40) 

0 A2 G I l 

and write the principle of virtual forces as for planar loading applied to a planarmember. 
Finally, we substitute for a in (15-37)and distinguish between prescribed and.s dV* dS jgTsg Af dS = d AP (15-37) unknown displacements. The principle of virtual forces expands to 

Note that we are working with M , not MT. We use the complementary energy
function for a thin slightly twisted member with negligile warping restraint 

.fS(g + gjF-)TA57- S - T AR = dAP (15-41) 

(i.e., (15-17)). With the above notation, where d contains prescribed displacements and R are the corresponding re­actions; d contains unknown displacements and A' are forces corresponding 
7g.7 

to d. The virtual-force system (AP, AR, A.F) must satisfy the force-equilibriumEq. (15-17) => V* (o)rT + A-.
equations, (15-11). It is more convenient to generate , and R with the equili­where brium equations for a finite segment rather than attempt to solve (15-11).Fgfm g,,,r-g 

(15-38) Consider the arbitrary member shown in Fig. 15-6. Each end is completely
Lgr ! ot_ restrained against displacement. The positive sense of S is from A toward B. 
-I 

0 0 
I 

I j7S Y2Y37i7 y­gf = -;f-,d + w- GJ 1
. I 

,+ 
Sym B 

A 3G C;. 

0 0 0 0 0 
C?] A 

1 i3 
gfm = YJ 0 0 o 

El2 
i

n 
1 

i2G Y2 0 Sym
GJ El, 

The force-deformation relation implied by (15-38) is member frame 
= g + gY- (15-39) 

We will use these general expressions for planar and out-of-plane deformation 
XIn 

as well as for the arbitrary case. One has only to delete the rows and columns Fig. 15-6. Arbitrary curved member. 
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We suppose the geometry of the member is defined with respect to a basic ·~(2Q leads to
frame which we refer to as frame n, and take the end forces at B as the force orn, ryiBredundants. Then, the primary structure consists of the member cantilevered * BAt, , + J- T(s + gQ.-Q, o)dS 
from A. 

Throughout the remaining portion of the chapter, we will employ the notation [ SL(
' 

AA (15-45) 
' A BQ Q](QS) JB 

for force and displacement transformations that is developed in Chapter 5. A The first term is due to rigid body motion of the member about A whereassuperscript n is used to denote a quantity referred to the basic frame. When the second and third terms are due to deformation of the member. We defineno frame superscript is used, it is understood the quantity is referred to the '"as the member deformation matrix:local frame. For example, .rQ represents the internal force matrix at point Q 
, referred to the local frame at Q. Note that ds'Q acts on the positive face. The X = ; /duc 

Ilotion albout.4force matrix for the negative face is - J9Q. The end forces at A, B are denoted 
"B9l "iil id bdy (15-46) 

by , f and are related to the internal force matrices by 
By definition, nL"is equal to the sum of the second and third terms in (i 5-45).We also define 

B = + = o B (15-42) 'QB (° 0BQ+ QQ o )S = initial deformation matrixAn = - ' = - A 
f11 = )~~1i8fi TgQ_ 07-gQ (15-47), 

Also, the displacement matrix at point Q is written as 61Q. 
fS(y BgQe)dS = member flexibility matrix 

and (15-45) reduces to 
601Q = {Ul, U2, t3 (tl,(t)2,)3Q = {O} (15-43) Ad' = - J 

"' B A 
,tt 

' 0 &YB (15-48)
n, - o,,, T...4 .. f 

Equation (15.-48) is the force-displacement relation for an arbitrary memberFor this system, '270 and W'/[ are prescribed. with complete end restraint. It is analogous to the force-elongation relationWe determine til[/ for the primary structure, i.e. the member cantilevered for the ideal truss element that we developed in Chapter 6.from A, due to displacement of A, temperature, loads applied along the member, The member flexibility matrix, f, is a dtiu'al property of the member sinceand the end forces at B and then equate it to the actual @tX1].The virtual-force it depends only on the geometry and material properties. For simple memberssystem is such as a prismatic member or a planar circular member with constant crossAP = A¢" section, one can obtain the explicit form of f. When the geometry is complex,
AR = A7- = -XB AIB3 (a) one must generally resort to numerical integration such as described in Sec.7-nq 7-n . = nq er,, ~' 

Q BQ 1 1 B-;.i= q-XQ B 3,; B 14-8 in order to determine f and '/'. This problem is discussed in the next 
Also, 

section. Finally, we point out that the general definitions off, /'0 are also validfor in-plane or out-of-plane deformation of a planar member. One simply has 
(b) to use the appropriate forms for the various matrices. 

d-fall Up to this point, we have considered only a simple member. Now suppose
Introducing (a), (b) in (15-41), we obtain the actual member consists of a set of members rigidly connected to each other 

and the flexibility matrix for each member is known. We can obtain the total 
flexibility matrix by compounding the flexibility matrices for the individual 

8SB 
elements. To illustrate the procedure, we consider two members, AA 1 and 

= [,,n,(Ae T(,)A, + fT( 7-)''q, ± g(Q?,i)dSj 

(c) i AB, shown in Fig. 15-7.1, The matrix, f", contains the displacements at B due to the end forces at B.SA with A fixed: 
Next, we express ,IRQ as 

I q6/B = f 77 (a) 
~Q = 'Q, + .O-n

; 
6C (15-44) Now, suppose point A is fixed. Then, the displacement at B due to the deforma­tion of member A B is

where Q, o is the internal force matrix at Q due to the prescribed external 
member fBB-B A= (h)loading applied to the member cantilevered from A. Finally, substituting for Al 
A,B kv/ 
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where f',B is the flexibility matrix for member A1B referred to frame n. The 
additional displacement at B due to movement of A, is 

( /B)displacementat, = TBAi 41 (c) 

It remains to determine qlA. 

Al 

A 

2 B 

Fig. 15-7. Segmented member. 

The force system at At due to the end forces at B is given by 

dAA= At, lr (d)I 

and the resulting deformation of member Al is 

1AJIImemberAA, fAA, A = f, AAL"'s (e)I 

Finally, we have 

I0&B = (fA X + BA, AAi CtBA° )t'IB == f B (15-- 49) 

The end forces at B are found by inverting (15-48): 

k" = (f")- = member stiffness matrix 

~7e= k"(i" - ./'7) 
-
/
n= k ka/li 

-
-

-kn + k/ l k ,riSA,. 
(15-50) 

The first term is due to-external load applied along the member and represents
the initial (or fixed-end) forces at B. For convenience, let 

-B i = -k O (15-51) I 
The second and third terms are the end forces at B due to end displacement at
B, A. Once ,'B is known, we can evaluate the interior force matrix at a point 
using (15-44), 

j'Q = Q, 0 + '}. (a) 
Thus, the analysis of a completely restrained member reduces to a set of matrix 
multiplications once the member stiffness and initial deformation matrices are 
established. 

SEC. 15-8. GENERATION OF MEMBER MATRICES 

When analyzing a system of members by the displacement method, expres-I sions for the end forces in terms of the end displacements are required. In 
addition to (15-50), we need an expression for ,.'FA' Now, 

A 'A.O - BA B (b)
li Substituting for O,"leads to 

Ai -- X- "Bn . k c+B 'VBAX, k BA -CA 
(15-52)

where A A BA,97B-' A, i - -'A, O - tBA B iwhere "A,i represents the initial end forces. In order to express the equationsin a more compact form, we let 

kBA - k"n~T 

(k)A)TnAB - A,k (15-53) 

TkAABnk ZJ - , _1 AkBA 

With this notation, the force-displacement relations simplify to 

= n. i + kBBLBn + kr A.4
ii 

Ia = , ; + k"B'IB ±4 kA4i PA? 
(15-54) 

I 

Note that only k" and 'BA are required in order to evaluate kA and ka. 
I 

15-8. GENERATION OF MEMBER MATRICES 
I The member flexibility matrix is defined byi 

Noting that (a) 
f = snq7Rnq"n. 

and letting (b) 

gl = <rnq. Tg nq 

I we can write (15-55) 

IBQf' CAB (i QTg2Q)dS (15--56); If numerical integration is used, the values of the integral at intermediate points
along the centroidal axis as well as the total integral can be determined in the 
same operation. This is desirable since, as we shall show later, the intermediate 
values can be utilized to evaluate the initial deformation matrix. 

We consider next the initial deformation matrix: 

%n = I-q,,B<- T( + g o)S (c 

We transform ,g, and from the local frame to the basic frame, using (15-55) 
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and 

.~'Q= .. q ThyQ (d) 

The contributions of temperature and external load are 

(15-57) 

() lad = SB (XQn gQ)dS (15-58)
SA 

Suppose there is an external force system applied at an intermediate point, 
say C. Let Pc, Tc denote the force and moment matrices and >c the total 
force matrix: 

c ={ Tc (15-59) 

Normally, the external force quantities are referred to the basic frame for the 
member, i.e., frame n. The initial force matrix at Q due to this loading is 
given by 

<Son , o = arnC. n :CQ C S, -< SO SC (15-60) 
37"o, =0 SC < S Sn0 

Writing 
XCQ -B CB (e) 

and introducing the above relations in (15-59) result in 

_ J1/1r[SC (XjB,T nrg )d S ( l( 0z -BQ[is B Q,BQ C CB' C) (f) 
,,= [A 

The bracketed term is an intermediate value of the integral defining f". Finally, 
we let 

T o n Jp = fI ( ( n x'll )ets (15-61) 

With this notation, (f) simplifies to 

(15-62) 
Also, 

fn JB (15-63) 

The determination of the member flexibility matrix reduces to evaluating 
J defined by (15-61). One can work with unpartitioned matrices, i.e., X', g, 
but it is more convenient to express the integrand in partitioned form. The 
partitioning is consistent with the partitioning of :f into F, M. Since the 
formulation is applicable for arbitrary deformation, it is desirable to maintain 
this generality when expanding X, ,. in partitioned form. Therefore, we define 
a as the row order of F and ji as the row order of M. 

(15-64)
MJF (fix ) 

Continuing, we partition X, 9 and g symmetrically, consistent with (15-64), 

SEC. 15-8. GENERATION OF MEMBER MATRICES 

and simplify the notation somewhat: 

BQ = 

(e x c) (15-65) 

ypnq _ n _ x_ )] 

(axe) (ax) 

|Q iT F 
g2
-2/-

L912 
 ,(fix/) 
The translation and rotation transformation matrices are developed in Sees. 
5-1, 5-2 and the form of g for a thin curved member is given by (15-38). 

The local flexibility matrix g' is defined by (15-55). Using the above notation, 
the expressions for the submatrices are 

gl = R gl Ra 

g2 = RITgl 2R( (15-66)) 
g22 = R22R , 

Note that g 2 = 0 and g, g22 are diagonal matrices when the shear center 
coincides with the centroid. If, in addition, axial and shear deformation are 
neglected, g,, = 0. 

We let 
( x ) (ax ) 

= fan, Tgnn f12 t_\ 

..... J22 
(15-67) 

(t x ) 

The submatrices follow from (15-65): 

I11 - g 1 + g1 2 X'BQ - (g 2XBQ) + BQ g22 BQ 

J12 = g 2 + X' g22 (15-68) 
'122 = 22 

Next, we partition J consistent with i: 

(a x ) (ax ) 

SA IJP,jp = Sp i dS = J, 1 12 J 22 1 (15-69) 

JSA 

Finally, we partition f: 
(ax ) (axa) 

fn = - 1 _kt a 
(15-70)

(f(x ) 

f = JB, ij = i j dS 
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The initial deformation matrix due to an arbitrary loading at point C can be 
determined with (15-62). Its partitioned form is 

(T)-n o = (JCnCB)pn 

(ax a) (a xp) 
t MB2, WB2{vO JcII Jc 12XBC ' JC. 12 (aX1) 

(15-71) 
.C, 1 - 2JJC, 2XBC I 2 2 2 

. 0 - 0 (/3 I) 
t

12 
B 1

where v', O0 denote the initial translation and rotation matrices. A 
The member stiffness matrix, k", is obtained by inverting fn. We write xi 

H/ 3' l'B3 / TB I, UB1(ax a) (ax ) 

k" = (fn)--l kr ;- ]= (15-72) 
t3 3,3 

(p x pi) 

One can easily show that (we drop the frame superscript on fj' for convenience) LA 

kl = (ft1 - f2f22f12)-

22 k (15-73) Y3 
- I b Lm -IIIUld dXiS.- 222tl 1f

X2, X3 are principal inertia directions. 
= f Fl krl!/ikn22 k22:f21I L - .t2n12) 

Once k" is known, the stiffness matrices k7,n, kA and k4 A can be generated. Fig. 15-8. Summary of notation for a prismatic member. 

Expanding (15-53) leads to the following partitioned forms: 

L 
Now, 

2n = - 1-k- _ r 
nk[ k2 k2AXn, {-k 0 00

nnTl~n [ n Xn.T j,XkA X=o 0 I - (a)
k[A = -. 

n 
f 
,1- , 

-_-T-; = 
] Ik (15-74) (L-° °022Lk 2 k"''" ++ " 212 12i ! B 

=="--- A-- .. .... t'…- Then, using g defined by (15-38), we obtain 
T 

A A Xn +] LA C 
L/AE 0 0 

15-9. MEMBER MATRICES-PRISMATIC MEMBER 

In Chapter 12, we developed the governing equations for a prismatic member 
and presented a number of examples which illustrate the displacement and |A --- 1------1) __7 ­2
force methods of solution. Actually, we obtained the complete set of force­
displacement relations and also the initial end forces for concentrated and 
uniform loading. Now, in this section, we generate the member flexibility 
matrix using the matrix formulation. We also list for future reference the 
various member stiffness matrices. 

The notation is summarized in Fig. 15-8. For convenience, we drop the (15-75) 

frame reference superscript n, since the basic frame coincides with the local 
frame, i.e., R"q = I. The positive sense of a displacement, external force, or 
end forces coincides with the positive sense of the corresponding coordinate 
axis. IL/GJ 0 0 

2Starting with (15-66), we have g7 = g, since Ra, R/ are identity matrices. 
- L/E1 0 

Once XBQ is assembled we can determine the submatrices of I from (15-68). Sym L/E13 
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The submatrices of k are generated with (1 5- 73), (15- 74) and are listed below 
for reference. Transverse shear deformation is neglected by setting a2 = a3 = 0: 

12EI2 12EI3 
a2 -

GA3L2 GA2L2 

12 
1 + a2 

I3- + 

GJ 12E 2
b, = - + (3I + x2) (change sign of(1, 2), (1, 3)in k2 2 ) 

_ AE O I O Finally, the fixed end forces due to a concentrated transverse force and a 
uniform transverse loading are summarized below. 

12EI3
kll 

ConcentratedForcePc2 

Sym 12EI3 
12EI* 

Sy m I 1 L a3 A2L3 
GA 2L3 

0 0 I 0F
I 

I 
I 

12EI*3X3 6EI: 
kt2 = - t L3 ,22I L 2 -- "_c-1 a, 2

(.1.5-76) MB3 = Lc2.c(1
12EI 2 2 6EI 0 

3L: 
FB 2 = -() 2P 2 - - MB3 

(15-77) 

6EI2X 2 ! 6EIX 3b 
L22 

L2 MB = -x 3 (XcPC 2 + FB 2) 

E1 I MA = -MB 
22 = (4 + a 2) L 0 FA2 = PC2- B2 

I 

Sym (4 + 613) 
MA 3 = -L | 2 + FB2 + L 

12I00- 0 ConcentratedForcePc3 

12EI2A 312EI -- 6EIl 
GA 3L2 

L3 L2 
2 j MB2 -LP 3 xc(l - XC) ( I---) 

(change sign of(2, 3) and (3, 2) in k 12) 
2 

bl 
- 6E*-2 - 6EI'3 3 FB3 = -PC3(X) + _ MB 2 

L2 L2 (15-78) 
MBI '= X2(CPC3 + FB3) 

6EI2X2 
B= L22 -(2 - a2) 

EI* 
2 

I 
0 MA = - 111 

1 
A3 = -PC 3 -FB3 

6EI3.X3 EI I0 I -(2 - a 3)---Li JMA 2 = L (PC3 + 3 -
1 M )

L2 0 I 
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0 0 -R(1 - cos 
ConcentratedTorque Tc1 

X = XQ 0 0 j-R sin 
M = - Tc1 Xc (15-79) R(1 - cos ) R sin I 01 

MAlT -Tc(lXc) 
We use 

Uniformly DistributedLoad, b2 
R, = R2q R = 

R sin i7] (a)
= [R( - cos )

b2L 
FB 2 =FA2 - 22 for planar deformation and 

(15-80) R = 1 Ra = R2q
b2L2 

MB3 = -MA3 - 12 
. -R(1 -

l 
cos al) (b) 

,Re = -Rsin 
M3 = MAt = 0 

for out-of-plane deformation. Since the complete flexibility matrix is desired, 
Uniformly Distributed Load, b3 it is just as convenient to work with submatrices of order 3 as to consider 

b3 L separately the planar and out-of-plane cases. 
2FBi3 = FA3 --

b3 L2 (15-81) 

M = - MA2 12 

a,n = M IM= 0 

Uniformly DistributedTorque, nml 

=M1-L (15-82) 
MA= M A - 2 n1 

15-10. MEMBER MATRlCES-THIN PLANAR CIRCULAR MEMBER 

matrices
In this section, we generate the flexibility and initial deformation 12 

for a thin planar circular member, of constant cross section, using matrix 

operations. We include extensional and transverse shear deformation for the 

sake of generality. Some of the relations have already been obtained as illustra-I tive examples of the force and displacement methods. In particular, the reader 

should review Example 14-6, which treats planar deformation, and Examples 

15-4, 15-5, 15-10 for out-of-plane deformation. - 3bt \ F31IB1 

The notation is summarized in Fig. 15-9. By definition, Y2 and Y3 are 

Y3 = O0i.e., the shear center lies in the plane con­
principal inertia axes and 

planar circular member.for15-9. ofnotation
taining the centroidal axis. It is convenient to take the basic frame (frame n) Fig. Summary a 

to be parallel to the local frame at B. The three-dimensional forms of R,, R, 

and XQ are Fig. 15-9. Summary of notation for a planar circular member. 
Br 

R2 _0cos -sin 1 
We consider the member to be thin and use the local flexibility matrix

Rnq bq = sin cos -- - l 
defined by (15-38). Expanding (15-66), (15-68) leads to the member flexibility 

- == R7i 
(15-83) matrix. 

R = R, = Rnq 



I 

II 

as
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EI313 

= AR 2 a GA2R2 We consider next the determination of the initial deformation matrix due tos 
e an arbitrary concentraited load at an interior point, C. Now, the flexibilityEI2 El2 matrix for the segment AC referred to the local friame at C, which we denote 

GJ - GA3R2 by fac, is known. We just have to change OB to c and superscript b to c in(15-84). When the external load is referred to the local frame at C, the displace­a1 = ae + as ment at C is given by 
a2 = ­ae 

C -= 2(1 + c,) 
(15-84) The displacement at B due to rigid body motion about C is 

(a) 

C2 = (1 - ) 
li4 - Bbc (b= hc, T)q c 

Finally, we can write 
(b) 

C4 = C, C 
( 

I -
A) 

(/) t , - (');,. B= (XcIrAT, . 
'
,
. T 

fc)c· cj 

Ob UB- C TRTfc.;0
b TCfT, 1V u '( '1fc.,l + 

l X 
BC /C. L-CT 

+ (R fc, 12 + X"BC R"TfAc. 22)Tf3 

" Symmetrical ii
ob4 = (Rftc, T 2)Pc + (R/TFC, 2)T 

(15-85) 

The uncoupled expressions follow.+ sin0,[-2 + B(1 + a2)] I 
PlanarLoading

R 1 - cos 01 
-{- --- (l 

+ L,) 
fb = 'b 

I cosq sin2 
0 + - (I + a2 )sin 0 cos 0,} iI 

0o. =B "I l 
0 c 

(I 
+-

1 + 1 cos ) 
+ sin t1: -EI3z~~2 _ I 2't 

sin 0
B 

I 
R' 

o o - 0B( + C4) + in (- + +_2 Cos 0P)}C 
- 2c, sin 0, - c sin 0Ocos 0,,} 

I 1)3 fr 

+ "- 1 - cos Ocl + 1- ac sin 

R2 2 _2-sin Oc sin 0B} PC20 0 .(R - sin 0,) 
- 1 a + C t2 

R 

0 0 (1 - cos 0) El,insv,%
ff, = (f2 = 

R2 IE13 (15-86)
II, 

Vlo 2 = B2 2 sin %Cc- {-c 10B + C3 sin 0
B - --C

2 sin 2 
On 

-2 ub 
-E+, 

la1 c 'S0 

+ c2 sin 0 cos 1JB} - c3( - OS 0)} 

O sin i Oc sin 0, P c 

0_ . _
- + Eco cos OcBs csinSymmetrical 

i R2 
2 = -- (c,0B + c2 sin 03 cos 0n) I 

P 

El2 R"'I 2 ·- · ·~~·· 
IRO,

0 0 
E ROc00,3 - sin Oc)Pfcl (cos)P + + - TC3

EI, 
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VO, 3 UB3 = EI2 c(c Ccos c 4- C4 ) - C2 sin Oc cos 0 B 
i 
i 
i 
i 

P 

+ c3 (- sin Oc - sin 0 + sin P 

+ER 2I-{-CO + c2 sin Oc cos OB + C3 sin 0 TC 

i
i 
I 
i 

+ El2 cj°c sin /c - c2 sin Oc sin 0, - C3(1- cos Oc) TC2 
Fn 

I _ 

1= 
, 1 

R2 
ER 
i 2 

{-BciC cos + c3 (sin 0 
B 

± 
- sin qc) B 

+ c2 sin 0 c cos OBIPC3 

+ 
R+ 
-

EI2 
Cc 

EI 
COS '/c- 2 sin Oc COS OB TI (15-87) 

+ - IC 10c sin qc + C2 sin Oc sin 0 rTc2 
i 

o0, = ob2= ClOc sin c + C3 (Cos 0O - Cos 'IC) 

- c sin Oc sin 0 Pc3 

+ EI {-c 1 0c sin c + c2 sin Oc sin 0 TT Fig. 15-10. Notation for planar loading. 

+ -EI2 Oc cos q + 2 sin fc cos O I'C2 
sin 
sa (I - cos a) + --12 sin 2 a' 

When the loading is symmetrical, one can utilize symmetry to determine the 
V = 1-__. . ..2 

fixed end forces. The most convenient choice of unknowns is the internal forces 
at the midpoint, i.e., 0 = 0 /2 ; F1 and M3 are unknown for the planar case and 
only M2 is unknown for the out-of-plane case. Explicit expressions for the 
fixed end forces due to various loading conditions arc listed below. 

I 
Mc 

F[1 = 
2 

-lA1 = 

_ 
C

F( 
FZc 

+ 

+ 

1 

2-

sin cc 
_ _. 

sin 

) 
V/ 

cos a 

(15-88) 

Planar Loading 

Fig. 15-10 defines the notation for the planar case. 
We consider two loadings: a concentrated radial force P applied at C, and 

MIJ=-MII_ PR fi- = _i­ n=PR fsM 
2 in cc-

I - cosa 
COS 

a uniform distributed radial load b2 applied per unit arc length over the entire cc \c-i -coScc 
segment. The basic frame is chosen to utilize symmetry. We determine the 
axial force and moment at C from the symmetry conditions u = o3 = 0. 

CASE 2 -UNIFORM DISTRIBUTED RADIAL. LOAD b2 

FC2 = 0 
CASE 1-CONCENTRATED RADIAL FORCE P 

P 
2 FC = 2 q1 a a sin 2 cc (+a a 2 

- sin a cos cc 
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(15-89) 

MC = R2b2ae - 1 +--

Fni = -F P = --Rb (cos c -aeq)2

FB2 = AZ = - Rb2 sin cc 

MB = A R­= R22b () - cos x 

Out-of-PlaneLoading 

Figure 15-11 defines the notation for the out-of-plane case. 
We consider four loadings: a concentrated force P, and a couple T-both 

applied at C; a uniform distributed force b3; and a uniform distributed couple 

min. The bending moment at C is obtained using the symmetry condition 

0)2 = 0. 

11,11 M 

-I---~f~ 

M2 

Fig. 15-11. Notation for out-of-plane loading. 

CASE t-CONCENTRATED FORCE P 

P 
FC3- 0 

MC = 0 
PR C2 sin2 c + c3(1 - cos c) 

MC2- 2 cc + c2 sin o cos 
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~ = 
PR 

Mi* ='--- (1
2 

- cos ) 
(15-90), 

PR 
MB 2 -M.A2 = MC2-

2 
sin a 

P 
F, = FA = 3 

CASE 2-CONCENTRATED TORQUE T 

Fc 3 = 0 
T 

MC = 
2 

T c2 sin 2cc 

2 acc + c2 sin a cos (15-91) 

T 
M = MBI1 ­

2 

MB2 = -MA2 = MeC 

FB = F, = 0 

CASE 3-UNIFORM DISTRIBUTED LOAD b3 

Fc 3 = MCI = 0 

M R2b ct(sin oa - a) + c2 sin c( - cos Ca)+ c3(sin a - cos c)= 

ac, + c2 sin accos ac 
(15-92) 

M, = R2 b3 (sina - a cos oy) 

MB2 = MA 2 = MC2 - R2b3 (c sin a - 1 + cos c) 

B; = FA =- PRa 

CASE 4--UNIFORM DISTKRIBUTED COUPLE m, 

FC3 = MCI = 0 

2 1(c - sin a) + c2 sin c(cos a - 1) 
MC2 = mr c% + c2 sin accos cc (15.-93) 

-mR sinMB1 = -nf4 

MB2 MA2 = M 2 - nR(1 - cos x) 

15-11. FLEXIBILITY MATRIX-CIRCULAR HELIX 

In this section, we develop the flexibility matrix for a member whose centroidal 
The principalaxis is a circular helix. The notation is shown in Fig. 15-12. 

inertia direction, Y2, is considered to coincide with the normal direction, i.e., 
We also suppose the cross-sectionalthe inward radial direction, at each point. 

properties are constant. For convenience, we summarize the geometrical 
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relations :t 
X1 - K( cos Ut

n 

X2 

x3 

dS = 

R sin 0 
CO 
a dO 

X3" 

F' B3 

3/ 
4. l Zt 

a= 

t = 

[R2 
+ C2 )1/2 = constant 

1
ft = - (- R sin Oi, + R cos 072 + Cl3) 

(a) 

n = t2 = -cos 07, - sin 072 

b = t3 -(Csin 01, - C cos 072 + R73) 

R 
sin 0 --cos 0 

I C 

?t 

RaR = R= 
q = -cosO - ill 0 0 

C . 
sin 0 

Lc~ 

I 

I 

C 
cos 0 

a 
/
j 

R 

c/_ 

XBQ = C(B - ) 
-R(sin 0 - sin 0) 

I -C(OB - 0) 
i 

RK(cos O, - cos 0) 

R(sin 01, ­ sin 0) 
- R(cos O, - cos 0) 

0 

X2 

X , X2n , X3n-directions of basic frame 

X' / 
1 

12, r3-principal inertia directions 

The steps involve only algebraic operations and integration. We first deter­
1 

mine gi~ using (15-66), then Bqij from (15---68), and finally fi'j with (15-70). In 
what follows, we assume the shear center coincides with the centroid and neglect 

Fig. 15-12. Notation for circular helix. 

extensional and transverse shear deformation. With these restrictions, 
Notation-DimesnsionlessParameters 

gn = gl ° g22 = K Tg2Rnq (b) 

1 R2 El2 C2 12 

GJ a 2 
GJ a2 I3 

12 
R

2 

O 
C

2 

± 
(EI\,
I-----

13 
g2 = 

tEIE12 
a a12\\GJ I2 

a3 = 
RC 

C2 

I2[
I3 

- j
GJ 

E13 

and the expressions for *ij reduce to 
Ra3 R 2 

*22 = 22 1 + a 1 - a 

12 = XXBQt 2 2 
(c) a, a ­ 2 2 a6a 1 2 

\11 =- 1X2BQ 

The flexibility matrix for a constant cross section is given below. 
a, + a 6 

2 a8 
a4 - a 6 

2 

t See Examples 4-6 and 5-3. 
a6 + 3a 4 

2 a 

a 6 - 3a 4 
2 
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ffl = 

11 1 Syrn 
f f2 2 

fi I f3 2 J331 

I 
f26 

f34 

-
Ras 

= I 2 {50 

sin 0 

sin0B -

+ 
El 

cos 

BCO 

} 

- sin 
) 

C2a {a 7 0 
- -a7B 

± 
+ 

03 
3 

± 10 
+ 2a4 sin O + a sin 0 cos0n 

f35 =ia5(sin aB - HB cos 0) 

+ 0ElOB (+ sin 0 r 
- 2 sin + -sin B COS B 

f 3 6 =- ,EI {a4X{sin 0- 0 

f21 = - 20 - a8 sin O + 4(01 sin 0B - cos 0B + cos OB) 
Elements of f22 

aEl cos 0B(0B sin OB - 1 + cos 0B) - -sin2 0nB 

f31 = El 2 - O COS 0 + (al - a4 )(l ­ cos 0,f) - a4 sin2 0R + a0 nsin0} 
f2 = 

f22 = C2aEI {a7 0 + a5{0303 - a 0 sin 01OCOS O - 2a 4 01 cos 013 

+ e3 + CO2s2 cos 0B sin 0 

f3 = EIRCl{ 2 0 sin 0 + a(OB ­ sin 0,) + a,,O cos OB 

15-12. MEMBER FORCE-DISPLACEMENT 
RESTRAINT 

RELATIONS-PARTIAL END 

f33 

+ a8 sin O + a4 sin 0B cos 0O} 

= El2 (a + a)0B- 2al sin O3 - a, sin ORcos O,.EI23 

Elements of f~'2 

[f 4 fl 5 161 
f12 = f2 4 f2 s f2 6

Lf34 f35 f36 

4 = ECc -a 4 sin 01 + a7 01 + a8 sin n cos O] 

f5 = E 2 + as sin On 

(15-94) 

In Sec. 15-7, we considered an arbitrary member which is completely re­strained at both ends. This led to the definition of the member flexibility matrixand a set of equations relating the end forces and the end displacements. Now,when the member is only partially restrained, there is a reduction in the numberof member force unknowns. For example, if there is no restraint against rotationat B, M = 0, and there are only a unknowns (where a is the order of IFB), therotation oB at B has no effect on the end forces. To handle the case of partialrestraint, we first determine the compatibility equations corresponding to thereduced set of force unknowns. Inverting these equations and using the equi­librium relations for the end forces results in force-displacement relations which are consistent with the displacement releases. 
Let Z denote the force redundants. Normally, one would work with theprimary structure corresponding to Z = 0. However, suppose we first expressthe force at a point, say Q, in terms of the end forces at B, using, as a primarystructure, the member cantileveredfiom A: 

f6 _EI {1 -cos O Ei {0 sin 0 - + cos 01 . IF = ~iQ, +~~Q­

f2 == -

f2 E 

2= .CaJ 2- 2 

(0a 

±
+a 

sin 

sin 01 -

c o s 

a4 (1- cos) Next, using the primary system corresponding to Z = 0, we expressof the applied external load and the force redundants: 

,3r = - ~~T 

B[ in terms 

(a) 

, = EZ + G (15-95) 
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The elements of G are the end forces at B (for Z = 0) due to the applied external At this point, we summarize the force-displacement relations for partial end 
loads. Note that G = 0 if Z contains only end forces at B. restraint: 

Now, the principle of virtual forces requires Z = member force matrix 
.' = EZ + G 

S, A.Tr(&o + g)dS = AB[' TB + Ago' (b) 
FA = A, - FT !BAB

a 
i 

f, reduced flexibility matrix (q x q) ETfnEfor any self-equilibrating virtual-force system. Taking the system due to AZ i
i 

, z =- '~ + f"Gresults in the compatibility equations for Z. It is convenient to work first with If f z -_ ET(11. )the virtual force system due to &ABE.Equation (b) reduces to I f.Z Eq'-)_I ~fi~ll 
(15-100)

= ET(Ok - "Ai//fagn,""(¥,n)+Tmfn/) 
I Ta _ %.lj 

,^ 0 
0Bu~~~ ~ BB 

= At,, 
~ T'T(o 

B 
- A 'o, ATn, /w? (c) Note that, for complete end restraint,= AJ",'/ 

where F", fn are the initial deformation and flexibility matrices for thefitll end ZG=O E=[i 
(15-101)restraintcase. Substituting for 3.P using (15-95), and requiring the resulting O, 2 1 

expression to be satisfied for arbitrary AZ, we obtain We will use (15-100) in Chapter 17 when we develop 
member system. the formulation for a 

(ETrE)Z ± ET(i.'" + fnG) = ETak" ET(q/7 - oA4 rln) (15-96) Continuing, we let 

It should be noted that °gR, R'} are the displacements of the supports at B, A. (15-102)
We suppose Z is of order q x 1, i.e., there are q force redundants. Also, we The force redundants are obtained by inverting (15-99):

let i be the row order of ,- (and O}). 
(axi1 Z k,Er(iql' ', -t 

~ = j- 4 (s15-97) Substituting for Z, the end forces at B are given by 
(15-103) 

(fix 1) 

With this notation, We defined k~ as the effective member stiffness matrix: 
(e) 

E isi x q 
Gisi x 1 

(d) 
ke = Ek,.ET 

= E(ETf",E)-T (15-104)
and (15-96) represents q equations. For convenience, we let 

In general, kj is singular when q < i, since E is only of rank q. Equation (e)
f- E Tf"E (q x q) 

(15-98) takes the form 
n"' = t/' + fnG (i x 1) 

]3 SS B, + k i - "Y" TIWt,·
and the member force-deformation relations take the form 

,i = -k o, z + (15-105) 
f Z = ET(/r" - "/', z) = -k,-'" + (I - kf)G

(15-99)ET(in _ f,, o", -/,),
.4 BA '/ O, Z)A The end forces at A are determined from (a): 

We refer to f, as the reduced flexibility matrix since, in general, q < i. Actually, jn ~"nn4,1n I,-nn,T)/nn sBA4e*BX MZAB
f, is the flexibility matrix for Z and it is positivedefinite since E must be of rank 

A i. - A,0 BAO' B i (15-106)q, i.e., the force systems corresponding to the redundants must be linearly 
independent. Note that one can determine f,. directly by working with the Finally, we write the relations in the generalized form 
primary system corresponding to Z = 0. This is the normal approach. The 
approach that we have followed is convenient when the member flexibility +AA nA= i ± Bc.B + kRBB 
matrix is known. 

YA FA, i kAB 0'B + k AA,,(A 
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(15-107)
where 

kM-== kn 

kA == (kB,) - ke BA 

Ak
kA = - - XBAkA RBAke ',4BA 

Comparing (15-107) with (15-53), the corresponding expressions for the com­

in the partitioned
plete restraint case, we see that one has only to replace k" by k 

forms for kBB, kBA, and kA. i is different, however, dueThe equation for B<, 

to the presence of the G term. 

Example 15-12 
oI7= 

Suppose there is no restraint against rotation at B. Then, 0. We take Z = FR 

and generate E, G with (15-95). 

r } 
(a) 

--I} AG{ E 
_ 

For this case, G = 0. The reduced flexibility and stiffness matrices follow from (15-98), 

(b!
(15-102), Fr- . ,v} 

kr= f't'll 

and the effective stiffness matrix follows from (15-104): 

(c) 
0k 'f't 0 

Finally, the force-displacement relations are (see (15-99)): 
(d)

T 
- X' &i - Y)fitF,, = u-

T eliminates 0", the relative rotation at B, There is 
Note that premultiplication of I'" by Er

no compatibility requirement for the end rotations in this case; i.e., the support rotation 

at B, which we have defined as o), does not introduce any member deformation. 
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PROBLEMS 

Refer to Example 15-5. Determine c,t for a typical wide-flange section 
15-1. 

and a square single cell. Comment on the relative importance of torsional 

deformation vs. bending deformation (i.e., terms involving c, in Equation (e)). 

Distinguish between deep and shallow members. 

Refer to Example 15-7. Consider a rectangular cross section and kb 
15-2. 

varying linearly with x l, as shown in the sketch. Evaluate VB2/! 3- ,;j and 

vB3S/\ 3 EI) for a range of 7;and a/b. 
b~~~~rgProb~~~,,j~~r~~)a~~~.~~~. 15-

Prob. 15-2 
X2 

2= 12 

b 
X3 

13 - 12 

Y3 

15-3. Determine the reaction at B and translation (in the direction of P) 
at C for the member sketched. Neglect transverse shear deformation. 

PP Prob. 15-3 

Y3 

I- Vertical restraint at B 

I 
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15-4. Repeat Prob. 15-3, considering complete fixity at B. Utilize sym- iI 15-14. Starting with (15-87), develop expressions for the initial deforma­metry with respect to point C. tions due to an aribitrary distributed loading, b3 = b(O). Specialize for b3I15-5. Derive (15-27). Start with the definitions for the strain measures constant and verify (15-92).
(see Fig. 15-2), 15-15. Using the geometric relations and flexibility matrix for a circular

helix (constant cross section; Y, coincides with the normal direction) developedp=RRll in Sec. 15-11: 
(a) Develop a matrix equation for the displacements at B due to a loading( as as referred to the global frame and applied at 0,. int: See (15-85).
(b) Evaluate u 3 for the loading and geometry shown. 

OS )Oy25Isin -12 11 Prob. 15-15I 
Y3,b 

neglect second-order terms, and note (15-26).
15-6. Summarize the governing equations for restrained torsion. Evaluate

b2 and b3 (see (15-34)) for a symmetrical wide-flange section and a symmetrical
rectangular closed cell. Comment on whether one can neglect these terms. Y2 l15-7. Refer to Example 15-11. Specialize the solution (Equations f) for d 

GB = L >> 1. Verify that (g) reduces to the prismatic solution, (13-57), 
when 0

B -* 0. 
15-8. Consider a member comprising of three segments. Assuming the

flexibility matrices for the segments are known, determine an expression for X3 
the member flexibility matrix in terms of the segmental flexibility matrices. 
Generalize for n segments.

15-9. Discuss how you would apply the numerical integration schemes idescribed in Sec. 14-8 to evaluate Jp, defined by (15-69). P 
15-10. Verify (15-73) and (15--74).
15-11. Determine the fixed end forces for the member shown, using (15-77)

and (15-79). B 

X2 Prob. 15-11 

X2 
P 

A 
oD = r/2 
c =R/2 
G = E/2 

f,'K X3 
A1 

15--16. Determine the reduced member flexibility matrix for no restraintagainst rotation at an interior point P. 
15--17. For the planar member shown, determine E and G corresponding to 

reeases at15-12. Solve Prob. 15-3 using (15-84) and (15-87). Zefor rotation B and d e15-13. Verify (15-90) and (15-91). Apply them to Prob. 15-4. Then specialize for rotation releases at A, B and determine ke. 
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Prob. 15-17 
X2 

'B2 

Part IV
-FjT 

ANALYSIS OF A( rJ Y. 
-

MA\- MEMBER SYSTEM15-18. Determine E and G for-
(a) no restraint against translation in a particular direction at B
(b) no restraint against rotation about a particular axis at B 

Hint: Review Example 15-12. 


