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14-17. Consider the arbitrary two-hinged arch shown. Discuss how you

Prob. 1417

would generate the influence line for the horizontal reaction. Utilize the resuits
contained in Examples 14-10 and 14-11.

15

Engineering Theory of
an Arbitrary Member

15-1. INTRODUCTION; GEOMETRICAL RELATIONS

In the first part of this chapter, we establish the governing equations for a
member whose centroidal axis is an arbitrary space curve. The formulation is
restricted to linear geometry and negligible warping and is referred to as the
engineering theory. Examples illustrating the application of the displacement
and force methods are presented. Next, we outline a restrained warping for-
mulation and apply it to a planar circular member. Lastly, we cast the force
mcthod for the engincering theory in matrix form and develop the member
force-displacement relations which are required for the analysis of a system
of member elements. ‘

The geometrical relations for a member are derived in Chapter 4. For
convenience, we summarize the differentiation formulas here. Figure 15-1
shows the natural and local frames. They are related by

ty =t
= COS it + sin ¢b (a)
I3 = —sin ¢it + cos pb

..
)
|

where ¢ = ¢(s). Differentiating (a) and using the Frenet cquations (4-20),
we obtain :

dt ]
as = ?
- 1(
d_t} " 0 K cos ¢ ~Ksin ¢ | |7,
ds
dr, dp || .
5= |~Kcos¢ 0 R NP (15-1)
di 4 . d¢p -
T K sin ¢ _(T+7i§) 0 | i3

Note that a is skew-symmetric.
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486 ENGINEERING THEORY OF AN ARBITRARY MEMBER CHAP. 15

Centroidal axis

Local reference directions

Fig. 15-1. Natural and local reference frames for a member efement.

The curvilinear coordinatest of a point, say 0, are taken as S and y,, ya.
Letting R be the position vector to Q (see Fig. 15-2),

R = HS) + y202(5) + ¥35(9) (15-2)
and differentiating, we find
(;I; = (L = ya012 — ¥3a03)ly — V3aysl, + Vadasls
zli =1, (15-3)
ay;
R :
0y o
The differential volume at Q is
d(vol) = (1 — y,ay, — y3ay3)dS dy, dy,
(15-4)

)j
= — =21dS dy, dy
<1 R) ay; ays

C,

where y, is the coordinate of @ in the normal (7)) direction and R, = 1/K is
" the radius of curvature. Also,

5R . 1 dcf))

ety = — Val = — —_— A
55 2 Y3das V3 (Rz ds (15-5)
oR . L do

R [y = yyd3 = ), (‘é; + ;(’5‘)

T See Sec. 4-8.

=g i
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and the local vectors at Q are orthogonal when a,; = 0, which requires

a3 =0
Y
_(_lji_ 1

—_ = ——

as = R,

(15-6)

It is reasonable to neglect y/R terms with respect to unity when the member
is thin, ie., when the cross-sectional dimensions are small in comparison to

X
Fig. 15-2. Curvilinear directions.

R.and R,. We express d¢p/dS as

d¢ A
as =0 (‘1‘)

where L is the total arc length and Ad¢ is the total increment in ¢. The non-

orthogonality due to ¢ can be neglected when the member is only slightly
twisted, i.e., when
b A¢p

< 1 (1'5—8)

(15-7)

where b is a typical cross-sectional dimension. In what follows, we will assume

the member is thin, (15-8) is satisfied, and ¢ defines the orientation of the
principal inertia directions.
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Example 15-1
The curvature and torsion for a circular helix are derived in Example 4-5:
’ 11 1

Ke oo
R, R1+ H\?
2R

1 (H\I
TR T\R/R

where R is the radius of the base circle and H is the rise in one full revolution. The helix
is thin when b/R « 1, where b is a typical cross-sectional dimension.

Example 15-2
By definition, a member is planar if ¢ = 0 and the normal direction (i) is an axis of

symmetry for the cross section. We take the centroidal axis to be in the X,;-X, plane
and define the sense of f, according to f, x I3 = [3. The'angle ¢ is constant and equal to
either 0° (£, = 1) or 180° (f, = —n). Only ay, is finite for a planar member:

1

ay3 = a3 =0 (112——1{=1K

Example 15-3
Consider the case where the centroidal axis is straight and ¢ varies linearly with S.
The member is said to be naturally twisted. Only a,; is finite for this case:

a;; =ag; =0

l
dyz = (? = const = k
ds

If bk « 1, we can assume 8%/68 is orthogonal to 7,, f5.

15-2. FORCE-EQUILIBRIUM EQUATIONS

To establish the force-equilibrium equations, we consider the differential
_clement shown in Fig. 15-3. Wc use the same notation as for the planar case.
The vector equilibrium equations follow from the requirement that the resultant

force and moment vectors must vanish:

-‘E]gi +bh=0
_ (15-9)
dM++'“+f x F, =0
dS m 1 + =

We express the force and moment vectors in terms of components referred

to the local frame, .
F,=YFi;,=Ft

M, =Mt
;; e (15-10)
7 =m't
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bds

7 L dFygs
e+ 055

M, +%M: gs
-~ a’]l7+ as o as 2
My + w5 mdS

Fig. 15-3. Differential element for equilibrium analysis

whe = ;
hcrc; F={F,F,F a} etc. The vector derivatives are

dF, JFT
Us = as bt Flat
B, _awe “
o s T g5t Mat
o Lox Py = Faly — Fyify = {0, - F,, Iy}t " (b)
Substituting i - i i ‘ ,
HbriumuetllnugEl tllr(t) 1(115 9), and noting that a7 = —a, lead to the following equi-
dF
I aF +bh =9
dM 0
E——~aM+m+ ~F3s =0
A+F,
¢
dF,
s a1l — a3 F, + by =0
dF,
S Tl —ayFy 4 b, =0. (15~11)
dF,
e t aFy + ay3F, + by =0
dM
a5 aM; — a M, + my =0
aM,
S +aMy — ay3M, + m, — F, =0
dM,

das tanMy + ayM, + my; + Fy, =0

When the member i ] == = q | p
S planar a a 0 i couple
e . s dy3 L E and the equations un
natu dlly mto two systems, one associated with in-p/ane loading (b b ml
1s &2 M3,



490 ENGINEERING THEORY OF AN ARBITRARY MEMBER CHAP. 15

F,, F,, M) and the other with out-of -plane loading {b;, my, m,, F3, M|, M,).
The in-plane equations coincide with (14—-14) when we set a,, = 1/R and the
out-of-plane equations take the form

dF
_gsi -+ b3 = 0
aM 1
?75'_1 — R_M2 +my =0 (15-12)
dM 1
5 t Mt m — Fy =0

15-3. FORCE-DISPLACEMENT RELATIONS—NEGLIGIBLE WARPING
RESTRAINT; PRINCIPLE OF VIRTUAL FORCES

We consider the material to be elastic and define V* as the complementary
energy per unit arc length. Since we are ncglecting warping restraint, V* is a
function only of F and M. We let

ov
e = {e} = {';‘f“}

ap i=1,273 (15-13)
k = {k} = m
and write the one-dimensional principle of virtual forces as
[sdV* dS = [s(e" AF + kT AM)dS = 3 d; AP, (15-14)

AF,

—AM, + %Aﬂu (dzﬁ)
Aﬁ/L +C%AM4(%S>
—AF,

) oG @)
i @) |

[
|
|
I
l
!
|

S AN

Fig. 15-4. Virtual force system.
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N 5 ppy p P S t() € C]elllellt shown 11
ow, we a l the IH]wCI 16 Oi VII tual 1()1‘(26 th h 1

Il

r = .Q. = T 1 1 1
i=Yui i = Wit = equivalent rigid body translation

vector at the centroid

- S : > ¢ (15-15
w Zcojl j = @7t = equivalent rigid body rotation vector )

The virtual system satisfies th ilibri
. : 2 ¢ equilibrium ati -5) 1 1
therefore is statically permissible. Evaluatingczqtjtzlsolgs (159 dentically and

LAP, = | AT, (9%, - a, 4o
Y d; AP, [AF-+ ((}5 + £, x cu>+AM+'%O}dS

0
du
= AFT(V— —au + {—¢ ) [ (d(o ¥
=3 JdS + AMT( 2
is o s am) ds

and substitutine ;
nd substituting in (15-14) lead to the following force-displacement relations:

du )
e = ES — aun + w3
+0()2
. (15-16)
k=9 0
ds
U
B (’)~I7* _duy
L = 8[7; TGS T Malz — ag;us
ov* _du,

ar, =5 + Qg — Ar3lUy — w4

av*  dy
[ ——— '——3-
3 8F3 s +oagsug + dy3Uy + w,

.
cvV* dw,

1 RN —
aMl dS alz(UZ {113(1)3

b — vt dw,
2 oM, ~ s t 41200 — a,30,
~.* :
ky = oV _ dw,

5M3 = —(ZS_ + 5113601 + Ay300,

Once V* is specified tﬁe left-h »
S L, -hand terms can be ex 3
depends on the materia] properties, the particular stfmded. s o

line i imation 7* wi
arly elastic and approximation V* with the complementary energy function



= CHAP. 15
ENGINEERING THEORY OF AN ARBITRARY MEMBER
492
i i -3
for the prismatic case, which is developed in Sec. 12 l
1 7 2
U Ll R M
pr= Pl +gp Pl Yo, 2 264 0 260 1517)

1
L 0 N Mz
+k2M2+—2‘ETI——2M%+k3M3+2EI3 3
" F.5, — FaVa = torsional moment with respect to
My = My % ’ the shear centet

= i > fo
y coordinates of the shear center W ith rcspect
Y2, V3

the centroid

1 0
4=y fJau
kS = L “ sy dA
I,
k() — :.,1, SS y,z(r,? dA
3 IB

Fy My _ Mi (a)
011 = 7 + 72 Y3 I, Y2
1 - cneineering theory,
stribution predicted by the cngineering
and using the shear Stress distribution p o

- ol
oy =01 T 01 N
al distribution due to My apd q 1S‘ tvl:z
In addition to thesc approximations,

R .
ature, i.e., We arc considering the membc?
: for a linearly elastic

where ¢' is the anrestrained torsion

flexural distribution dueﬂto F 2{, Fé.V

i ect of cu ‘

so neglecting the efiec ature, ae con
?(l;ebil thin gThe approximate force -displacement relati

thin curve member are

Fy _ du @y Uy — 1343

e, =€) + B @S
Cey = é%i; + %{}73 = %’Sl + gty — @23l T W3
ey = —C%;—s - %}'Tz = c_i?g F ayaly + Gz3llz T @2 (1515)
ky = kS + FMé = d—(i)s-z— + g0y — G233
ky = kg + AE/I‘I%, = %%3 + 30y + G2302

7
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When the member is planar, the shear center is on the Y, axist and there is
no coupling between in-plane (u,, u,, w;) and out-of-plane (u;, w;, w,) dis-
placements. That is, an out-of-plane loading will produce only out-of-plane

displacements. The approximate force-displacement relations for out-of-plane
deformation for a thin planar member are

F,y My - duy

“=Ga, G Tas T
MT d())l ]
= ——— I ———— e 1 "1
“TGr T ds TR (15-19)
M dow 1
ky = kg + -2 =2 4
=Rt e Tus TR

where My = M, — J,F;. Note that flexurc and twist are coupled, due to the
curvature, even when the shear center coincides with the centroid.

15-4. DISPLACEMENT METHOD—CIRCULAR PLANAR MEMBER

Since the displacement method involves intcgrating the governing differential
equations, its application is restricted to simple geometries. In what follows,
we apply the displacement method to a circular planar member subjected to
out-of -plane loading. We suppose the cross section is constant and the shear
center coincides with the centroid. It is convenient to take the polar angle 6

as the independent variable. The governing equations are summarized below
and the notation is defined in Fig. 15-5.

Equilibrium Equations (scc (15-12))

dF,
~p + Rbs =0
M
76”1 —~ M, + Rmy =0 (a)
d
»—dMOA%+M1 + Rm, — RF; =0

Force-Displacement Relations (see (15-19))

_Fs 1 du3+
=G4 R~
M, 1 [dw,
kl“EJ"”R‘(Tz’é‘"wz) ®)
M 1 [fdw
"2:"'3%7'2‘:‘1?(7172““1)

1 The shear center axis lies in the plane containing the centroidal axis, which, by definition, is

a plane of symmetry for the cross section.
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Boundary Conditions
Fy or Uy
M, or wy » prescribed at each end (pts. 4, B) ©

M, or w;

The solution of the equilibrium equations is quite straightforward. We
integrate the first equation directly:

Fy=Cy — Ri,b;d0 (15-20)

The remaining two equations can be transformed to
%‘gﬁ + M, =R (F3 — oy — f%) ()
M, = f%l + Rm, ©

We solve (d) for M and determinc M, from (e). The resulting expressions are

= Cysind + M,
M, = C,cos0 + C, l(p (15-21)

[ ¥
M, = —-C,sin0+ Cycos 8 +21‘§M”’ + Ry

where M, , is the particular solution of (d).

X

Centroidal axis lies in the X; —X, plane,
Y3,Y3 are axes of symmetry,

X

Fig. 15-5. Notation for circular member.
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The solution of the force-displacement relations Is also straightforward.
First, we transform {(b) to

% + w, = RKS — g} m, + EI%(I + )M,
W, = % - %—1— , (H
d
?L:; = gg:— ~ R,
where ¢, is a dimensioriless parameter,
¢ = %}2 (15-22)

which is an indicator for torsional deformation. Solving the first equation for

@, and then determining w, and u3 from the second and third equations lead
to

W12C4C056+C5Sing+(l)l,p
. d RM
@y = —Cysin 0 + C, c039+90~w1,,,»»§]—1- (15-23)
RFy  RM, '
Uy == — —— L |
Uy C6 Rwl+\£[GA3+ GJ (9

where w, , is the particular solution for (.
The complete solution involves six integration constants which are deter-

mincd by enforcing the boundary conditions. The following examples illustrate
the application of the above equations.

Example 154

The member shown is fixed at 4 and subjected to a uniform distributed loading. Taking

Fig. E15-4
A b3 = const

Ip

by = const in (15-20), we obtam

Fy = C, — Rb,0 (a)
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The equation for M, reduces to
M
d()Z‘ + M, = RF;y = RC, — R?b,0 (b)
Then,
M, , = RF; = RC; — R?b40 {©
and the solution for M, and M, follows from (15-21),
M, =C,co80 + Cysin 0 + RF, @
M, = —C,sin + C;cos § — R?b,
The boundary conditions at B require
Fy=M =M,=0 at 0 = Oy
y
Cy = Rb,04 (e)
C, = —R?;sinf,
Cy = R%b; cos By
Replacing 5 — 9 by #, the final solution is
Fy = Rbyy
M, = R*bs[y — sin ] )

i

M, = —R*b4[1 — cos 1]

Example 15-5

The force system due to the end action, Ip,, can be determined by applying the equi-
librium conditions directly to the segment shown in Fig. E15-5A. This leads to

Fs = FBJ
M, = Fg3R(1 — cosy) = FpsR[1 — cos(0 ~ 0)] (a)
M, = ~FyRsing = —FpRsin(0 ~ 0)

We suppose there is no initial deformation. Using (a), the equation for «; becomes

d*o, _ —R*Fy

—d—éi' + wy = —“I'EI";— (1 -+ C,)Sil’l(();; - 9) : (b)
The particular solution of (b) is
R*F
Wy, = — 35;23(1 + ¢,) [0 cos(0p —~ 6] (©

Using the above results and specializing (15-23) for this support condition lead to the
following expressions for the displacements:

Wy = @4y cOS O + Tyy sin O

R?.F 1t — . t ‘

EI, 2

SEC. 15-4. CIRCULAR PLANAR MEMBER 497

. - R*F
W2 = =Wy 80 + Hyyco80 + 283 —1
42 T c[—1 + cos 9]

LAY . L+ ¢ )
( 7 ——) sin g sin § — (T) 0 sin(6, — 6)} (d)

Uy = Ug3 + RD (1 — cos 0) — Rasy, sin 0
N R3Fp, 1—¢ 7.
_%EIZ T cos Oy ~ c,J sin 0 — ¢, sin B,

IL+e¢ A
+0 " cos(fy — £l i
[ 3 cos(fy — 0) + ¢, + ET(;REJ + ¢ sin(fy — 0)}

Terms involving By, Map aund Ty, define t

he rigid body di
movement. Also, terms mnvolving ¢, y S oraents due wtons oo

are due to twist deformation. The rotations and

Fig. E15-5A

translation at B are listed below:

Dp1 = Dy €08 Oy + @4, sin 0,

R*Fp, (T1 - ¢
3 " . 1+ ¢
7 I {[—T— cos 0, + c,] sin O — - ; & 0,,}

gy = “CT)/“ sin 03 + CT)AZ €0s 03
R2Fy, I —g
+ -“E~[;— {C:[COS 0y — 1] - _‘"2_‘“'£ sin? 08}
Ups = U3 + Riqy(1 ~ cos Oy) — R4, sin Oy

N R3F,, l—q .
I e B sin 0y — 2¢, sin 6,

13 Er
S O
s [2 247 GA3R2]}

©
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the various deformation terms, wWe consider

; i ive i tance of o
To investigate the relative importa o The o sectional properties are +

the rectangular cross section shown in Fig.

L 61 61
A, 5A Sdyds
J= §d3 & (for d, < d3) )
d, &3
27
Then, I, E [i (ﬁ)z]
“«=TT T Glak\d, ©
= elle) 1)
GA,R* ~ G|10\d, R
The values of 4k and ¢, for dyfd, =1,2,3 and v = 0.3 ate tabulated below:
¢ = ELJGJ
dyjd, 4k {for v = 0.3)
1 1.69 1.54
2 275 3.8
3 3.16 74
Fig. E15-58

R
—

I —

Y3

. . 113
g -oss section is developed in Sec. 11-3.
+ The torsional constant for a rectangular cross sec
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Since (d,/R)* « 1, we see that it is reasonable to neglect transverse shear deformation. In
general, we cannot neglect twist deformation when the member is not shallow. For the
shallow case, we can neglect ¢, in the expressions for wg;, Ups.

Example 15-6

Consider a closed circular ring (Fig. E15-6) subjected to a uniformly distributed twisting
moment. From symmetry, F3 = 0and M, M, are constant. Then, using (15-16), we find

M =0 @
M, = Rmy
The displacements follow from (15-18)
Uy =, =0
; b
RM, Rm, ()
O 2= mmm T e
‘" EI,  El
Xy Fig. E15-6
b3y =my =0
R my = const
Xy

15-5. FORCE METHOD—EXAMPLES

In this section, we illustrate the application of the principle of virtual forces
to curved members. The steps involved are the same as for the prismatic or
planar case and therefore we will not reiterate them here. We restrict this
discussion to the case where the material is linearly elastic, the member is thin
and slightly twisted, and warping is neglected. The general form of the
expression for the displacement at an arbitrary point and the compatibility
equations corresponding to these restrictions (see (15-14), (15~17)) follow.
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Displacement at Point Q
d 04 PV Fog (22 ) Faa
sz ﬁZRi,Qdi—*' j; 31+XE 1.¢ GAZ )
Fs <MT> M (15-24)
* <GA3) we T \GJ ;
M Q 4 —>| M3 o |dS
+ (k% + 1’1%) M, o+ (ka + EI}) 3,4
Compatibility Equations |
ZioZyo o lr = force redundants (a)
FJ:FI-O ‘+‘ 2 Fj,kzk

k=1
" ; b
Mj:Mj'o'*“ ZMJ',"’Z’C ()

k=1

R,’ = Ri,O + Z l{i'kzk

k=1

3 fuili = Ay (k=12... .7 {15-25)
=
where .

Fy Fa t —— Fa jFa

1 L
fii= = L[ZEFM-FL,:C-%- GA, o

1
~*]“"M2,jM2,k + E‘f;M3’jM3’k]dS
2 3

b s G4, " 3 ’
i M3j, 0

Mr,o M3.o kS + —4«) M, ] ds
‘*‘( C:}O>M'r,k+(k(2)+ EIZ>M2,k+<<3 El, 3k

MT=M1+}’3F2".V2F3 | » .
The reduced form for out-of-plane deformation is obtained by setting Iy =

FZ:M:),:G(’?“"]C%:O.

-

wn below. The centroidal axis 1s straight but.;he;
orientations of the principal inertia axes vary. We ta}<e X1 tg COlniKtiﬁ ;vllgz 2:1‘21 c(cpr:)tir;)tl :).
is and X, X, to coincide with the principal inertia duegtxor}s at
?l‘xk:: ;?inci;;l inertia directions are defined by the unit vectors &, f3.
i, = cos ¢i, + sin i3
iy = —sin @i, + cos ¢is
=0 at x, =0

Example 15-7

Consider the nonprismatic member sho

I

(@)
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Now, we consider the problem of determining the translations of the centroid at B due
to the loading shown in Fig. E15~7A. Itis convenient to work with translation components
(vga, Up3) referred to the basic frame, ie., the X ,, X4 directions. We suppose that the shear

Fig. E15-7A

1§ Principal inertia direction

Centroid

Centroidal axis Py

center coincides with the centroid and transverse shear deformation is negligible. Spe-
cializing (15--24), and noting that M, = 0 for a transverse load applied at the centroid,
the displacement expression reduces to

L (/1 [
do = 'EL (T;MZMz,Q + EMsMg,Q) dx, (®)

Force Systems
The moment vectors acting on a positive cross section due to P,, P; applied at B (Fig,
E15-7B) are B
(A_/{)Pz = Pyl — x4); ©
(M)p, = —P3(L — x4,
To find M,, M;, we must determine the components of M with respect to the local frame.
These follow from Fig. E15-7C:
For P,,
M, = P,(L — x()sin ¢
My = Py(L — x()cos ¢
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Fig. E15-7B

-
Paiy

B
Pz(L '_XI)E i
—Py(L =32
Fig. E15-7C
B
My
__-.-PZ(L—'M)";
Msts —py(L~x1)E2
For P, M, = —P3(L — x;)c08 ¢ (e)

M, +Py(L — x_\)situb

i

Determination of vg, Due 1o P,

sing (d) in (b)
, corresponds 10 p,=+1 Introducing (d) in (

The virtual-force system for vp

we obtain P, L [sin? (b + ﬂ](L — X1)2 dx, (f)
Ug2 = p o I, I

Determination of Up3 Duc to P
— +1. Using (¢) leads to

The virtual-force systera for vgs3 corresponds to P3

Py (ML, L (L — x;)? sin ¢ cos ¢ dx ®
Vp3y = _E I, I

0

I
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Example 15-8
We rework Example 15-6 with the force method. Using symmetry, we see that
M =0
M, = mR (a)

Suppose the rotation @ in the direction of m, is desired. The virtual loading for this
displacement is m; = +1. Starting with

M
w; Amy dS = o —=AM, dS (b)
EI, :
and substituting {for M,, we obtain
m R?
Wy = EI, {c)

Example 15-9

Consider the closed ring shown. Ounly M| and M, arc finite for this loading. Also, the
behavior is symmetrical with respect to X, and we have to analyze only one half the ring.

Fig. E15~9

X T

* ;

WAy AR
T t My
: N
R ¢ My
A e 4 x

I, J are constant

We take the torsional moment at 6 = 0 as the force redundant. The moment distributions
are

T .
M, = ~2—sin9+ Zycosl@ =M o+ Z M,

T
Mz=?cos€~leinG'zMzYo-kZIML1 —
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Specializing (15-25) for this problem,
fuZy =M
w2 M, oM M, M
A = —2R oM Mo oMo s g b
: J-n/z[ G £, ®)
/2 M2 MZ
= 2R LT IR T
Ju L,z[ 6/ " EL
and then substituting for M, M,
A (! : 6 d
= —RT —_ in 0 o
1 j—n/z (GJ E12> sin 6 cos 0 4
RT /1 1 o (¢)
= e — = | [5in? 0]%2, =
2 (GJ EIZ) Lsin® 01

and it follows that Z; = 0. We could have arrived at this result by noting that the behavior
is also symmetrical with respect to X,. This requires M, to be an even function of 0.
The virtual-force system for w4, is T = + 1. Using (15-24) and (a) leads to

=2 /T sin 0\ sin 0 T cos 0\ cos 0
- 2o oibaatiel Dootd I
2ou ZRJ.,",ZK 261) 2 +( 21:‘12) 3 ]'0

) l )
_RTRf1 1
Par =161 TE

Example 15-10

We analyze the planar circular member shown in Fig. E15~10A. The loading is out-of-
plane, and only F3, M, and M, are finite. To simplify the algebra, we consider the shear
center to coincide with the centroid and neglect transverse shear deformation. It is con-
venient to take the reaction at B as the force redundant.

X2 Fig. E15-10A

/

~Pi3  (Displacement restraint
C in X3 direction at B)

0c

Op

Xy
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Primary Structure
The primary structure is defined in Fig. E15-10B:
51 = _“FAs R, = M, Ry = -M,,
L= Uy dy = @4 dy = @y (a)
R, = Z, = Fgs dy, = g,

Fig. E15-10B

1"‘3 yUs

X
Force Analyses
The force solutions for the loadings shown in Fig. E15-10C are:
For P: '
Fyo=+pP
M, o = PR[1 ~ cos(iy — nq)]
M‘Z o= —PRsin(y — ) (b)
Forz, = +1; eSS
Py = +1
M, =R - cos 1) (c)

Ms1 = ~Rsiny
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Fig. E15-10C

: d
" Dfil.+‘&9;£}dq @
fu= GJ El,

4 tn [M, oMj,1 (0 Mfﬁ)M ]dﬂ
BRI LR 2,1
A‘_,_ZR“Hi—'Rj‘ Oc{ o7 2 EIl,
=1

- ¥
op ‘
i A wi expressions
Substituting for the inter nal force and recactions, we obtain the following €Xp

for fy, and Ay: |
R }—f}& 6, — 2c sin 8 — Lif') sin 0p cos GB]
fu= EE 5 B 7
A, = Tgy — Ua3 + ROu2 sin 0y — Raiqy(1 — cos Bg)
1 k

,%mjhok%mw3~mw
0p—bc

_ {"1‘2_3“ [c {O [1 + %cos(@s - Gc)] — sin @ — sin Oc (©)

ElL

1 .
+ sin 8 cos O, — 5 cos Oy sin Gc}

+ l {GC cos(@p — 0c) — cos fg sin Gc}]
2

El,

“=Gr

i : le 15-5.
Note that we could have determined A, and fy; using the results of Examp
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15-6. RESTRAINED WARPING FORMULATION

In what follows, we consider the member to be thin and slightly twisted.
Referring to Fig. 15-2, these restrictions lead to

dR
as =
d(vol.) ~ dS dy, dy,

i

(15-26)

Therefore, in analyzing the strain at Q (S, y,, v3), we can treat the differential

line elements as if they were orthogonal. The approach followed for the pris-

matic case is also applicable here. One has only to work with stress and strain

measures referred to the local frame (£, 7,, I5) rather than the global frame.
Our formulation is based on Reissner’s principle (13--33):

3[{ffe™e — bTa — V*)d(vol) — [fpTia d(surface area)] = 0
o, § = independent quantities .
& = g(@) (a)
p, b = prescribed forces
V* = V*) = complementary energy deunsity

i

1

We introduce expansions for #, ¢ in terms of one-dimensional displacement
and force measures (functions of S) and integrate over the cross section. The
force-equilibrium equations follow from the stationary requirement with respect
to displacement measures.

We start with the strain measures, € = {&(, ¥12, y13}. One can show thatt

. O

& = tl"é?
. on |, o0

Piz A LT A0 + iy 25 (15-27)
; o L7 ot

i Byt b By

Y13 1 374 3 28

where i is the displacement vector for Q (S, y,, v,). We use the same displace-
ment expansion as for the prismatic case:

=

U = ﬁltl + l’zztz + ﬁ3i3

U = uy + 0¥3 ~ ways + fo
iy = Uy — o(y3 — ¥a) (15-28)
s = Uz + 0y, — 72)
= D V2, ¥3)
Expanding
{fo"e dy, dy; = ([[(6,18( + 042712 + 013713)dy2 dys (a)

+ See Prob. 15-5.
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leads to
HGTS dyZ dy3 = Flel -+ erz + F3e3 -+ MTkl +‘M2k2
+ Mk, + Mif + Myf
€1, €5, ..., ks (defined by (15-16)) (15-29)

M¢ = ”01105 dy, dy,
Mg = “[0’12(4?,2 +ay,P) + 015(d, 3 + ar3P)]dy, dy,

The equilibrium equations consist of (15-11) and the equation due to warping

restraint,
Mg = M, , (15-30)

which can be interpreted as the stress equilibrium equation for the ¢, direction

weighted with respect to ¢.
Now, we use the stress expansion developed for the prismatic case. The

derivation is discussed in Sec. 13-5, so we only list the essential results here.
The normal stress is cxpressed as’

F, M, M, M,
= = Sy, — e s - 15-31
I11 = 7 + i V3 T, Yz + i, b ( )
where ¢ = — @i, the St. Venant warping function referred to the shear center.
We write the transverse shear stress distribution as
g = (//2F2 + IIJBF?: + 'ﬁu ";' + l/’v]\/[':F (15'32)

My = M% + My

(fsare functions of y,, y3.) The corresponding complementary energy function

1S

1 (FR MR MR\ 1 (M2
V= Jivedys dys =§E<‘Z‘*‘1§"*“f? EETAVA

1 (F} 2F,F; F2 1 , .
(22 2 D) (MY + C (M 15-33
+2G<A2+ ot g0 + o) 539

1 .
+ E(Fz}’sr + F3y20M7%

Also, (15-32) satisfies (see{13~50))
(0120, 2 + 013¢ 3)dy, dys = My (b)

Finally, noting (b), we express My as
MR = (1 + br)Ma‘ + b2F2 + bgF}

where the b’s involve the curvature (a5, a;5). If the cross section is symmetrical,

(15-34)

A23 = Var = Vor = br =0 (C)

o L

R AT
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and b;, b5 are J ili i
a thisz Ca;e to cf:]ietc; sdf-le)thbratmg stress distributions.’r It is reasonabl
b & t};e ; 2 ¥ b3 = 0 and compute the shear coefficients (4 Ae,
primary flexural shear stress distributions >4

EXpandlng the StathIlaI y eq reme W “l ie, [)(}Ct to i()] ce measut €S yleld%
S

)

e, = i?j ko = av* ov# ov
oy P Tar, ST fe=gie
av* N ’
&+ by f = or*
Yo, et byf = T (15-35)
ky = E_Vi ky + (1 ov*
0 M;_ 1 ( + br,)f = .8—.-_..’.

wherfs €1, €, ..., ks are define .
warping relations are (15-18).

Example 15-11 MM

To investigate the i
e influence of warping r i
havi _ arping restraint, we conside ar ci
ng a doubly symmetricql cross section (Fig. F15—] 1) cI'unpcrclaalt)lc?rrlzi . L(I-]rcul(?r ntl)cmber
, Cla : end and subjected

d by (15-16). The corresponding unrestrained

Fig. E15-11

@

T See Prob. 15-6,
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Force-Displacement Relations

El, (dw
M, = ElLk, = ~——2< =2 4 an)

R \ da
EJ,df »
M, = Zre Y
R d6 ®)
k L (o 1) )
f=—k == AT 2
. MY = GJk,
Boundary Conditions
g = o, =w,=f=0 @
0=0, M, =M
: Mgy =0
M, =0

One can write the equilibrium solution directly from the sketch:
M, = Mcos(@ — 0) M, = Msin(@; — 0) (d)

We substitute for the moments in the force-displacement relations.

. EJd, d*ky _
M1 = CIJkl - '*RT ‘dz}‘z‘ =M COS(HB 6)
1 (dw )
o = E('zzf - ) ©

1 (dew, M .
=2 = e sin(B, — 0
k, R(d@ + cul) i, sin(0g )

and solve for k,, and then w,. The resulting expressions are

GJ - ElL,
2 1 == T e
= El, 4 = RA G e ‘.
ky, = 57 {cos(@5 — 6) — cos O5[cosh 20 — sinh 20 tanh 7051}
GJ + -I%; ‘
1y
Wy 1 .
= —<6 cos(fp —- 0) — sm@cos@,,}
RM 2{ 05
EL,)
¢, 1 1 1] . 0 0
+ 7N 50005(03 - 0) + T3 sin 0 cos Og
(l -+ 7) [ +A?
- M—B [sinh 70 — tanh 205 cosh 20 + cos 0 tanh Z0]
1+ 72

Warping restraint is neglected by setting E, = 0 and 4 = .
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The rotation at B is

@ 1 .
<~R]\17§ = 5(03 = sin Og cos 0,) + ¢K
El,
" 1 1 1 ®
K = =05 + sin O cos B, — 5| = = cos? §; tanh 70,
I (2 1 2 L+ 1 .
1+ e [+ =
If we set
L ~ L2
R=- ;=2
0 ", )

and let 05—0, (g) reduces to (13-57), the prismatic solution. The influence of warping
restraint depends on 2 and 6, Values of K vs. 7 for 0y = n/4, 7/2 are tabulated below:

K 1 T
—I;,:——*~—-1+I for Op = =
=2
s 7[7:
K1 -2~—-1+ ” { 1 tanh — i '
K”*l—i—l Tit 1+T£l+l i fmgB:Z v
7202 2 7
1
Ky, = »2~(93 + sin g cos 0y)
K/K,,
2 forlp =n/4 0= n2
1 0.179 0.500
5 0.786 0.96
10 0.907 0.99
We showed in Chapter 13 that
t
Ai=0 (75) (open scction)
) .
()

/=0 (%) (clos¢d section)

whete ¢ is the wall thickness and h is a depth measure. Since 7 = R/ and R/h > 1 for
a thin curved member, the influence of warping restraint is not as significant as for the
prismatic case.

15-7. MEMBER FORCE-DISPLACEMENT RELATIONS—COMPLETE
END RESTRAINT ’

In the analysis of a member system, one needs the relations between the forces
and displacements at the ends of the member. For a truss, these equations
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reduce to a single relation between the bar force and the elongation. Matrix
notation is particularly convenient for this derivation so we start by expressing
the principle of virtual forces and the complementary energy density in terms
of generalized force and deformation matrices.

Referring back to Sec. 15-3, we define

e ar; ¥ F;
gﬁ - = ——:_'L G = {—— = —- —
{k} avx 7 {NI} {M J} (15-36)
and write the principle of virtual forces as
[sdV*dS = |5 8T AF dS = 4" AP (15-37)

Note that we are working with M, not M. We use the complementary energy
function for a thin slightly twisted member with negligible warping restraint
(ie, (15-17)). With the above notation,

Eq. (15-17) = 7* = (8 F + L5 g7

where B
gf gfm
g =|"F 15-38
Efm | En ] ( )
1 -
—_ 0
AE 0
- L 73 Va¥s
&= 4,6 TGy GJ
S n
e 4,6 GJ
r 7 M1 7
0 0 0 o7 0 0
|7 - L
gfm - GJ 0 0 En = EIZ 0
V2 1
G 0 0 | LSym il |
The force-deformation relation implied by (15-38) is
& =&+ gF (15-39)

We will use these general expressions for planar and out-of-plane deformation
as well as for the arbitrary case. One has only to delete the rows and columns

7
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of g corresponding to the zero force measures. For example
T = {F,F,M;}

V=10
[ 1 L]
ag 010
g=lo L |
S A0 | 0 (15-40)
A6 [
1
0 o0 .
A | BT

for planar loading applied to a planar member.
Finally, we substitute for & in (15~37) and distingui i
» we subs : stinguish between prescribed and
unknown displacements. The principle of virtual forces expands to

0 7772%
Is(6° + g7\ A ds — g7 AR = d7T AP (15-41)

;x;l;;a;zsﬁ dcontatin.s pres;(:ribed displacements and R are the corresponding re

; ¢ contains unknown displacements and AP are forces correspondi .

to d: The v1rtua1~force‘systcm (AP, AR, AZ) must satisfy the force-equﬁ(i)blr?gln%
equations, (1.5«1 1). Tt is more convenient to encrate & and R with the equili

bmﬁxm equations for a finite scgment rather than attempt to solve (15«1(%m :
(.or?sxder thc;: arbitrary member shown in Fig. 15-6. Bach end is compl g.]

restrained against displacement. The positive sense of S is from A tor::zZriIeBy

X
B
- A
i3n 3
- Xy
i 2
T Basic member frame

X7

Fig. 15-6. Arbitrary curved member.
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We suppose the geometry of the member is defined with respcht totha tf)asm
i d take the end forces at B as the force
frame which we refer to as frame n, an 4 :
redundants. Then, the primary structure consists of the member cantilevered
from A. ‘ ‘
Throughout the remaining portion of the chaptgr, we will employ the no?astm;\l
for force and displacement transformations that is deve;op;:d in Sha;itmwilen
i i : tity referred to the basic frame.
superscript n is used to denote a quan the basi
nopframepsuperscript is used, it is understood the quantity is referred to :he
local frame. For example, &, represents the internal force matrix aft pomT h%
3 te that &, acts on the positive face.
referred to the local fi ame at Q. No : 0 : five face. The
force matrix for the negative face is — %o Theend f_o‘rces at A,
by F*%, &% and are related to the internal force matrices by

== +,_9/-;73 = ,‘%b"f/‘;‘g

75 (15-42)
Fhy= ~Fh= —A"F
Also, the displacement matrix at point Q is written as %,,.
u
= 5-43
Uy = {uy, Uy, s | @ 0, 03} = {m}g (15-43)

i n, U cribed.
“or this system, 4’ and %% are prescribe . ‘ ' .
rOWe det}érmin’e 07/11’}, for the primary structure, i.c. the ’membez Cantlleveé ed
from A, due to displacement of 4, temperature, loads applied a{ong the mcr? c‘r,
and thﬁ; end forces at B and then cquate it to the actual #%. The virtual-force

system is

AP = A-gf B B
AR = AF " = ~ A%, AT ~ (a)
AF o = TG, ATy = RYX 50 AT
Also, B )
(! = U )
d = Uy

Introducing (a), (b) in (15-41), we obtain
G n n (S» g \I'( @0 y T VS
ATy = OFy [@ 0 + | (T )ES + 57 o)
v ©
S . N
Uy = Tyl + | T 76 + 2T S

Next, we express &, as

Fo=Fgo+ THFh (15-44)

where &, , is the internal force matrix at Q due to tl_me prescribef‘:‘l e;;ten;al
loading a%plied to the member cantilevered [rom A. Finally, substituting for
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& leads to

@ln — %'n, Tagpyn [SB a7 nq, Ty @0 T
B = A gg WUy + T8 (S0 + 80F . 0)dS
w0 (15-45)
+ USA (75 807 15)dS |77

The first term is due to rigid body motion of the member about 4 whereas
the second and third terms are due to deformation of the member. We define

¥ as the member deformation matrix :
V= q{Z’acmal - qlllrll (15“46)

duc 1o tigid body
motion about 4

By definition, ¥ ™ is equal to the sum of the second and third terms in (15-45).
We also define

SD ol . o, . .
1o = L T 56 (B8 + 8oF g, 0MdS = initial deformation matrix
A

: (15-47)
| - L T 55 T80T ¥)dS = member flexibility matrix
and (15-45) reduces to
= Uy — U = 9y 4 g (15-48)

Equation (15-48) is the force-displacement relation for an arbitrary member
with complete end restraint. It is analogous to the force-elongation relation
for the ideal truss clement that we developed in Chapter 6.

The member flexibility matrix, f*, is a narural property of the member since
it depends only on the geometry and material properties. For simple members
such as a prismatic member or a planar circular member with constant cross
section, one can obtain the explicit form of f. When the geometry is complex,
one must generally resort to numerical intcgration such as described in Sec.
14-8 in order to determine { and #° o- This problem is discussed in the next
section. Finally, we point out that the general definitions of f, ¥~ o are also valid
for in-plane or out-of-plane deformation of a planar member. One simply has
to use the appropriate forms for the various matrices.

Up to this point, we have considered only a simple member. Now suppose
the actual member consists of a set of members rigidly connected to cach other
and the flexibility matrix for each member is known. We can obtain the total
flexibility matrix by compounding the flexibility matrices for the individual
elements. To illustrate the procedure, we consider two members, A4, and
Ay B, shown in Fig. 15~7.

The matrix, ", contains the displacements at B due (o the end forces at B
with A4 fixed:

Uy = {"F, (a)
Now, suppose point Ay isfixed. Then, the displacement at B due to the deforma-
tion of member 4,B is

. o?/’lzi{membet = fjilBg_;;lB (b)
A,B
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where % p is the flexibility matrix for member 4B referred to frame n. The
1 .
additional displacement at B due to movement of 4, is

yn. T C
(gll;})displaccmem at Aq = ’g’h’I’)Axozlﬁil ( )

It remains to determine %, .

X4 y
1
A
Xy B
X/

Fig. 15—-7. Segmented member.

The force system at A due to the end forces at B is given by
Fh = LT (@)
and the resulting deformation of member AA, is
dll:;,’member a4, = f'j4Al“97¢1, = f:'qA,,(' .%A,ﬁ'lli (e)

Finally, we have

5 = (s + X400, X50)Th = 7} (15-49)
The end forces at B are found by inverting (15-48):
k* = (f")" ' = member stiffness matrix
T =0 — 1) (15-50)

=~k + k" — Kyl

The first term is due to external load applied alop g the member and represents
the initial (or fixed-end) forces at B. For convenience, let

Fhi= —k"t7 (15-51)

The second and third terms are the end forces at B Que to end displacement' at
B, A. Once &% is known, we can evaluate the interior force matrix at a point
L A

using (15-44), _
g( g;Q = eo/-';Q’O + e&/"ll;qQﬁgB (a)
Thus, the analysis of a completely restrained meml?er reduces to a set o{ matrix
multi,plications once the member stiffness and initial deformation matrices are
established.

B et e ey e e 1
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When analyzing a system of members by the displacement method, expres-
sions for the end forces in terms of the end displacements are required. In
addition to (15-50), we need an expression for 7% Now,

Fh= ~Fh = ~Fh o — AT (b)

Substituting for Z7%, leads to

DT IR ey
y;,i: _gf‘-z‘om ‘gvA'g:;g,i

where 577 ; represents the initial end forces. In order to express the equations
in a more compact form, we let :

ki = K"

‘kn — ___kngz-n, T
fA n TBA orn n (15—53)
ap = (kp)' = —: Bk

Kis = X5.k"2 WA = — X pakpa

With this notation, the force-displacement relations simplify to
Th = Fhi + Kyl + Ky 0
= = (15-54)

Ta = Fhi+ Ky + Ky

Notc that only k" and Z'p4 are required in order to cvaluate ki, and k7,

15-8. GENERATION OF MEMBER MATRICES

The member flexibility matrix is defined by

S el Hy
fn — J‘S B(’y Bgz. TgQ gﬂ&)ds (a)
Noting that “ '
T = R""Thg (b)

 and letting

n

80

I

R Tg o R (15-55)

we can write

s
= [ @l e ases (15-56)
If numerical integration is used, the values of the integral at intermediate points
along the centroidal axis as well as the total integral can be determined in the
same operation. This is desirable since, as we shall show later, the intermediate
values can be utilized to evaluate the initial deformation matrix.
We consider next the initial deformation matrix:

Sp .
¥ = LA T8 + 8oF g, o)dS (©)

We transform &, g, and % from the local frame to the basic frame, using (15-55)
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and
F o= RFY ()
&y = R T(O‘”‘Q
The contributions of temperature and external load are
S
F Bemp. = LB (Esd R TEY)dS (15-57)
A
s
P Y ions = L,, @5 T e T b, oS (15-58)

Suppose there is an external force system applied at an intermediate point,
say C. Let P, T¢ denote the force and moment matrices and 2 the total

force matrix:
Pc
Pe = 15-59
e~} (15-59

Normally, the external force quantities are referred to the basic frame for the
member, i.e., frame n. The initial force matrix at @ due to this loading is
given by

Fho=XtoPt  Sa< Sg < Sc (15-60)
3’76,0=0 SC gSQ \<\S3
Writing
Xo = XpoX i ()
and introducing the above relations in (15-59) result in
s g \ ol "
e = [ [ @3 T DS | (X7 f)
Sa

The bracketed term is an intermediate value of the integral defining . Finally,
we let

Sp n, T ott gyn
Jp = LA (X0 8o X po)dS (15-61)
With this notation, (f) simplifies to
(Vo = JH )P (15-62)
Also,
"= Jp (15-63)

The determination of the member flexibility matrix reduces to evaluating
J defined by (15-61). One can work with unpartitioned matrices, i.e., Z, g,
but it is more convenient to express the integrand in partitioned form. The
partitioning is consistent with the partitioning of & into ¥, M. Since the
formulation is applicable for arbitrary deformation, it is desirable to maintain
this generality when expanding &, # in partitioned form. Thercfore, we define
o as the row order of F and f8 as the row order of M.

F (xx 1)
G o= —
& {M} D (15-64)

Continuing, we partition &, & and g symmetrically, consistent with (15-64),
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and simplify the notation somewhat:

L, o
xn, = | 2l
e [x';,g { Iﬁ]

(B x2)

oxw (15-65)
g — | R | 0
0 | R,
B xf)
Gy
g) g1 812
g5 | gb)

B xp)

The translation and rotation transformation matrices are developed in Secs.
5—-1,5-2 and the form of g for a thin curved member is given by (15--38).

The local flexibility matrix g is defined by (15-55). Using the above notation
the expressions for the submatrices are ,

gl = Rjg; R,
g2 = Rig:R, (15-66)

. g2, = R/fgzzR/.«
Note that g,, = 0 and g,,, g,, are diagonal matrices when the shear center

coincides with the centroid. If, in addition, axial and shcar deformation are
neglected, g, = 0.

We let
(\:i’x @) l (o % B)
V= X5 TG = [~?~—‘r~f’-’—‘-?—] (15-67)
T

The submatrices follow from (15-65):
Yy =gl + g’fzx;sg + (g12X50)" + X5 25:X50
Vi =gl + Xjg'gss (15-68)

Yy = g5,

Next, we partition J consistent with \s:

jaXaz) | j«xm
Sp
J., = ds = [ ShAL | _th12
! LA v P ; Jp 22 (15-69)
- )
JP, ij :JS “’ij dS
Finally, we partition f":
(anxa) | (arf : B)
fro=|-iL b Cl2 g
[f';-zf BN (15-70)
”S(,}XB)
f,n] = JB ij = JSj \,I‘J CIS
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The initial deformation matrix due to an arbitrary loading at point C can be
determined with (15-62). Its partitioned form is

(7 0 = JACRPE

@xa) ' @xf _ (ax1)

{ Vg} - [J{lg,gi‘:’s_l_zz,‘ég_?r_{ggﬂ {P_C } (15-71)
9 JC, 12 JC, 22XBC | JC 22 TC
xp) (B=1)

where v§, 05 denote the initial translation and rotation matrices.
The member stiffness matrix, k", is obtained by inverting f". We write

(a % a} | (oz>;/3)
k" = ()~ = [k"l’l -:rij—] (15-72)
NET)

One can easily show that (we drop the frame superscript on {}; for convenience)
o= (fyy — £, )™
T2 = —Kiifiofs) (15-73)
K, = 2,/ (I; — f1kY,)
Once k" is known, the stiffness matrices kjp, k4 and k%, can be generated.
Expanding (15-53) leads to the following partitioned forms:

k= [‘53’;7_%“}?3.%}
12 H 22
n | X T + k" k" ! A 3
no_ 11 Ky 12 i A (15-74)
BA [:k“ T _§ k,JI.ZrX'l’!AT +_ k } l: n, T T B:]

oKL LA Lo A
4T 1AT T X5A+ B AT g C

15-9. MEMBER MATRICES—PRISMATIC MEMBER -

In Chapter 12, we developed the governing equations for a prismatic member
and presented a number of examples which illustrate the displacement and
Jorce methods of solution. Actually, we obtained the complete set of force-
displacement relations and also the initial end forces for concentrated and
uniform loading. Now, in this section, we generate thc member flexibility

matrix using the matrix formulation. We also list for future reference the -

various member stiffncss matrices.

The notation is summarized in Fig. 15-8. For convenience, we drop the
frame reference superscript n, since the basic frame coincides with the local
frame, i.e, R™ = 1. The positive sense of a displacement, external force, or
end forces coincides with the positive sense of the corresponding coordinate
axis.

Starting with (15-66), we have g; = g;;, since R,, R, are identity matrices.
Once X, is assembled we can determine the submatrices of Y from (15-68).
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X3
? Mp2,cm7
N Py o
iy 7 M,
Fga,u,
) 7 CI Ter 0 7 Btaz 2 Mgy, wp
Lo —_‘ P Xl
;; / @3;”@3/ [‘b[,llg]
Fes i3 ’
S ya
Mp3, wp3
I -/

Xy is centroidal axis.

X3 X3, X3 are principal inertia directions.
Fig. 15-8. Summary of notation for a prismatic member.
Now,
0 0 f 0
_ |
e N e . @
0 (L — \ch) l
Then, using g defined by (15--38), we obtam
L/AE 0 .' 0
1 x L L
L *) \
fu=| (A G GJ +3El3 | G Yo
- wtasal- 2 R ey
Sym L L YZ + wI—J—-—
! A (r 3EL,
0 0 )
L, P2
= 0 151
fio= G L_%Iil_s . (15-75)
Lx, L? § 0
GJ 2EI, | )
L/GJ o | o
f,=]| L/EL, i 0
| Sym I L/EI,
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The submatrices of k are generated with (15-73), (15-74) and are listed below
for reference. Transverse shear deformation is neglected by setting a, = a5 = 0:

0 = 12E1, ge = l‘?‘_gl_i
27 GA,L? 27 GA,L?
I, I3
I% = =3
T 1+ a S
GJ 12E .
by =G+ —L—3(;c‘§l>§ + x31%)
- AE | _
z | e
12EI% |
ki = — | 0
_____ R
12E1%
S -1
>y | L
B 0 0 0
_L2EIR _OLLY
kll = Lj_, [ li?” (]5—76)
12EI%%, 6EI% .
L3 L? 0
i 1 6EI5%, ' 6EIfR,
. % s
EI* |
kyy = 4+ az)“‘zg‘ : 0
__________________ |
‘ I Er%
» | —
‘Sym : 4 + a3) 2 ]
r 0 0 0
—12EI%%, 0 6EI%
I L
12EI5%, —6EI}
L3 L? 0
(change sign of (2, 3) and (3, 2) in k)
ﬁb —6EI5X, —6EIfX, ]
1 A i
6EIfX, EIf |
B = ) L2 '—52—“ (12) '“L— { _——_f) ________
6EI%X, EI%
e Tema

S O——r
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) 1 —6El3%, | —GEIx,
L2 { L2
EIf |
C- G+a)—= | o
L |
_________________ IL____ﬂ__..___;_
El%
Sym L@+ ay) =2
i | I

(change sign of (1, 2), (1, 3) in k,,)

Concentrated Force P,

12E1,
Ay = ———
GA,L?
— X
XC = -——[g:-{
Mps = LP,X {1 — %) <f%£‘;}_/_2>
3

_ 2
Fpy = —(XC)ZPCZ - 'E Mg,

Mgy = —=X3(XcPcy + Fy,)

- = |-
My = —L<xcpcz + Fp + TMB.%)

Concentrated Force P,

o - L2EI
2 GA,L?

X, 9
My, = ~LPese(l — %) (x———— - "24“»)

1 -+ dy
- 2
Fpy = —Pes(Xe)* + I Mg,

My = X3(XcPes + Fgs)
]\1141 = —Mp,
FA3 = —P¢3 ~ Fs

o = 1
My, = L<xcPc3 + Fpy — ZMBZ)

523

f inally, the fixed end forces due to a concentrated transverse force and a
uniform transverse loading are summarized below. :

(15-77)

(15-78)
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Concentrated Torgue Tci

My = —TeiXc

. _ (15-79)
My = —Tei(l = Xc)
Uniformly Distributed Load, b,
- - b,L
Fpo = by = “"22—'
_ — bh,L? (15-80)
Mps = —Mus = _2[7
Mg = M ar =0
Uniformly Distributed Load, b
- b,L
Fyo=Fu=—5
B3 A3 >
_ _ b,L?* (15-81)
My, = ~My, = ’“;‘2”
Mm =My =0
Uniformly Distributed Torque, n1;
_ _ m L
My, = My = —”“%’" (15-82)

15-10. MEMBER MATRICES—THIN PLANAR CIRCULAR MEMBER

In this section, we generate the flexibility and initial deformation matrices
for a thin planar circular member, of capstant cross section, using matrix
operations. We include extensional and transverse shear dcformation for the
sake of generality. Some of the relations have already been obtained as illustra-
tive examples of the force and displacement methods. 1n particular, the rcader
should review Example 14-6, which treats planar deformation, and Examples
15-4, 15-5, 15-10 for out-of-plane deformation.

The notation is summarized in Fig. 15-9. By definition, Y, and Y; are
principal inertia axes and ¥; = 0, ie, the shear center lies in the plane con-
taining the centroidal axis. It is convenient to take the basic frame (frame 1)

to be parallel to the local frame at B. The three-dimensional forms of R, Ry,
and Xp, are

cosy —sinn | O _
Ry | 0
R™ = RM = {siny COSH o] = {.J_JT_,,]
u
l

R, — R, = R™ ' (15-83)
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0 0 |
) ; —R(l.— cos
Xpo = X5 = 0 0 | —Rsinyp &
R = 3 PN S ——
cos 1) Rsing | 0
We use

R, =R} R;=1
b = [R(l — cosy)  Rsinn] @)
for planar deformation and
R,=1 R,=RY
o[ e, v

for out-of- i St
t-of-plane deformation. Since the complete flexibility matrix is desired

it is just as convenient to i i
work with submatrices of i
s s of order
scparately the planar and out-of-plane cases. 3 a5 to consider

l Pe3

X X!

- Centroidal axis

b TTh
Myp,@ gy

Fal b b
FB37u/331\FRl,UBl
=b b Mo wpb
My, Wy i & Mgy, wgy

Fig. 15-9. Summary of notation for a planar circular member

We consi i ‘
onsider the member to be thin and use the local flexibility matrix

defined by (15-38). Expandi
matrix. ). Expanding (15-66), (15-68) leads to the member flexibility



526 ENGINEERING THEORY OF AN ARBITRARY MEMBER
s L
“TUART BT GAR
El, EI,

¢ = reY; Cs = GA,R?

a; = d, + ag
a, = d, — Qg
¢ =31 +¢)
e, =41 -¢)

V2

C3=Ct 1—_}-2
72\
C4:Cs+cf( “—E>

, .
1{._{%5(3-}-611)

CHAP. 15

(15-84)

i, Symmetrical
cos 6
+ sin 9,,[-2 + ‘»Tq(l + ‘-"2;]}
R® (04
R3 (] +a
ERIRE £y (50
f" = L2 1 . c0s 0
11 _sin 0‘5(1 + az)} — E(1 + ay)sin Op cos Oy
? K (O4fcy + ca)
0 (4] “Elz FEACHY 4.
— 2¢,5in 05 — ¢, sin Oy cos OB},;
r R? .
S0 — sin 0p)
0 1] 5’3( R a.
5 -
N 0 gr(i ~ cos (p)
2, = (27 = . :
2 . sin @ .)3._ {,, [ Sil’l2 911
EI: {~cibg + cysinty W, 0
+ ¢; sin 0y cOs 5} = ¢5(l — cos Oy)} "

—Rv (cy05 — ¢4 sin Bz cos O3) Symmetrical

EI,

R .
R . i sin 0g cos 0)
2, = TRE) sin® fz) El, (€100 + €350 0p <05 On
2

0 0

RB,
El,
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We consider next the determination of the initial deformation matrix due to
an arbitrary concentrdted load at an interior point, C. Now, the flexibility
matrix for the segment AC referred to the local frame at C, which we denote
by fic, is known. We just have to change 04 to 0, and superscript b to ¢ in
(15-84). When the external load is referred to the local frame at C, the displace-
ment at C is given by

U = 15 P (&)
The displacement at B due to rigid body motion about C js
Uy = X4 (@R Ty, (b)

Finally, we can write

O = (UB)py = (AT R i)

4
Vo =u} = (Rﬂfxc, 11+ Xfr)icTR/;rr G 1 2)PE
+ (Rarf;ic,'lz + X R}fjtc. 22)T¢ (15-85)

0; = o) = (R;ffichz)PZ' + (R; ac, 22)TE

The uncoupled expressions follow.

Planar Loading

i R3 1 +a . .
- Upy = Bre {QC (1 + -~'-2-1 COS fie | + sin ne ~ sin G,

~43
. 1
+ sin O (——1 + —%—3% cos (}’B)} P¢y
R3 l+a .
+ El; {1 — ¢os G + -——5—1 B¢ sin n¢
_1 ‘;"% sin 0, sin ()B} P,
RZ
+‘ e Qc + Sin ”C - Sin 93 Tc3
By 15-86)
v, =ul S 1+€10§i e
0,2 = Bz*EI3 Ty T Yesmge

L +a, . .
+ COsHe — cos 0y — ‘_5_?. sin Oc sin O » PS,

R* (1 +a I +a, .
BT {T{ Oc cos e — 5 2 sin G, cos 83} Pe,

2

+ Ez— {cos He — €OS QB}TQ
2

90’ 3 = CUB3 = EI"{(HC —_ Sin OC)PE'.I + (I — COS Bc)Péz} +
3

v

RO

—— T
EL, ¢
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Out-of-Plane Loading

R3 .
Vo,3 = Ups = T {l?c(c1 CoS ¢ + €4) — ¢ sin O cos O
2

+ ¢3(— sin B¢ — sin 0 + sin ;7C)}PC3

R? . .

+ I {—CIOC COS He + ¢, 8in B¢ cos B + c; sin GC}T‘C1
2

2

+t &L {— cifcsinne — ¢y sin O sin 0y — c5(1 — cos 9(«)}’1“32
2

R? . .
0 = wfy = L {—CIOC Cos Ne + ca(sin 0 — sin e)
2

+ ¢, sin B¢ cos OB}PQ

R
+ A {cﬁc COS fc — €, sin O cos OB}TCQ (15-87)
2 .

+ ———<cy0c sin fe + ¢, sin O¢ sin 0pp TG,
El,

R? .
05, = oy = i {Cx()c sin e + c3(cos 05 — cos #¢)
“12

— ¢, sin O¢ sin OB}PC3

R . . .
+ —— {—c0c sin e + 5 sin B¢ sin G,2TE
El,
R . -
+ = 4¢,0c cos e + ¢, sin Oc cos 05T,
EI,

When the loading is symmetrical, one can utilize symmetry to determine the
fixed end forces. The most convenient choice of unknowns is the internal forces
at the midpoint, i.e.,, 8 = 05/2; F; and M3 are unknown for the planar case and
only M, is unknown for the out-of-plane case. Explicit cxpressions for the
fixed end forces due to various loading conditions arc listed below.

Planar Loading

Fig. 15-10 defines the notation for the planar case.
We consider two loadings: a concentrated radial force P applied at C, and

a uniform distributed radial load b, applied per unit arc length over the entire
segment. The basic frame is chosen to utilize symmetry. We determine the
axial force and moment at C from the symmetry conditions u, = w; = 0.

CASE 1—CONCENTRATED RADIAL FORCE P

P P
Fe, ‘—‘5‘ Fey s,jlﬂ

SEC. 15-10.

THIN PLANAR CIRCULAR MEMBER

Fig. 15-10. Notation for planar loading

sin a 1
e ) + a, .
T (I = cosa) + ~‘—-2~-2~ sin? o4
a(l +a sin? o I+ a, )
5 5t —3~) sin « cos o
C=_£€£ 1 — cosa siner)
3 2 «  T{I- m_) l//}
B = =1 = Feq
In T P
‘B2 = 17, = —
A2 2
oo PR i
My = —p1, :7{Sm ~ L cosw ) fsing
" o~ cos

FCZ
FCI

¢

0
~Rby(1 — a,9)

sin o
(SRR

L+ a,
2

)sin « COS

529

(15-88)
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' Sin o
Mc = szlaed) ("1 + 7‘)
—Fn, = —Rby(cos o — a,d)

P, = Iy, = —Rbysina .
sin o

MB —MA = szzaed) [T — COS OC]

T
BL

i

Out-of-Plane Loading

Figure 15-11 defi ‘
Wi consider four loadings: a concentrated force P,

applied at C; a uniform distributed force bs; and a uni
m,. The bending momen
Wy = 0.

Fs3

tation for the out-of-plane case. -
o i and a couple T—both

form distributed couple
t at C is obtained using the symmetry condition

CHAP. 15

(15-89)

Fig. 15-11. Notation for out-of-ptane loading.

Casg 1—CONCENTRATED FORCE Vi
2
0

PR ¢, sin® o + ca(l — o8 )

Mez = 2 Wﬂc";oc + ¢, SIn o COS

B
e e
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— . . _9 .
i, = Y, = -1—)25(1 ~ cosa) (15-90)

W 7 PR .
My, = — M = Mc; — —-sina

I T P
FBZI’A::—-..Z—

CASE 2—CONCENTRATED TORQUE T

Fea=0
T
Mo = —
C1 2
T ¢y sin? «
Mey = =5 —————
2 oc, + ¢, Sin o cos o (15-91)
_ _ T
b= Moy = =
_.%2 = “Mﬁz = Mc¢,
FB = FA e 0

CASE 3-—UNIFORM DISTRIBUTED LOAD by
Fe3 = Mc =0
c(sino — &) + ¢, sinofl — cosa) + c3(sina — @ cos o)

Mg, = R?b, .
¢ ‘ ocy + €y Sin o cos o

_ ~ o (15-92)
%= MY, = R*bs(sin « — o cos o)
*%2 = _“M’,}{z = Mcz — R2b3(0( sino — 1 4 cos OC)
FH = F/l = "‘PROL :
CaSE 4—UNIFORM DISTRIBUTED COUPLE #14
FC3 == MC1 = 0
Me, = m,R ¢yl — sino) + € sin o{cos o — 1)
®cy + €, sin o COS o (15-93)

Mg = M7 = —mRsina
By = — MY, = Mg, — mR(1l — cos &)

i

15-11. FLEXIBILITY MATRIX—CIRCULAR HELIX

In this section, we develop the flexibility matrix for a member whose centroidal
axis is a circular helix. The notation is shown in Fig. 15~12. The principal
inertia direction, Y,, is considered to coincide with the normal direction, i.e.,
the inward radial direction, at each point. We also suppose the cross-sectional
properties are constant. For convenience, we summarize the geometrical
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relations: T
X; = Rcosf

X3 == Cg
dsS = o do

o = [R? + C*)Y? = constant

CHAP. 15

(@)

o

1 .
~(—Rsin 0, + Rcos 01, + Ci,)
o

— R(sin 05 — sin )

0

i =1, = —cosfi; — sin i,
- .1
b=ty = &(Csin 0iy — Ccos 0i, + Riz)
i t
—-—sin @ f —cos 0 f g
_x | S ! C(_
R,=Rp=R"=|—cos0 | —sin0 | O
C C |
~sin 0 ——cos ) | R
o o I o
0 | —C0 — 0) | R(sin 0 — sin 0)
Xio = | C(0p — 0) i 0 i ~R(cos 0 — cos 0)
| |
| |

R(cos 8 — cos 0)

The steps involve only algebraic operations and integration. We first deter-
mine gf; using (15-66), then vy;; from (15-68), and finally f}; with (15-70). In
what follows, we assume the shear center coincides with the centroid and neglect
extensional and transverse shear deformation. With these restrictions,

gii=¢g=0 g2, = R™ T{EZRW (b)
o -
GJ
_ 1
e
[
L EI.

and the expressions for ;; reduce to
Y2y = g3,
Vyp = X?}’QT‘I’ZZ
Yy = ‘I’ux'z';Q

The flexibility matrix for a constant cross section is given below.

T See Examples 4—6 and 5-3.

©

SEC. 15-11.

s 1
A‘

FLEXIBILITY MATRIX—CIRCULAR HELIX

Y, Y3—principal inertia directions

Fig. 15-12. Notation for circular helix.

Notation—Dimensionless Parameters

as

asg

dy

_REL  Cth

a, = 2
T2 6 T L
2 2 /5
a, = 5_ + C; (é!__z) L’i

o «*\GJ /1,
RC[I1, EI,
43 = —5 | 7 — =7
ot Iy GJ
Ra; R*[1, EI,
CI.4 = - == ==
C oI, GJ
_ _1 + a; _ 1 — a
2 to="5"
P
2 2
Cl6 -+ 3a4 a() — 3a4

2 alO = 2

X!

X[, X, X" ~directions of basic frame

533
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Elements of 17},

fii Sym
f'111 = f21 fzz i
f;n fsz f33
_ C’a
fll - EIZ

2 1 ) . 3. oy
+ REZZOC {03 (5 + sin? 03) — 2sin 6 + 5 Sin O cos 03}
for = %—;z {-—%6— 93 — ag sin? 0y + aq(0p sin 0p — cos Oy + cos? BB)}
2
2

1.
- RE?ZO‘ {cos Op(0p sin Oy — 1 + cos 0,) — 3 sin? 0,,}
3 .

fi = 1—;—[% {—%30}; cos O + (a; — ag)(l — cos O) — a, sin? Op + ayfy sin@B}
29

faz = go_c {a793 + %5— 03 — ayo sin 0y cos Oy — 2a,0, cos 03}
2

R?a,0 1 3 .
+ - El32 {93 (5 + cos? 9,;) = 5 c0s 0, sin 0,,}

f32 = %?{_922 9}23 Sil‘l 91; ‘+‘ 01(05 - Sln 03) + alo()B CcOoSs 93
2

+ ag sin g + a, sin 05 cos 0,,}

{"ﬂf]@}; + 93_50;‘; + 2614 sin OB + 230} sin 0}; COs 05}

’ (15-94)

fi3 = —I;—;}E{(al + as5)0y — 2a, sin Oy ~ ag sin 0, cos ()R}
2

Llements of ],

fia fis fie
?23 f24 fzs f26
f34 fas f36

fia = ECTOC {—a4 sin 0 + a,05 + ag sin O cos ()B}
5 :

Cazx _ Raza i —1+C089}
fie= — E;z {1 — ¢cos 93} EL {03 sin O B

foa = ES;C—{—%S- 0% + ag sin® 8y — a,(l — cos 93)}
, |

fis= 2 {-"'—5 63 + ag sin? 03}

Co .
fas = L {ag(HB_ — sin 0 cos QB)}

n
22

"IO(T {asOy + ag sin 0, cos 0p} Sym
2
adg o .
— ET: sz 03 E}; {(1505 - aG sSin 93 COos 93}
oty oy 0a,
—=(1 — 7 —t g —=
E, (I — cos 6y) £, Sin Op i, 93_‘
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‘ Caso . Ra,a .
Sre = —H‘:— {05 ~ sin 63} + ‘Eﬁ {03 cos Oy — sin OB}
R . :
fra = #{aﬁg sin 0y — a,(1 — cos 93)}
2
Ra { .
J3s = L ias(sm 0 — g cos 03)}
2

Cax

~)(36 == E[Z {Sin BB - GB}

Lilements of 13,

15-12. MEMBER FORCE-DISPLACEMENT RELATIONS—PARTIAL END
RESTRAINT

In Sec. 15-7, we considered an arbitrary member which is completely re-
strained at both ends. This led to the definition of the member flexibility matrix
and a sct of equations relating the cnd forces and the end displacements. Now,
when the member is only partially restrained, there is a reduction in the number
of member force unknowns. For example, if therc is no restraint against rotation
at B, My, = 0, and there are only o unknowns (where o is the order of IFy), the
rotation wy at B has no effect on the end forces. To handle the case of partial
restraint, we first determinc the compatibility cquations corresponding to the
reduced set of force unknowns, Inverting these equations and using the equi-
librium relations for the end forces results in force-displacement relations which
are consistent with the displacement releascs.

Let Z denote the force redundants. Normally, one would work with the
primary structure corresponding to Z, = 0. However, suppose we first express
the force at a point, say @, in terms of the end forces at B, using, as a primary
structure, the member cantilevered from A:

Fh=—F 4 - XsaT 5 " (a)

i

Next, using the primary system corresponding to 7, = 0, we express % in terms
of the applied external load and the force redundants:

Fy=EZ+ G (15-95)
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The elements of G are the end forces at B (for Z = 0) due to the applied external
loads. Note that G = 0 if Z contains only end forces at B.
Now, the principle of virtual forces requires

SSS" AFTE + gF)IS = ATy UL + AT U, (b)
A

for any self-equilibrating virtual-force system. Taking the system due to AZ
results in the compatibility equations for Z. 1t is convenient to work first with
the virtnal force system due to AF ;. Equation (b) reduces to

AZLT + 'F8) = AF WUy — Xy UY) ©
= AFy
where ¥, { are the initial deformation and flexibility matrices for the full end
restraint case. Substituting for 7} using (15-95), and requiring the resulting
expression to be satisfied for arbitrary AZ, we obtain

(ETPE)Z + ET(¢ + G) = E™v™ = ET(@ry — Iyl (15-96)

1t should be noted that @, 4", arc the displacements of the supports at B, A.
We suppose Z is of order g x 1, i.c., there are ¢ force redundants. Also, we
let i be the row order of # (and %).
(@x 1)

{ix1) F .
F = e 5--
g { N } (15--97)

(px1)

With this notation,
Eisi x ¢

Gisi x |1
and (15-96) represents ¢ equations. For convenience, we let

f = ETf"E (g x q)
r 3 15-
V. =+ PG (i x D (15-9%)

and the member force-deformation relations take the form

i

(Z = KT — 7% )
Py 5-99
— W - XU~ VY (15-99

We refer to f, as the reduced flexibility matrix since, in general, ¢ < i. Actually,
f, is the flexibility matrix for Z and it is positive definite since E must be of rank
g, ie., the force systems corresponding to the redundants must be linearly
independent. Note that one can determine f, directly by working with the
primary system corresponding to Z = 0. This is the normal approach. The
approach that we have followed is convenient when the member flexibility

matrix is known.

SEC. 15-12. PARTIAL END RESTRAINT 537
At this point, we summari i
S arize t - ace i i
o s . he force-displacement relations for partial end
Z = member force matrix
Fp=FEl + G
"= Fho - ATy
f. = reduced flexibility matrix {q x q) = E"f"E
V=1 4 0G |
£Z = ET(v - 5. (15-100)
= E"uy; — gl - 775, 2)

Note that, for complete end restraint,

Z = eg_r;; E = I'.
G =90 ~//"(1) L= 41/':; (15—‘101)
We will use (15-100) in Chapter 17 when we develop the formulation for a

member system.
Continuing, we let

k., =1{! - {15-102)
The force redundants are obtained by inverting (1 5-99):
| Z=KE"Uy — ] Uy~ 173 ) (15-103)
Substituting for Z, the end forces at B are given by
‘ T = Bk ENUY ~ XyTar — 4 ) 5 G (¢)
We defined k” as the effective member stiffness matrix -
ki = Ek,ET
= E(ETf"E)" T (15-104

In general, k¥ is singular whet i, si i
jonera ke g 14 < i, smce E is only of rank ¢. Equation (e)

Fh= T+ KUy - AT
Fpi=~ktG .+ G (15-105)

= =kt + (I — Ki)G

The end forces at A are determined from (a):

Fl o= dfa:'” .- grn nagm
| TR v ey
Fhi = =Ty o — Lpa T {15-106)

Finally, we write the relations in the generalized form

Py = Fho + Ky + Ky,
77
Fu =T+ KUy + K,
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where
15-107
Ky = K2 (15-107)
e = ()" = —WXE
na = —Wh s = AR ET

Comparing (1 5-107) with (1 5-53), the corresponding expressions for the com~
plete restraint case, we see that one has only to replace k" by ki in the partitioned

forms for Kp, K4, and K4 The equation for 7, 18 different, however, due
to the presence of the G term.

Example 15-12 -

Suppose there is no restraint against rotation at B. Then, M = 0. We take Z = O
and generate E, G with (15-95)-

) _[hlg vz + 6
{M%} = [01 (F3) = BZ + G (@)

For this case, G = 0. The reduced fiexibility and stiffness matrices follow from (15-98),
(15-102), ‘
fr = f’l’l (b)

ot
kr "fll

and the effective stiffiness matrix follows from {15-104):

‘ﬂ’l“ 1 11 0
K = | -
3 Lo I' 0 (“)

Finally, the force-displacement relations are (see (15~99)):
1, Fp = up — i — Xpfeh — Yo (d

Note that premultiplication of #" by ET climinates 0", the relative rotation at B, Therc is
no compatibility requircment for the end rotations in this case; e, the support rotation
at B, which we have defined as w}, does not introduce any membet deformation.
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PROBLEMS

15-1. RefertoE :
and 2 squa fefe;iif ]F;Xan]llple 15-5. Determine ¢, for a typical wide-flange section
deformation vs b%ndicsg.d?omme_nt on the relative importance of torsional
rormat - eformation (i.e., terms i i i or
Dllsémigumh between deop and shaikm(/ & f;g:rssmvolvmg ¢, in Equation (e)).

| Refer to Example 15-7. Consider a rectangular cross section and ¢
varying linearly with x,, as shown in the sketch. Evaluate v Bz—lii d
2 [\3E1, ) ™"

P,

LS
Ugs / (ﬁ) for a range of ¢ and a/b.

X2 Prob. 15-2
Y, .
¢
3
I, =%
5 b ‘ 12

3

3

v Centroid Iy= %&f
3

6=7%
a

% M h . o P b j' M f P

lf;'—, . l)etel mine ( € leaLUOIl at B alld trans l(ltl(’“ m t e direction o }
S h

at C {OI the xnenlbel Sk(‘t(’hed' TlegleCt tlanS Verse Sh(,d(,r def()rmﬂtlon

P Prob. 15-3

Shear center 3

\ / Centroid

PanY
&
t:eﬂ
Y2

IRE
|~ Vertical restraint at B

I
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15-4. Repeat Prob. 15-3, considering complete fixity at B. Utilize sym-

metry with respect to point C.
15-5. Derive (15-27). Start with the definitions for the strain measures

(see Fig. 15-2),

neglect second-order terms, and note (15-26).

15-6. Summarize the governing cquations for restrained torsion. Evaluate
b, and b; (see (15-34)) [or a symmetrical wide-flange section and a symmetrical
rectangular closed cell. Comment on whether onc can neglect these terms.

15-7. Refer to Example 15-11. Specialize the solution (Equations f) for
0s = AL » 1. Verify that (g) reduces to the prismatic solution, (13-57),
when 6 — 0. i

15-8. Consider a member comprising of three segments. Assuming the
flexibility matrices for the segments are known, detcrmine an expression for
the member flexibility matrix in terms of the segmental flexibility matrices.
Generalize for n segments.

15-9. Discuss how you would apply the numerical integration schemes
described in Sec. 14-8 to evaluate Jp, defined by (15-69).

15-10. Verify (15-73) and (15--74).

15-11. Determine the fixed end forces {or the member shown, using (15-77)
and (15-79).

X, Prob. 15-11

zYz

~

-t

Centroid

~

Xa

15-12. Solve Prob. 15-3 using (15-84) and (15-87).
15-13. Verify (15-90) and (15-91). Apply them to Prob. 15-4.
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15-14.  Starting with (15-87), devel 51
. g _ , op expressi f initi
tions due to an aribitrary distributed k)agingpb :Ogs(()o)r tSheeIr'l'I gl'al ooz
constant and verify (15-92). e - Shecialize for b,
15-15.  Using the geometric relat; ibili
‘ ‘ s and flexibilit ix f i r
helin feomstany 1 the geoms clations an y matrix for a circular
in Gooonstant ss section; Y, coincides with the normal direction) developed
(@) Develop a matrix equation for i
the displacements at B due t i
X referred to "fhe global frame and applied at 6. Hing: Se:(l%ilgl%admg
(b) Evaluate u}, for the loading and geometry shown. N

Prob. 15-15
Y3, b
Ya.n S 4
f<-d/2——-' X3
P
B
I
|
7 %
R _7
A N
- ’.// og = 7l’/2
== ¢ =RJ2
/ G =ER2

15-16. Determine the
- ) reduced member flexibiljt o )
against rotation at an inferior boint b flexibility matrix for no restraint

15-17. For the planar member shown, determine
Z = {FBI MB MA}
Then specialize for rotation releases at A, B and determine k

Eand G correspondiﬁg to
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R Part IV
T ;
ST e ) - ANALYSIS OF A

K - MEMBER SYSTEM

15-18. Determine E and G for—
(a) no restraint against translation in a particular direction at B

(b) no restraint against rotation about a particular axis at B
Hint: Review Example 15~12. _
§




