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Characteristic-Value
Problems and
Quadratic Forms

2-1. INTRODUCTION
Consider the second-order homogeneous system,

(all - A)xl + A%y = 0 (2_1)
g%y 4 (a2, — Wx2 =0
where A is a scalar. Using matrix potation, we can write (2—1) as
ax = AX 2-2)
o
' (@a— Mx =0 (2-3)
i ivi i f (2-1) exist are called the
The values of A for which nontrivial solutions of ‘ call
ch:racteristic values of a. Also, the problem of ﬁ.ndmg the characteristic valges
and corresponding nontrivial solutions of 2—1) is referred to as a se;cond—or er

characteristic-value problem.* . . ‘

The characteristic-value problem occurs naturally in the frge—wbrahon

analysis of a linear system. We illustrate for the‘system shown in F}g. 2'—1.

The equations of motion for the case of no applied forces (the free-vibration
case) are

d*y,
1y —25 + kao(y2 — y0) = 0
) a2 2 V2 @

a* —
my _d—t%i + ks — ka(yz —y) =0

* Also called “eigenvalue” problem in some texts. The term “eigenvalue” is a hybrid of the
German term Eigenwerte and English “value.”
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Assuming a solution of the form ‘
yi = Ay = Ayl (b)

and substituting in (a) lead to the following set of algebraic equations relating
the frequency, w, and the amplitudes, 4,, 4,

(I’Cl -+ kz)Al - szz = ﬂ’llCl)ZAl
"'“kZAl + szz = "’120)2142

We can transform (c) to a form similar to that of (2—1) by defining new amplitude
measures,*

©

A= ? _
Zl = Al ~/ Hj_l_ (d)
ZZ = Az\/;nl
and the final equations are
k ky - ) - -
! + < Al. - ~<—2—-—«-— Az = ;LAl
my Jmim; @©
k - ky - -
o —*'*—Z-'M*'— 1y + ""‘2‘ Az - XAZ
\/I;errlz my

The characteristic values and corresponding nontrivial solutions of (e) are
related to the natural frequencies and normal mode amplitudes by (d). Note
that the coefficient matrix in (e) is symmetrical. This fact is quite significant,
as we shall see in the following sections.
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Fig. 2—-1. A system with two degrees of freedom.

Although the application to dynamics is quite important, our primary reason
for considering the characteristic-value problem is that results obtained for the
characteristic value problem provide the basis for the treatment of quadratic

* See Prob. 2-1.
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forms which are encountered in the determination of the relative extrema of &
function (Chapter 3), the construction of variational principles (Chapter 7), and
stability criteria (Chapters 7, {8). This discussion is restricted to the case where
a is real. Reference 9 contains a definitive treatment of the underlying theory

and computational procedures.

2-2. SECOND-ORDER CHARACTERISTIC-VALUE PROBLEM

We know from Cramer’s rule that nontrivial solutions of

{ays — A)xy + G12X2 = 0 (2‘4)
aAx1X1 + (6122 —_ }»)Xz =0

are possible only if the determinant of the coefficient matrix vanishes, that is,

when
ajy — A G ‘ ~ i (2-5)
az1 ayy — 4
Expanding (2-5) results in the following equation (usually called the charac-
teristic equation) for A:
2% — (agy + 2204 + @102z — az1a12) = 0 (2-6)
We let
B1 = asy + G22 2-7
P = a11az2 — Q12021 = lal

and the characteristic equation reduces to

= Pih+ =0 2-3)

The roots of (2—8) are the characteristic valucs of a. Denoting the roots by
11, A2, the solution is -

Janr = (By + /BT — 4822 2-9)

When a is symmetrical, iy = days and
g1 — 4p, = (a1 — az)* + Hay,)

Since this quantity is never negative, it follows that the characteristic values for a
symmetrical second-order matrix are always real.

Example 2-1
§8)

<[5 3]

pr=2+5=7
B, = )6 — @@ =6

The characteristic equation for this matrix is
P21 +6=0 v (a)
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Solving (a),
},1 = +6 )"2 = 41 .

-1 7]

By =0 B = +1

+i wherei=./~1

@

I

A2

By definition, nontrivial solutions of (2—4) exist only when A = 1y or 4,
In what follows, We suppose the characteristic values are real. We consider
first the case where 4 = A,. Equation (2-4) becomes

(a1 — Ai)xy + dypXy = 0

A21X1 + (a22 — 44)x2 =0 @
The second equation is related to the first by
second eq. = | — 2L}t
q <a“ = 31) times the first eq. (b)
This follows {rom the fact that the coefficient matrix is singular.
(ayy — Aazy ~ A1) = Gg2020 = 0 ©

S}ﬂCg ounly one equation is independent and there are two unknowns, the solu-
txorn is not unique. We define X, x4 as the solution for ) = ;. Assuming*
that a,, # 0, the solution of the first equation is A

W= @
aeq —
xg) - 11 A
where ¢, is an arbitrary constant. Continuing, we let
) _
X0 = ({0, <} (¢)

and take ¢y such that (xW)"x") = . This operation is called normalization,

and the resulting column matrix, den i
d " oted by Qy, is referred t
teristic vector for Ay, ' @ 88 the chaca

Q, =q {-}-1, v——qli»; /11 .
19 (2--10)
<—1—)2 =1+ [9_11 - Al}z
. Cy dya
By definition, r
Q1Q1 =1

- (2-11)

N .
Ifa;, = 0, we work with the second equation.
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Since Q; is a solution of (2—-4) for 1 = A, we see that

aQ, = 4;,Q, (2-12)
Following the same procedure for 1 = 1,, we obtain
-~ A
Q=c {H, s 2} (2-13)
[45F)
where
(L)Z 14 [21.1_:_{2]2
C2 aiz
Also, .
aQ, = /,Q,

~ It remains to discuss the case where A; = 1,. If a is symmetrical, 'the char-
acteristic values will be equal only when a,{ =-a;, and a,, = d,; = 0. Equa-
tion (2—4) takes the form
(ag; — Mxy + (0)x2 = 0 (@)
O)xy + (ag; — Ax, =0

These equations are linearly independent, and the two independent solutions
are

x® = {c;, 0}
’ b
x? = {0, ¢,} )
The corresponding characteristic vectors are
Q, = {+1,0} (2-15)
QZ = {09 +1}

If a is not symmetrical, there is only one independent nontrivial solution when
the characteristic values are equal.
It is of interest to examine the product, QTQ,. From (2-10) and (2-13),

we have
- A -2
TQ, = —ci6, (1 4 (a1, 1)2(6711 2)) @)
aiz
Now, when a is symmetrical, the right-hand term vanishes since
Ay — Ay = —(az2 — A4y) = ““‘[ﬁi‘* (b)
aiy — }.‘1

and we see that Q] Q, = 0. This result is also valid when the roots are equal.
In general, Q7Q, # 0 when a is unsymmetrical. Two nth order column vectors

U, V having the property that
U'Vv=vTU =0 (2-16)

are said to be orthogonal. Using this terminology, Q, and Q, are orthogonal
for the symmetrical case.
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Example 2—-2
1

2 2
a =
25
2.1 = +6 /12 = +1
The equations for A = 1, = +6are
—4x; + 2x, = 0

2x; —x; =0

3 S Colld equdtl 1§ —5 q . G s
W € sce that the < on tunes t]le first e uatio ¢ fir st equation
0on S()lV]llO th 1
2 E=]

) _ 1) 1
Xi'=c¢r  xP=2x{0 = 2
Then, !

. X = ¢ {1,2}
and the normalized solution is

Q, =
Repeating for 1 = 4, = +1, we find

{12}

G-

x? = o {1, 41
and 2 3

2 1
| JE— — l - J—— —
IRV A b A et
One can easily verify that
aQ; = iQ; j=12

QiQ, = QQ, =0

18
a=
3]

The characteristic values and corresponding normalized solutions for this matrix are

and

@

Ai=+5  ly= -1

1
Ql = ?/? {2, + 1}
1
Q, = \/_ﬁ {4, -1}
We see that QfQ, # 0. Actually,
7
T [
QIQZ - \/‘8‘75‘

()

[1 -2
a=
1 —1]

=4l = -

We have included this example to illustrate the case where the characteristic values are
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complex. The equations corresponding to A = /g are
(1 - i)xl — 2%y = 0
x; — (1 +iDx2 =0

Note that the second equation is (1 — i) times the first equation. The general solution is

: 1 —1i
=a {1’ T}
1+
@ = 1, —
¥ cz{ ’ 2 }

When the roots are complex, A, 18 the complex conjugate of A;. Now, we take ¢, = ;.
Then, x@ is the complex conjugate of V. We determine ¢, such that

X OYTx® = 1

Repeating for 2 = 4, we find

Finally, the characteristic values and characteristic vectors are

A2 = +i
— 15
Q..=+23 {1,—-2——}

In general, the characteristic values are complex conjugate quantitie
of a are real. Also, the corresponding characteristic vectors are complex conjugates.

s when the elements

2-3. SIMILARITY AND ORTHOGONAL TRANSFORMATIONS

The characteristic vectors for the second-order system satisfy the following

relations:
aQ; = ilQl (a)
aQ, = 2,Q2

. We can write (a) as
a[Q, Q.]=[Q: Q] [{; ﬂ )
Now, we let
' q= [Q1 Qz]

A= [O ?»2] 2-17)

Column j of q contains the normalized solution for 4;. We call q the normalized
modal matrix* for a. With this notation, (b) takes the form

aq = qh (2-18)

* This terminology has developed from dynamics, where the characteristic vectors define the

normal modes of vibration for a discrete system.
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dexiffe\: sh_own that the characteristic vectors are always linearly indepen-

a is symmetrical. They are also independ i

. ' t when a is w -

metrical, provided that 4; # A,. T copt o oni
s Pr 1 5. Then, Iq{ # 0 except for the case where a i

unsymmetrical and the characteristic values are equal. If |g| # 0, ¢! ts

and we can express (2—18) as A S

-1
q aq =1 (2-19)

;1;)1:; mtzlxtnx operaFion, p~*()p where p is arbitrary, is called a similarity trans-
ation. Equation (2-19) states that the similarity transformation, ¢~ 1( )q
gl A

i1t matrix WllOSe lements are the CharaCtCHSth Values

If ais SymIIICtIICal the IlOIIIlahZCd Cha acteristic vecto: O 0 ,
N T 1st1 ctors are l‘th gonal,

Q1TQ2 = Qle =0
Also, by definition,
Q{Q1 = Qng =1

Using these properties, we see that

so-[Je 01-[1 ]

1 _
' =q (2-20)

and it follows that

;Atzquare matri)'i, say p, having the property that p’ = p;’1 is called an
t :a ngona.l t;natnl):I and the transformation, p’()p, is called an orthogonal
nsformation. Note that an orthogonal tr mation i
‘ ansformation is also a similari
transformation. Then, the modal ix fa ¢ s orthop.
. ) matrix f etri iX i
granslormation. Then or a symmetrical matrix is orthog-

. , |
aaq =% (2-21)

Example 2-3
(1

1
=46 Qu=—x{12}

+1 Q=

i

A

q=[Q: Q] =LF _2]
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We verify that q¥ = q~* and ¢"aq = }:

T.11212_150]2[10]
qq:g[z ~1]l2 -1] 510 5 0 1
1

@)
18
a =[1 3]
’ ;
Jp= 45 Q1=73{2,+1}
1
Ay = —1 Qz='\/-ﬁ{4’"”1}

o I I v v

Since a is not symmetrical, ¢ # q~'. Actually,

(BT - A

6

One can easily verify that

3

1 1
g= 231 —i 1+
2 2

elements. Since the characteristic vectors are complex

i involves complex ¢
In this case, q invo P ! exists. We find q~ ', using the defi-

conjugates, they are linearly independent and q~
nition equation for the inverse (Equation (1-50)):
1 -1
- i
1
1= —Adjq=+/32 .
q a Adj q 21y 4

lal 1+

2
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0]
-1 = =\
424 [0 ~i]

2—-4. THE nth-ORDER SYMMETRICAL CHARACTERISTIC-VALUE
" PROBLEM

One can easily verify that

The nth order symmetrical characteristic-value problem involves deter-
mining the characteristic values and corresponding nontrivial solutions for

AyXy + Q12X + 000 F ageXx, = }.Xl
Ay2Xy + AazXy + *°° + AgpX, = /’qu ’ (2_22)
A1nXy + QanXa + 0+ GuXp = AX,

We can write (2—22) as

ax = AX ‘ (2-23)
a—AL)x =0
In what follows, we suppose a is real. ,
For (2-23) to have a nontrivial solution, the coeflicient matrix must be
singular.

la — AL/ =0 (2-24)
The expansion of the determinant is .
(=1 @ = Bua™™t 4 Bod72 =+ (=17 = O
where
fi=ay + ay + 0+ apy (2-25)

Pu = lal

and f; is the sum of all the jth order minors that can be formed on the diag-
onal.* Letting A, 45, . . ., 4, denote the roots, and expressing the characteristic
equation in factored form, we see that

/31=2'1+A-2+"'+/1n

,.32 = ll)tz + 11/‘13 LR /1,,..1/1,, (2_26)

ﬁn=/11/12""1n

We summarize below the theoretical results for the real symmetrical case.
The proofs are too detailed to be included here (see References 1 and 9):

1. The characteristic values A, 4,, ..., 4,, are all real.
2. The normalized characteristic vectors Q, Qa, . .., Q,, are orthogonal :

QiTszéij i,j=1,2,“.,n

* Minors having a diagonal pivot (e.g., delete the kth row and column). They are generally called
principal minors. .
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3. a is diagonalized by the orthogonal transformation involving the nor-
" malized modal matrix.

q'ag = X
where
q = (Qle T Qn]
A = [Ady]
Example 2-4
& s -2 0
a = —-2 3 '—1
0 -1 1

Since a is symmetrical, its characteristic values are all real. We first determine B4, B2, B3

i -25): . i
using (2-25) p =543+ 1=40

B, = +11+5+2=+18
By = 52) — (=D(=2) = +6

The characteristic equation is
' [y = A - 922+ 181 —6=0

I

i

and the approximate roots arc

Ao~ 4042 ;

A, ~ 4230 ¢

Ay~ +628 &

To determine the characteristic solutions, we expand ax = AX,
(5 — Ayxy = 2x,

(=2, —xy = —(3 = A% %

(1 - A.)Xg = X5 }w

i i i neral solution is ;

Solving the first and third equations for x; and x, in terms of x,, the ge :i
X = 2 X 1

5—14 = 1.2,3 :

() e

S

Finally, the modal matrix (to 2-place accuracy) is
+022 +051 —084

q={Q1QzQ3]= +050 +068 +054 "

+085 —052 —-0.10 :
@ 1290
a=1l2 10
0.0 3
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The expansion of |a — AI5] = 0s

B-=M1=-4A*=4=0
and the roots are

M=3 =3 Ay=-1

Writing out ax = Ax, we have

(1 — Ax, +2x, =0
2xy +(1 — Ax, =0 (a)
(3 - l))@ = 0

When 4 = 3, (a) reduces to
—2xy +2x, =0
2x, —2x, =0 " (b)
(O)x3 = 0
We see from (b) that (a —~ 1I3) is of rank 1 when A = 3. The general solution of (b) is

Xy = € Xg = €y X3 =y

By specializing the constants, we can obtain two linearly independent solutions for the
repeated root.  Finally, the characteristic vectors for Ay = A, = 3 are

o {hhd

Q; = {0’ 0, 1}
When 1 = A; = —1, (a) reduces to
’ 2x, + 2%, = 0
2x) 4+ 2x, =0
4x; =0

The general solution and characteristic vector for 4, are

¥ = —xf and X =0

1 1
={— — =0
& {ﬂ 73 }
This example illustrates the case of a symmetrical matrix having two equal characteristic

values. The characteristic vectors corresponding to the repeated roots are linearly inde-
pendent. This follows from the fact that a — Al; is of rank 1 for the repeated roots.

2-5. QUADRATIC FORMS
The homogeneous second-degree function
F =‘a11x% + 2a12x1x2 -+ {122)(2%

is called a quadratic form in x,, x,. Using matrix notation, we can express

F as
Ay d12 | § X1
F = [x1x,] = xTax
iz dzz | (X2
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In general; the function
F= i i apXpx = x'ax (2-27)
k=1 j=1
where ay = ay;, for j # k, is said to be a quadratic form in x;, x5, .. ., X,.

If F = x"ax is nonnegative (> 0) for all x and zero only when x = 0, we call
F a positive definite quadratic form. Also, we say that a is a positive definite
matrix. If F = 0 for all x but is zero for some x # 0, we say that F is positive
semidefinite. We define negative definite and negative semidefinite quadratic
forms in a similar manner. A quadratic form is negative definite if F < 0 for
all x and F = 0 only when x = 0. The question as to whether a quadratic form
is positive definite is quite important. For example, we will show that an
equilibrium position for a discrete system is stable when a certain quadratic
form is positive definite.

Consider the quadratic form ‘ N

F=b1x%+b2X%+"'+bnxr%

bl 0 - 0 Xy
= [xxxz ¢ 0 1.72 o O 2 @-28)
(.) 0 Tt i7n Xn

When F involves only squares of the variables, it is said to be in canonical form.
According to the definition introduced above, F is positive definite when

b1>0 b2>0,"'b">0
It is positive semidefinite when
by 0

and at least one of the elements is zero.

Now, to establish whether x7ax is positive definite, we first reduce a to a
diagonal matrix by applying the transformation, q~*( )q, where q is the orthog-
onal normalized modal matrix for a. We write

bz;O"'b’,;O

xax = (x"q)(q " 'aq)(q " 'x) ()
= (x"q)[4:0:;1(¢"x)
Then, letting
y=4q'x x=gqy (2-29)
{a) reduces to a canonical form iny:
F = XTax = yT[/‘LL(SU]y (2_‘30)

It follows that F is positive definite with respect to y when all the characteristic
values of a are positive. But y is uniquely related to x and y = 0 only when
x = 0. Therefore, F is also positive definite with respect to x. The problem of
establishing whether x”ax is positive definite consists in determining whether
all the characteristic values of a are positive.

%
£
:

T o
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We consider first the second-order symmetric matﬁx
Y -
a = [ 11 a2
Q13 dzy
Using (2-26), the characteristic values are related by
A+ Ay =P =ay, + azs

Ady = B2 = ajiaz5 — a%z = }a' @
We see from (a) that the conditions

Br>0  B,>0 (b)

are equivalent to :
S . Ay >0 Ay >0 (c)

uppose we specify that
a;; >0

la| = a1z, — a2y > 0 (d)

§ince ayy > 0? it fo}lows from the second requirement in (d) that ay, > 0.
Therefore, (d) is equivalent to (b). We let

Ay = [aui = djy

Ap1ds2
A = =
| Sl P Ja] (2-31)
Then, a is positive definite when
fi >0 B, >0
or (2-32)
Ar>0 A, >0

The quantities B ! apd A; are called the invariants and discriminants of a.
The gbove‘ criteria also apply for the nth-order case. That is, one can show
that a is positive definite when all its invariants are greater than zero.

B1>0 B, >0 p, >0 (2-33)

where f; is the sum of all the jth-order principal minors. Equivalent conditions
can be expressed in terms of the discriminants. Let A; represent the deter-
minant of the array consisting of the first J rows and columns.

auv Az 4y

a a ,
Aj — :12 :22 51121 (2_34)

agj “dp; L a

The conditions, ’ ’ i
A1 >0 A, >0 A,, >0 (2“‘35)

are sufficient for a to be positive definite. *

* See Ref. 1 for a detailed proof. Also see Prob. 2-15.
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Example 2-5
6

P e
NN
W N

The discriminants are
Ay = +1
A, =2—-1=+1
Ay =16-4H—-13-2)+ 12 -2) =
Since all the discriminants are positive, this matrix is positive definite. The corresponding

invariants are 7
Bi=1+24+3=+46

By = ( 2-—1)—!—(3——1)4-(6—4)

B3 =27y = +1
@
1 1
i -2 2
1 2 3
Since A, is negaiive (A, = —3), this matrix is rot positive definite.

Suppose b is obtained from a 'by an orthogonal transformation:

b = pTap = p ‘ap (2-36)
If a is symmetrical, b is also symmetrical:
b” = pTa’p = pTap (2-37)
Now, b and a have the same characteristic values.* This follows from
C - L) = [p e — ALp| = |a — AL (2-38)

Then, if a is positive definite, b is also positive definite. In general, the positive
definite character of a matrix is preserved under an orthogonal transformation.
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PROBLEMS
2-1. Consider the system
Ay = ABy (a)

where A and B arc symmetrical nth-order matrices and A is a scalar. Suppose
B can be expressed as (see Prob. 1-25)

B=1b"b (b)
where b is nonsingular. Reduce (a) to the form

ax = Ax .
where x = by. Determine the expression for a in terms of A and b.

2-2. Let x4, x, be two nth-order column matrices or column vectors and
let ¢q, ¢, be arbitrary scalars. If

C1X; + X%y =0

only when ¢, = ¢, = 0,x, and x, are said to be lincarly independent. It follows
that x, and x, are linearly dependent when one is a scalar multiple of the other.
Using (2-10) and (2—13), show that Q and Q; arc linearly independent when
A F# Ao

2-3. Determine the characteristic values and the modal matrix for

@ B
2 03
(b) 050
302

2-4. Following the procedure outlined in Prob. 2—1, determine the charac—

teristic values and modal matrix for

12)’1 -+ 12y2 = 4)\,_)71
12y; + 63y, = 9y,
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2-5. Suppose that b is derived from a by a similarity transformation.

b = p lap
Then,
b — | =la~
and it follows that b and a have the same characteristic equation.
(a) Deduce that

,1;(17) = ;'1§ca)
B = B k=12,...,n
Demonstrate for »
1 =2 [
oo P
The fact that By, Ba, . - -, B ave invariant under a similarity trans-

formation is quite useful. i .
(b) Show that -
2-6. When a is symmetrical, we can write
q'aq =

Express a™* in terms of q and A~ *. Use this result to find the inverse of

[

2-7. Positive integral powcrs of a square matrix, say a, arc defined as

a? = aa
a’ = aa’®
a’ = aa !

If |a] # O, a~ ! exists, and it follows from the definition that

a~lam =a !

(a) Show thata"is symmetrical when a is symmetrical.. . o
(b) Let 4 be a characteristic value of a. Show that 4 is a characteristic
" .value of a” and Q; is the corresponding characteristic vector.

a'Q; = 4Q;

Hint: Start with aQ; = 4,Q; and prenqultiply by a. )
2-8. A linear combination of nonnegative integral powers of a is called a
polynomial function of a and written as P(a). For example, the third order

polynomial has the form
P(a) = coa® + cia® + ca + &l

Note that P(a) is symmetrical when a is symmetrical.
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Let F(4) = 0 be the characteristic equation for a. When the characteristic
values of a are distinct, one can show that (see Ref. 1)

Fa)y=10

where 0 is an nth-order null matrix. That is, a satisfies its own characteristic
equation. This result is known as the Cayley-Hamilton Theorem.

(a) Verify this theorem for
121
=l 2

Note: F(a) = a®> — Bia + B,1,.
(b) Show that :

_ 1
al=—(a%-fa+pl) forn=3
3

(c) Establish a general expression for a™! using (2-25).
2-9. Determine whether the following quadratic forms are positive definite.

(a) F = 2x} + 4x;x, + 3x3
(b) F = 3x? + 5x% + 6x% — 4x,x, + 6x1X3 — 8X3%3

2-10. Show that a necessary but not sufficient condition for a to be positive
definite is
ay > 0,(122 > 0,...,([,,,, >0

(Hint: Takex; # Oand x; = Oforj # i,j = 1,2,...,n)

2-11. If Ja] = 0, ax = 0 has a nontrivial solution, say x,. What is. the
value of xTax, ? Notc that 2 = Qis a characteristic value of a when a is singular.

2-12. Let C be a square matrix. Show that CTC is positive definite when
IC| # 0 and positive semidefinite when |C| = 0.
(Hint: Start with F = x"(C"C)x and let y = Cx. By definition, F can equal
zero only when x = 0 in order for the form to be positive definite.)

2-13. Consider the product CTaC, where a is positive definite and C is
square. Show that CTaC is positive definitc when |C| # 0 and positive semi-
definite when |C| = 0. Generalize this result for the multiple product,

CIC:-l e C’lracl GGy

2-14. Let a be an mth-order positive definite matrix and let C be of order
m x n. Consider the product,

b = C'aC

Show that b is positive definite only when the rank of C is equal to n. What
can we say about b when #(C) < n?
2-15. Consider the quadratic form

agy Qyz2 0 Qe | Xy

diz oz " dyul} Xy
Fz[x1x2”'xn] - - . .

Ain Qan """ Qpu Xn
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‘We partition a symmetrically,
(pxp) (pxa_ (@*1)

A A X
F = XTXT [ 11 12 1
KX 4, A 1%

@xp  @xa l@xD
where g = n — p. The expansion of ' = XTaX has the form
F = XTA, Xy + 2XTA A, + XTA2X,
Now, we take X, = 0 and denote the result by F:
F, = X[A: Xy

For F, > 0 for arbitrary X,, A, must be positive definite. Since |y s equal
to the product of the characteristic values of Ay, it follows that |A; 1| must be
positive. ;
(a) Bytakingp =1, 2, ..., n, deduce that - .
Apz‘A11|>O -’31,2,...,?1

are necessary conditions for a to be positive definite. Note that it
remains to show that they are also sufficient conditions.

(b) Discuss the case where 4, = 0.

2-16. Refer to Prob. 1-25. Consider a to be symmetrical.

(a) Deduce that one can always express a as the product of nonsingular
Jower and upper triangular matrices when a is positive definite.

(b) Suppose we take
by =by == b = +1

Show that a is positive definite when

g;; >0 j=L2....n
and positive semi-definite when

g;=0 Jj=12...,n

and at least one of the diagonal clements of g is zero.
(c) Suppose we take g = b*. Then,
|G| = By
and
A, = |A11] = b}ib3z by

Show that the diagonal elements of b will always be real when a is

positive definite.
2-17. If a quasi-diagonal matrix, say a, is symmetrically partitioned, the
submatrix A,; is also a quasi-diagonal matrix. Establish that

3=[A55ij] i,j=l,2,...,N

is positive definite only when A; (i = 1, 2, ..., N) are positive definite.

T e DN A

‘ PROBLEMS 65
Hint: Use the result of Prob. 1-23. Verify for

00
0 0
21
0 5 2

O N =
e R S

<

2-18. Suppose we expre . L
for example, P press a as the product of two quasi-triangular matrices,
exp  (pxa)

(nxn .
a)=[G“ 0 B.: B
GZl GZZ 0 BZZ
@xp) (g3x9)
where p + q = n. We take
By =1, B, = I

S g



