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Characteristic-Value 
Problems and 
Quadratic Forms


2-1. INTRODUCTION 

Consider the second-order homogeneous system, 

(all - )x + a,2x-2 0 (2-1) 
- )X2 0a21x1 + (a2 2 

where A is a scalar. Using matrix notation, we can write (2-1) as 

ax = Ax (2-2) 

or 
(a - 212)X 0 

(2-3) 

The values of 2 for which nontrivial solutions of (2-1) exist are called the 

characteristicvalues of a. Also, the problem of finding the characteristic values 
is referred to as a second-orderand corresponding nontrivial solutions of(2-) 

characteristic-value problem.* 
The characteristic-value problem occurs naturally in the free-vibration 

analysis of a linear system. We illustrate for the system shown in Fig. 2-1. 

The equations of motion for the case of no applied forces (the free-vibration 

case) are 

m2y 2 + k2(y2 - Y) = 0 

m2 + kjy2 - k2(y2 - Y) = 0 

* Also called "eigenvalue" problem in some texts. The term "eigenvalue" is a hybrid of the 

German term Eigenwerte and English "value." 
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Assuming a solution of the form 
' y' = Ale wt Y2 = A2eic °t 

(b) 

and substituting in (a) lead to the following set of algebraic equations relating 
the frequency, co, and the amplitudes, AI, A2: 

(k1 + k2)A - k2A2 = n1co2A 1 

c-k 2 Al + k 2A2 = 2co2A 2 

We can transform (c) to a form similar to that of(2-1) by defining new amplitude 

measures,* 
= )2 

A = A 12, (d) 
A.2 = A 2 I 

and the final equations are 

kL + k2- k2 - 1 
--- - A1 712 = 4A1 

inYZ1n nrz (e) 

2 =A2A, + A--
1/1-1I1n /'2 

The characteristic values and corresponding nontrivial solutions of (e) are 

related to the natural frequencies and normal mode amplitudes by (d). Note 

that the coefficient matrix in (e) is symmetrical. This fact is quite significant, 

as we shall see in the following sections. 

Y21 M2 
k2 

Fig. 2-1. A system with two degrees of freedom. 

Although the application to dynamics is quite important, our primary reason 

for considering the characteristic-value problem is that results obtained for the 

characteristic value problem provide the basis for the treatment of quadratic 

* See Prob. 2-1. 
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Solving (a), 

forms which are encountered in the determination of the relative extrema of a Al = +6 2 = +1 

function (Chapter 3), the construction of variational principles (Chapter 7), and (2) 

stability criteria (Chapters 7, 18). This discussion is restricted to the case where al -2 

a is real. Reference 9 contains a definitive treatment of the underlying theory all -1] 

A1 ±° x2 = 1and computational procedures. 
;11, = +i where i = -I-

2-2. SECOND-ORDER CHARACTERISTIC-VALUE PROBLEM 

We know from Cramer's rule that nontrivial solutions of By definition, nontrivial solutions of (2-4) exist only when = 21 or 12. 
In what follows, we suppose the characteristic values are real. We consider 

(all - ))Xi + a1z2 2 = 0 (2-4) first the case where a = . Equation (2-4) becomes 
a2 1xl + (a2 2 -- )X 2 = 0 

(all - l)xl + al 2x 2 - 0 
(a)are possible only if the determinant of the coefficient matrix vanishes, that is, 

a2 ,xl + (a2 2 - ; 1l)x 2 = 0 
when I _ I I

a l l 

Ia21 -- U12 (2->) The second equation is related to the first by 
a22 -_ 

a 21 ) times the first eq.Expanding (2-5) results in the following equation (usually called the charac- second eq. = ( (b) 
teristic equation) for A: \'-O 

- Al 

' 2 - (all + a2 2)A + (alla2 2 - a2 1a 12 ) 0 I-- o} This follows from the fact that the coefficient matrix is singular. 

We let 
f11 = all + a2 2 (2-7) 

(all - l)(a2 2 - 1) - a1 2 a21 = 0 (c) 

1f2 al1 a2 2 - a 2a2 1 = al Since only one equation is independent and there are two unknowns, the solu­
tion is not unique. We define x(?, x21) as the solution for A = Al. Assuming* 

and the characteristic equation reduces to that a 2 # 0, the solution of the first equation is 
2 - 1A + /32= (2-8) 

1 
-~~~~ 

X C~~1)011 
(d) 

The roots of (2-8) are the characteristic values of a. Denoting the roots by X(t) _ all - A l 

il, A2,the solution is a1 2 
A1,2 = (WIt + I- 42)2 (2-9) 

where cl is an arbitrary constant. Continuing, we let 

When a is symmetrical, al 2 = a2 1, and 
X(1 = {x('), x(1 } (e) 

pi - 4 = (all - a2 2)
2 + 4(a 12)

2 

and take cl such that (X(1))Tx(l) = 1. This operation is called normalization, 
Since this quantity is never negative, it follows that the characteristic values for a and the resulting column matrix, denoted by Q 1, is referred to as the charac­

symmetrical second-order matrix are always real. teristic vector for A1. 

Example 2-1 Q, = c,{+1 -la - (2-10) 
a12 

(I) 
2 

2511 + 1 1 

fI = 2 - (2)(2)= 67 By definition, 
fl (2)(5) - (2)(2) 6 QTQ = 1 (2-11) 

The characteristic equation for this matrix is *If a2 =O, we work with the second equation. 

A2 - 7 + 6 = 0 (a) 
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Since Q1 is a solution of (2-4) for = Al, we see that 

aQ = Q1 (2-12) 

Following the same procedure for =A2, we obtain 

Q2 = c2 {1 1 a - 2b2} (2-13) 

where 

(i\2 =1 + all -+- 22 
at2 

Also, 
Q2Q 2 = 1 (2-14) 

aQ 2 = i;2Q2 

It remains to discuss the case where A1 = iA2. If a is symmetrical, the char­
acteristic values will be equal only when al 1 = a22 and a1 2 = a21 = 0. Equa­
tion (2-4) takes the form 

(al - )xl + ()x 2 = 0 (a)
(0)x1 + (all - )x 2 = 0 

These equations are linearly independent, and the two independent solutions 
are 

x(l) = {c1 , 0} 
(b)

X(2) = {0, C2} 

The corresponding characteristic vectors are 

Q = {+1,0} (2-15) 
Q2 {0, + 1} 

If a is not symmetrical, there is only one independent nontrivial solution when 
the characteristic values are equal. 

It is of interest to examine the product, QrQ2. From (2-10) and (2-13), 
we have 

QTQ2 -c 2 (all -- A,)(a -A2) (a)a 12 

Now, when a is symmetrical, the-right-hand term vanishes since 

al - 22 = -(a 2 2 - ) = -a 1 (b)
all - 1 

and we see that Q Q2 = 0. This result is also valid when the roots are equal. 
In general, QQ2 #¢ 0 when a is unsymmetrical. Two nth order column vectors 
U, V having the property that 

UT V=VTU = 0 (2-16) 

are said to be orthogonal. Using this terminology, Q1 and Q2 are orthogonal 
for the symmetrical case. 
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Example 2-2 

(1) 

[2 2] 

A1 = +6 2 = + 

The equations for = 1 = + 6 are 

-4x, + 2x 2 = 0 

2x - x = 0 

We see that the second equation is - times the first equation. Solving the first equation, 
we obtain 

X(?) = C1 X1) = 2X(1) = 2c1
Then, 

x( )= cl{1, 2}
and the normalized solution is 

Q, = {1,2} 
Repeating for = 2 = + 1, we find 

(2)= c2{1, -}
and 

2 1 
Q2 = / {1, -} = -/5 {2, - 1} 

One can easily verify that 

and aQj =2 j Qj i = 1,2 

(2) 
QIQ 2 = Q2Q1 = 0 

a:[1 3]
The characteristic values and corresponding normalized solutions for this matrix are 

21 = +5 2 = -1 

1 5 

Q = {4 , - 1} 
We see that QTQ 2 # 0. Actually, 

Q 7 
QTQ 2 = -5 

(3) 

= +i )2 = -i 

We have included this example to illustrate the case where the characteristic values are 
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We have shown that the characteristic vectors are always linearly indepen­
complex. The equations corresponding to ). = ). are 

dent when a is symmetrical. They are also independent when a is unsym-
(1 - i)xt - 2x 2 = 0 metrical, provided that Al A2. Then, ql # 0 except for the case where a is 
xl- (1 + i)x 2 = 0 unsymmetrical and the characteristic values are equal. If ql # 0, q-t exists 

Note that the second equation is (1 - i) times the first equation. The general solution is and we can express (2-18) as 

I- i

x(l) {1, 2j} q-laq = (2-19) 

The matrix operation, p- ( )p where p is arbitrary, is called a similaritytrans-
Repeating for = .2, we find 

formation. Equation (2-19) states that the similarity transformation, q-l'( )q, 
X(2) = C2 {1, W 

reduces a to a diagonal matrix whose elements are the characteristic values 
· ~~-~·L'2 of a. · ·

When the roots are complex, 22 is the complex conjugate of At,.Now, we take c2 = c. If a is symmetrical, the normalized characteristic vectors are orthogonal, 

Then, x(2) is the complex conjugate of x(1) We determine c, such that that is, 
2 

(X( t))Tx( )= 1 QfQ 2 = Q2Q1 = 0 

Finally, the characteristic values and characteristic vectors are Also, by definition, 
QtQ 1 = QQ2 = 1 

Al,2-- +i 

Using these properties, we see that 
Q1 2-

In general, the characteristic values are complex conjugate quantities when the elements q = LQtJfI [Qt Q2] = 

of a are real. Also, the corresponding characteristic vectors are complex conjugates. 
and it follows that 

q-1 = qT (2-20) 

2-3. SIMILARITY AND ORTHOGONAL TRANSFORMATIONS A square matrix, say p, having the property that pT = p' is called an 
f
i 

orthogonal matrix and the transformation, pT( )p, is called an orthogonal 
The characteristic vectors for the second-order system satisfy the following transformation. Note that an orthogonal transformation is also a similarity 

relations: transformation. Then, the modal matrix for a symmetrical matrix is orthog­
aQ1 =AiQ1 (a) 

onal and we can write 
aQ 2 =A 2 Q2 qTaq = (2-21) 

We can write (a) as 

a[Q1 Q2 1 = [Q1 Q21' 1 0 (b) Example 2-3 

(1)
Now, we let 

q = [Q Q2] [2 2] 

(2-17)
1, == , 

2, = +6 Q1 = - {(1, 2} 

normalized 
Column j of q contains the normalized solution for )j. We call q the 

A2 = +1 Q2 =1 {2,-1} 

modal matrix* for a. With this notation, (b) takes the form 

aq = qk (2-18) 

=[A 0]i=[+ +0 
* This terminology has developed from dynamics, where the characteristic vectors define the q= [Q, Q2 = -1]Q2 ]= [2_ 

normal modes of vibration for a discrete system. 
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One can easily verify that 
We verify that qT = q I and qlaq = : 

q aq [ J=-I 
T I [ 2] [1 2]1 [5 01 = [I 0 

(Iq 5[2 -1][2 -1 5[0 5 [0 1] 

I r2 2rl 21 1 r 21 

a X2 5 2 -1| X 2 -1| 2-4. THE nth-ORDER SYMMETRICAL CHARACTERISTIC-VALUE
/5 

PROBLEM 

v/ 2 -1] 0 1] The nth order symmetrical characteristic-value problem involves deter­

qTaq I [I - 1 126 _ 2 = 6 1] minling the characteristic values and corresponding nontrivial solutions for = 
5 2a 1 - IL 

allxl + a 2 X2 + + alnXn = AX 1 

(2) 
al 2 x 1 + + a2 X,, = AX 2 (2-22)a2 2 x2 + 

an1, + a2 x2 ... + an,,,x, = Ax,
1 

A1, = +5 Q1 =-A={2, + 1} We can write (2-22) as 
- 5 ax = Ax 

(2-23) 
(a - n)x = Q2= L 4,- 1A = -12 

In what follows, we suppose a is real. 
rql// 4/X/ n For (2-23) to have a nontrivial solution, the coefficient matrix must be[O - 1 Q= L// -1/17 

singular. 
a - I,, = O (2-24)

Since a is not symmetrical, qT 0 q 1. Actually, 
2 5/3] The expansion of the determinant is 

85- 1/J17 2//7 [l/6 - ,/1/31 (_)n (n- _ 3n-1 + p 2,n -2 _ * * + (1) n) = O 

where 
One can easily verify that 

q-aq= 0] = h (2-25) 
q' 10 I1 n al 

and /3j is the sum of all the jth order minors that can be formed on the diag-
(3) onal.* Letting Al, A2, ,An denote the roots, and expressing the characteristic 

equation in factored form, we see that 
a i -21 

[=L+i f 
fl = A1 + 2 +± + , 

2 = A21A 2 + A21A + ... + An-1An (2-26)3 (2-26) 

fn = 1I2 .i.. n 
q= 2/3 [-i i2 1 We summarize below the theoretical results for the real symmetrical case. 

The proofs are too detailed to be included here (see References 1 and 9): 
In this case, q involves complex elements. Since the characteristic vectors are complex 
conjugates, they are linearly independent and q-' exists. We find q-', using the defi- 1. The characteristic values A1, A2, ... , Ain, are all real. 
nition equation for the inverse (Equation (1-50)): 2. The normalized characteristic vectors Q1,Q, . , Qn, are orthogonal: 

QTQj = 6ij i,j = 1,2. n 
I1~lAdjq = 2 j2q -Adj q = 3/4I 

l 

+ * Minors having a diagonal pivot (e.g., delete the kth row and column). They are generally calledIqi principal minors. 
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The expansion of la - I3} = 0 is 

3. a is diagonalized by the orthogonal transformation involving the nor-
(3 - 2)((1- )2 4) = 0 

malized modal matrix. and the roots areqraq = . 
it = 3 22 =-3 23 = -1 

where 
q = QtQ2 * Q1n Writing out ax = 2x, we have 

= [iJj] (1 - )x +2x 2 

2x +(1 - )x2 (a) 

Example 2-4 (3 - i,)X 3 = 0 

When 2 = 3, (a) reduces to 
(1) 5 -2 01 - 2x I +2x 2 = 0 

a - -2 3 - 2xt -2X2 = 0 (b) 

0 -1 I1 (O)X3 = 0 

Since a is symmetrical, its characteristic values are all real. We first determine il, fi2, 33 We see from (b) that (a - 213) is of rank 1 when 2 = 3. The general solution of (b) is 

using (2-2 5 ): 5 3 + I = +9 X = C1 X2 = C1 X3 = C2 

By specializing the constants, we can obtain two linearly independent solutions for the 
2, = +11 + 5 + 2= +18 repeated root. Finally, the characteristic vectors for L = `2= 3 are 

,3 = 5(2) - (-2)(-2) - +6 

The characteristic equation is Ql {A2' we ' °}
3f() = 2, - 922 + 182 - 6 = 0 

Q2 = {0,0,1} 

and the approximate roots are When = 3 =- 1,(a) reduces to 
,, +0.42 

2xl + 2x 2 = 0 
A, + 2.302 

2x, + 2 2 = 0 
23, +6.28 

4x = 0 

To determine the characteristic solutions, we expand ax = 2x, 
The general solution and characteristic vector for 23 are 

(5 - )x1 
_ 2x 2 

xi ) - -x 31) and x3' = 0 
(- 2)x _-X = -(3 - )x2 

(1 - 2)X3 = X2 Q3 { ' 2,O] 

Solving the first and third equations for xt and x3 in terms of x2, the general solution is 
This example illustrates the case of a symmetrical matrix having two equal characteristic 

values. The characteristic vectors corresponding to the repeated roots are linearly inde­
2 

I=1,2,3 pendent. This follows from the fact that a - I13 is of rank I for the repeated roots. 

I - Aj 
2-5. QUADRATIC FORMS 

Finally, the modal matrix (to 2-place accuracy) is 
The homogeneous second-degree function 

-+0.22 +0.51 -0.84 

q = [QtQ2Q3 = +0.50 +0.68 +0.54 F =a l l x + 2a12xlx2 + a2 2x22 

L+0.8 5 -0.52 -0.10 is called a quadratic form in x, x 2. Using matrix notation, we can express 

(2) F as 

j2 O-
F 2 ral a] {X xT 

La.2 a22 x2 
.0 
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In general, the function We consider first the second-order symmetric matrix 
n n 

F = E ajkxjxk = x ax (2-27)
k=1 j=1 =Fall al2F 

Lal2 a2 2 where ajk = akj, for j =A k, is said to be a quadratic form in xl, x2,..., x,,. Using (2-26), the characteristic values are related byIf F = xTax is nonnegative (2 0) for all x and zero only when x = 0, we call 
F a positive definite quadratic form. Also, we say that a is a positive definite 21 + 22 = 1 = all + a2 2 

(a)matrix. If F > 0 for all x but is zero for some x :A 0, we say that F is positive A;l2 = = al1 a2 2 - a 2 = Jai 
semidefinite. We define negative definite and negative semidefinite quadratic We see from (a) that the conditions
forms in a similar manner. A quadratic form is negative definite if F < 0 for 
all x and F = 0 only when x = 0. The question as to whether a quadratic form #3I>o0 12>0 (b)
is positive definite is quite important. For example, we will show that an are equivalent to 
equilibrium position for a discrete system is stable when a certain quadratic Ai >0 A2 >0 (c)form is positive definite. Suppose we specify that 

Consider the quadratic form all >0 

F = blx2 + b 2x2 + + bx,, 2 al = alla22 - a 2 > 0 (d) 

bl ° '. ' ° xlA Since a > 0, it follows from the second requirement in (d) that a2 2 > 0. 
Therefore, (d) is equivalent to (b). We let 

0 b2 ... 0 X2 (2-28) 
=[XIX ... XJ 

a, = all = a 1

LO=0 ... -" x, 
A2 = a l la 2 = ai (2-31)

When F involves only squares of the variables, it is said to be in canonical form. al 2a1 2 

According to the definition introduced above, F is positive definite when Then, a is positive definite when 

bl > 0 b2 > 0," b > 0 31> 0 f2 > 
or

It is positive semidefinite when (2-32)
A, >0 2 > 0 

bl 0 b2 > 0" b > 0 The quantities /fjand Aj are called the invariantsand discrimninantsof a. 
and at least one of the elements is zero. The above criteria also apply for the nth-oder case. That is, one can show 

Now, to establish whether xrax is positive definite, we first reduce a to a that a is positive definite when all its invariants are greater than zero. 
diagonal matrix by applying the transformation, q-'( )q, where q is the orthog­
onal normalized modal matrix for a. We write f > f22> ,, > 0 (2-33) 

where flj is the sum of all the jth-order principal minors. Equivalent conditionsxrax = (xTq)(q- aq)(q- x) (a) I can be expressed in terms of the discriminants. Let Aj represent the deter­
= (XTq)[.ijijy](qX) minant of the array consisting of the first j rows and columns.

Then, letting 
y = qTx x = qy (2-29) al1 a1 2 .. atj 

(a) reduces to a canonical form in y: A = :j12 22 a2 (2-34) 
F = xrax = yT[,iij]y (2-30) alj c2j .* ajj 

It follows that F is positive definite with respect to y when all the characteristic The conditions, 
values of a are positive. But y is uniquely related to x and y = 0 only when A1 > 0 A2 > 0 A,, >0 (2-35)ik, 
x = 0. Therefore, F is also positive definite with respect to x. The problem of are sufficient for a to be positive definite.*
establishing whether xTax is positive definite consists in determining whether 
all the characteristic values of a are positive. N, * See Ref. 1 for a detailed proof. Also see Prob. 2-15. 

I 
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-

Example 2-5 

(1) 1 1 

12 2 
1 2 3 

The discriminants are 

A1 = +1 

A2 = 2 -1 = +1 

A3 = 1(6-4)- 1(3 -2) + 1(2-2) = +1 

Since all the discriminants are positive, this matrix is positive definite. The corresponding 
invariants are 

= + 2 + 3 = +6 

P2 = (2 - 1) +-(3 - 1) + (6 - 4) = +5 

f3 = A3 = +1 
(2) 

1 1 t

L -2 

1 2 

Since A2 is negative (A2 = -3), this matrix is not positive definite. 

Suppose b is obtained from a by an orthogonal transformation: 

b = pTap = p- ap (2-36) 

If a is symmetrical, b is also symmetrical: 

b = pTaTp = p ap (2-37) 

Now, b and a have the same characteristic values.* This follows from 

(2-38)lb- AI, = p-'(a - I,)p = la - I, 

Then, if a is positive definite, b is also positive definite. In general, the positive 
definite character of a matrix is preserved under an orthogonal transformation. 
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PROBLEMS 

2-1. Consider the system 
Ay = By (a) 

where A and B are symmetrical nth-order matrices and A is a scalar. Suppose 
B can be expressed as (see Prob. 1-25) 

B = bTb (b) 

where b is nonsingular. Reduce (a) to the form 

ax = AX 

where x = by. Determine the expression for a in terms of A and b. 
2-2. Let xl, x2 be two nth-order column matrices or column vectors and 

let c1, c2 be arbitrary scalars. If 

Clxi + C2X2 = 0 

only when cl = c2 = 0, xl and x2 are said to be linearly independent. It follows 
that x1 and x2 are linearly dependent when one is a scalar multiple of the other. 
Using (2-10) and (2-13), show that Q1 and Q2 are linearly independent when 
;il = 212-

2-3. Determine the characteristic values and the modal matrix for 

r3 21
(a) 

2 7 

0 
(b) 0 5 0 

3 0 2 

2-4. Following the procedure outlined in Prob. 2-1, determine the charac­
teristic values and modal matrix for 

12y, + 12y 2 = 4y, 

12y + 63y2 = 9y2 
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Let F(i) = 0 be the characteristic equation for a. When the characteristic 
2-5. Suppose that b is derived from a by a similarity transformation. values of a are distinct, one can show that (see Ref. 1) 

b = p-'ap F(a) = 
Then, 

lb - Il = la - )1,l where 0 is an nth-order null matrix. That is, a satisfies its own characteristic 
equation. This result is known as the Cayley-Hamilton Theorem. 

and it follows that b and a have the same characteristic equation. (a) Verify this theorem for 
(a) Deduce that r2 1 

(b) = ,(a) 
k= 1,2,..., n/3(b) = 3(a) 

Demonstrate for Note: F(a) = a2 - la -+ 212. 

1r -2 I 1' (b) Show that 
= I - 1 P = 2 31 

a- = (a2 - ia + /3 3) for n 32 

The fact that 1I, x82, .. /3,n are invariant under a similarity trans­
formation is quite useful. (c) Establish a general expression for a- ' using (2-25). 

2-9. Determine whether the following quadratic forms are positive definite. 
(b) Show that 

(a) F = 2x2 + 4Xlx 2 + 3X2 

2-6. When a is symmetrical, we can write (b) F = 3xf + 5X2 + 6 - 4x1 x2 + 6xjX3 - 8x 2x 3 

qTaq = - 2-10. Show that a necessary but not sufficient condition for a to be positive 
:finite is 

Express a- in terms of q and - 1. Use this result to find the inverse of dc all > 0, a2 2 > 0,...,ann > 

a=2 7l (Hint: Take xi =A0 and xj = 0 for j =#i, j = 1, 2,..., n) 

2-11. If a = 0, ax = 0 has a nontrivial solution, say x. What is the 

2-7. Positive integral powers of a square matrix, say a, are defined as value of x'ax ? Note that 2 = 0 is a characteristic value of a when a is singular. 
2-12. Let C be a square matrix. Show that CTC is positive definite when 

2 a = aa |CI 0 and positive semidefinite when CI = 0. 
a 3 = aa2 (Hint: Start with F = xT(CTC)x and let y = Cx. By definition, F can equal 

zero only when x = 0 in order for the form to be positive definite.) 

aar = aar-1 2-13. Consider the product CTaC, where a is positive definite and C is 
= aa' 

square. Show that C7aC is positive definite when CI # 0 and positive semi-

If fal # O,a- exists, and it follows from the definition that definite when CI = 0. Generalize this result for the multiple product, 

a-lar = ai' -l C Cn- I laC ,,-1 C 

(a) Show that a' is symmetrical when a is symmetrical. 2-14. Let a be an mth-order positive definite matrix and let C be of order 

(b) Let Ai be a characteristic value of a. Show that ,' is a characteristic m x . Consider the product, 

value of ar and Qi is the corresponding characteristic vector. b = CTaC 

arQi = XrQi Show that b is positive definite only when the rank of C is equal to n. What 
can we say about b when r(C) < n? 

Hint: Start with aQi = iQi and premultiply by a. 2-15. Consider the quadratic form 
2-8. A linear combination of nonnegative integral powers of a is called a 

al ' xipolynomial function of a and written as P(a). For example, the third order all a1 2 a 
polynomial has the form [X1X x]L 

1
12 a22 .. a2n X2F 2 

2P(a) = c0a3 caa 2 ++ c2a + c3In 
aln a2n* ann- X, 

Note that P(a) is symmetrical when a is symmetrical. 
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Hint: Use the result of Prob. 1-23. Verify for 

We partition a symmetrically, 
(p 1)(pxp) (pxq) 

x r[All A1 2 2 3 0 0 
[X1X2 AT A22 X2F 0 2 1 

(qp) (q x q) (q 1) 
0 0 5 21 

where q = n - p. The expansion of F = XTaX has the form 2-18. Suppose we express a as the product of two quasi-triangular matrices, 

F = X A, 1 X + 2XTA 12 A2 + X2A2 2X2 for example, 
(pxp) (pxq) 

Now, we take X2 = 0 and denote the result by Fp: (nxn) [G 0 1 B1 21 1 

G21 G2 2j B2 2 J 
Fp = XTA 1X1 (qxp) (qxq) 

For Fp > 0 for arbitrary X1, All must be positive definite. Since /A 1l is equal where p q = n. We take 

to the product of the characteristic values of All, it follows that A lll must be 
B 11 = Ip B2 2 ' Iq 

positive. Show that the diagonal submatrices of g are nonsingular for arbitrary p when 
(a) By taking p = 1,2,..., n, deduce that 

a is positive definite. 
Ap = IAlll > 0 p = 12,...,n 

are necessary conditions for a to be positive definite. Note that it 

remains to show that they are also sufficient conditions. 

(b) Discuss the case where Ap = 0. 
2-16. Refer to Prob. t-25. Consider a to be symmetrical. 

(a) Deduce that one can always express a as the product of nonsingular 

lower and upper triangular matrices when a is positive definite. 

(b) Suppose we take 
bll = b22 = bn,, +1 

Show that a is positive definite when 

j = 1,2,...,ngjj > 0 

and positive semi-definite when 

gjj > 0 j =1, 2,. . . , n 

and at least one of the diagonal elements of g is zero. 

(c) Suppose we take g = b. Then, 

GIlI B IIJ 

and 
b lb2 . b2PPi\ = = b 1=22 

Show that the diagonal elements of b will always be real when a is 

positive definite. 
2-17. If a quasi-diagonal matrix, say a, is symmetrically partitioned, the 

submatrix All is also a quasi-diagonal matrix. Establish that 

a = [Ai i, j = 1, 2, . . , N 

is positive definite only when Ai (i = 1, 2, . ., N) are positive definite. 


