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3 
Relative Extrema


for a Function 

3-1. RELATIVE EXTREMA FOR A FUNCTION OF ONE VARIABLE 

Letf(x) be a function of x which is defined for the interval x, • x < x2. If 
f(x) - f(a) >0 for all values of x in the total interval x1 x A x2, except 
x = a, we say the function has an absolute minimum at x = a. If f(x) - f(a) > 0 
for all values of x except x = a in the subinterval, cc x A /3,containing x = a, 
we say that f(a) is a relative minimum, that is, it is a minimum with respect to 
all other values of f(x) for the particular subinterval. Absolute and relative 
maxima are defined in a similar manner. The relative maximum and minimum 
values of a function are called relative extrema. One should note thatf(x) may 
have a number of relative extreme values in the total interval x x x2. 

As an illustration, consider the function shown in Fig. 3-1. The relative 
extrema are f(a), f(h), f(c), f(d). Using the notation introduced above, we say 
that f(b) is a relative minimum for the interval b 4 x 4 fib. The absolute 
maximum and minimum values off occur at x = a and x = d, respectively. 
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Fig. 3-1. Stationary points at points A, B, C, and D. 
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In general, values of x at which the slope changes sign correspond to relative 
extrema. To find the relative extrema for a continuous function, we first deter­
mine the points at which the first derivative vanishes. These points are called 
stationarypoints. We then test each stationary point to see if the slope changes
sign. If the second derivative is positive (negative) the stationary point is a 
relative minimum (maximum). If the second derivative also vanishes, we must 
consider higher derivatives at the stationary point in order to determine whether 
the slope actually changes sign. In this case, the third derivative must also 
vanish for the stationary point to be a relative extremum. 

Examni 3-1 ....... ~ 


(1) 

f(X) tox 2 2()Setting X3 2x 2ua =thefirst±derivative x+ + 5 
Setting the first derivative equal to zero, 

dx 
and solving for x, we obtain 

x 1,2 = -2 + 3 
T'he second derivative is 

d2 f 
= 2x + 4 =2(x + 2) 

Then, x = x = 2 + f3 corresponds to a relative minimum and x = x2 =-2 - /
corresponds to a relative maximum. 

(2) 

f(x) = (x - a)3 + c 

The first two derivatives are 

df 
a)

2 

d~x 
= 3(x - (a) 

d2f 
--- = 6(x - a) 

Since both derivatives vanish at x = a, we must consider the third derivative: 

d3f 
3

dx 

The stationary point, x = a, is neither a relative minimum nor a relative maximum since 
the third derivative is finite. We could have also established this result by considering the 
expression for the slope. We see from (a) that the slope is positive on both sides of x = a. 
The general shape of this function is shown in Fig. E3-1. 
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Fig. E3-1 
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The sufficient condition for a stationary value to be a relative extremum 

(relative minimum (maximum) when d2J'/dx2 > 0 (< 0)) follows from a con­

sideration of the geometry of the f(x) vs. x curve in the vicinity of the stationary 
point. We can also establish the criteria for a relative extremum from the Taylor 

series expansion of f(x). Since this approach can be readily extended to func­
tions of more than one independent variable we will describe it in detail. 

Suppose we know the value off(x) at x = a and we want f(a + Ax) where 

Ax is some increment in x. If the first n + 1 derivatives off(x) are continuous 
in the interval, a • x A a + Ax, we can express f(a + Ax) as 

f(a + Ax) - f(a) 
d (a) + Rdf(a) Ax Id2f(an)(Ax)2 +' f (aX)n + R, (3-1)Ax 

where dJf(a)/dxj denotes the jth derivative off(x) evaluated at x = a, and the 
remainder R, is given by 

d "+'f(,) + (3-2) 
(n + )! dx"+ ( 

where { is an unknown number between a and a + Ax. Equation (3-1) is called 

the Taylor series expansion* of f(x) about x = a. If f(x) is an nth-degree 

polynomial, the (n + 1)th derivative vanishes for all x and the expansion will 

yield the exact value off(a + Ax) when n terms are retained. In all other cases, 

there will be some error, represented by R,, due to truncating the series at n 

terms. Since R, depends on e, we can only establish bounds on Rn. The fol­

lowing example illustrates this point. 

* See Ref. 1, Article 16-8. 
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Example 3-2 

We expand sin x in a Taylor series about x = 0 taking n = 2. Using (3-1) and (3-2), 
and noting that a = 0, we obtain 

sin Ax = Ax + Rz (a) 
(Ax)3 

R2 -- cos 0 < ~ Ax (b)
6 

The bounds on R21are 
3la1xcos Ax << R1R<AAxl 3 

(c)_1 
t; A 
U V1 

If we use (a) to find sin (0.2), the upper bound on the truncation error is(0.2)3/6 0.0013. 

If Ax is small with respect to unity, the first term on the right-hand side of 
(3-1) is the dominant term in the expansion. Also, the second term is more 
significant than the third, fourth,..., nth terms. We refer to df/dx Ax as 

the first-order increment in f(x) due to the increment, Ax. Similarly, we call 
½d2f/dx2 (Ax)2 the second-order increment, and so on. Now, f(a) is a relative 
minimum when f(a + Ax) - f(a) > 0 for all points in the neighborhood of 

x = a, that is, for all finite values of Ax in some interval, -q < Ax < , where 
~iand are arbitrary small positive numbers. Considering Ax to be small, the 
first-order increment dominates and we can write 

f(a + Ax) - f(a) = Ax + (second- and higher-order terms) (3-3)
dx 

Forf(a + Ax) - f(a) to be positive for both positive and negative values of 

Ax, the first order increment must vanish, that is, df(a)/dx must vanish. Note 
that this is a necessary but not sufficient condition for a relative minimum. If 

the first-order increment vanishes, the second-order increment will dominate: 

f(a + Ax) - f(a) = 
I d2f(a) (Ax)2 + (third- and higher-order terms) (3-4) 

It follows from (3-4) that the second-order increment must be positive for 
f(a + Ax) - f(a) > 0 to be satisfied. This requires d2f(a)/dx 2 > 0. Finally, 
the necessary and sufficient conditions for a relative minimum at x = a are 

df(a) d2f(a) 
dx ° dX2 > 0 (3-5)(3-5)

If the first two derivatives vanish at x = a, the third-order increment is now 
the dominant term in the expansion. 

f(a + Ax) + f(a) = -
dhf(a) (Ax) + (fourth- and higher-order terms) (3-6)~ 

6 x 

Since the third-order increment depends on the sign of Ax, it must vanish for 
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Using differential notation, the Taylor series expansion (3-1) about x can be 
f(a) to be a relative extremum. The sufficient conditions for this case are as 

written as 
follows: 

Relative Minimum Af = df + d2f+.-+ I dnf + Rn (3-14)
2 n! 

d 3f df > 
Tx-Xdx dx> The first differential represents the first-order increment in f(x) due to the:` 

3 
X4 

(3-7) increment, Ax. Similarly, the second differential is a measure of the second­
order increment, and so on. Then,f (x) is a stationary value when df = 0 for all

Relative Maximum 
permissible values of Ax. Also, the stationary point is a relative minimum 

d3f d4f< (maximum) when d2 f > 0 (<0) for all permissible values of Ax. The above 
dx 3 dx4 

criteria reduce to (3-5) when the differentials are expressed in terms of the 
derivatives. 

The notation used in the Taylor series expansion off(x) becomes somewhat 
Rules for forming the differential of the sum or product of functions are listed 

cumbersome for more than one variable. In what follows, we introduce new 
below for reference. Problems 3-4 through 3-7 illustrate their application.

notation which can be readily extended to the case of n variables. First, we 
define Af to be the total increment inf(x) due to the increment, Ax. 

f= U(x) + (xY) 

Af = '(X + Ax) - ,f(x) (3-8) df = du + dv 
d2f = d(df)= d2u + d2v 

(3-15) 

This increment depends on Ax as well as x. Next, we define the differential 
operator, d, as. 

f = u(x)v(x)
d() = - Ax (3-9)

dx df = u dv + v du 
d2f = u d2v + 2 du dv + v d2 u 

(3-16) 

The result of operating onf(x) with d is called thefirst differential and is denoted 
by df: f = f(y) where y = y(x) 

df = x) Ax = df(x, Ax) (3-10)
dx 

df = dy 
., (3-17)The first differential off(x) is a function of two independent variables, namely, 

d2f = l2f f d2yx and Ax. Iff(x) = x, then df/dx = 1 and 
dy2 

d 
dy 

df = dx = Ax (3-11) 

One can use dx and Ax interchangeably; however, we will use Ax rather than dx. 3-2. RELATIVE EXTREMA FOR A FUNCTION OF n INDEPENDENT 
Higher differentials off(x) are defined by iteration. For example, the second VARIABLES 
differential is given by 

Let f(x,, x..., x,) be a continuous function of n independent variables 

d2f = d(df) = L( Ax Ax (3-12) (x1, x2,. , x,,). We define Af as the total increment in f due to increments in 
the independent variables (Axe, Ax 2 ,..., Ax,): 

Since Ax is independentof x, 
,..., n) (3-18)d Af = f(x 1 + Ax, 2 + Ax 2,..., x + Ax) - f(xl x2

x(Ax) 0 
If Af > 0 (<0) for all points in the neighborhood of (xl, x2,.. . , x,), we say 

and d2 f reduces to that f(xl, x2 , .. , x,) is a relative minimum (maximum). We establish criteria 

df =f(X) (Ax)2 = d2f(x, Ax) (3-13) for a relative extremum by expanding f in an n-dimensional Taylor series. The 
dX2 procedure is identical to that followed in the one-dimensional case. Actually, 

we just have to extend the differential notation from one to n dimensions. 
In forming the higher differentials, we take d(Ax) = 0. 
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We define the n-dimensional differential operator as 

)d/Ax= x() + a() x 2 +.. + () Ax,- " a xi (3-19) 
Ox, ax2 ax j xtcj 

where the increments (Axl, Ax2 Axn) are independent of (xl, x 2,..., x,). 

The result obtained when d is applied to f is called the first differential and 
written as df. 

(3-20)
df=-j=1 xj Ax 

Higher differentials are defined by iteration. For example, the second differen­
tial has the form 

(3-21) 

Since Axj are considered to be independent, (3-21) reduces to 

d2 f = E AXjxa x,AX (3-22)
k 

k=1 j~laXjaXk 

Now, we let 
f(I) = 

(3-23)
f(2)Iax,_] j, k = 12,... ,n 

Ax = {Axj} 

and the expressions for the first two differentials simplify to 
' df = AXTf( ) (3-24) 
2

d2 f = AXTf( ) Ax 

The Taylor series expansion for f about (xl, x2, . . , x), when expressed in 
terms of differentials, has the form 

Af =df + 2 dqf + -- - + dnf + R, (3-25) 
n ! 

We say that f(x 1 , x2 , ... , x,) is stationarywhen df = 0 for arbitrary Ax. This 

requirement is satisfied only when 
f() = 0 (3-26) 

Equation (3-26) represents n scalar equations, namely, 

(3-27)Of = j= l,2,...,n 

The scalar equations corresponding to the stationary requirement are usually 

SEC. 3-2. FUNCTION OF n INDEPENDENT VARIABLES 

called the Euler equations for f. Note that the number of equations is equal 
to the number of independentvariables. 

A stationary point corresponds to a relative minimum (maximum) of f 
when d2 f is positive (negative) definite. It is called a neutral point when d2f 
is either positive or negative semidefinite and a saddle point when d2 f is indif­
ferent, i.e., the eigenvalues are both positive and negative. This terminology 
was originally introduced for the two dimensional case where it has geometri­
cal significance. 

To summarize, the solutions of the Euler equations correspond to points at 
which f is stationary. The classification of a stationary point is determined by 
the character (definite, semidefinite, indifferent) of f(2 ) evaluated at the point. 
We are interested in the extremum problem since it is closely related to the 
stability problem. The extremum problem is also related to certain other prob­
lems of interest, e.g., the characteristic-value problem. In the following exam­
ples, we illustrate various special forms off which are encountered in member 
system analysis. 

Eu·ml '2_ _____
"l'·····Ct -- -··pl-

(1) 
y,f .f(Yl, Y2, ·. Y,) 

yj = yj(X1, x,2 .. X.) 

df = f Ax, = (E ..( .Y)aAXk 
k=l Ask k=t 

Now, 

dy = E -i AXk 
k= 1 A-k 

It follows that 

df = -- dyj
ji= ' yji 

Repeating leads to 

d2 f = j=1~[;ay d2yi + E dy dYm , = .aY,nYdy]I 
(2) 

Consider the double sum, 
= >Ii 

f = I I uJwju (a) 
j=l k=l 

The first differential (see Prob. 3-9) has the form 

df = E > (dutjwijkk + uij dwjkv k + tujWjk duk) 
j=1 k=1 

(b) 

Introducing matrix notation, 

u={Uj) w= [w1jk] V= {Vk 
f = UTWV (c) 

and letting 
du = {duj} (d) 
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nnru ,," 

.... . . _ 

and so forth, we can write df as 

df = d(uTwv) (e) 

= dTwv + U T dwv + u' wdv 

One operates on matrix products as if they were scalars, but the order must be preserved. 

As an illustration, consider TT (f)
f = x ax - xc( 

where a, c are constant and a is symmetrical. Noting that da = dc = 0 and dx Ax, 

the first two differentials are . ,T 

df = Ax'lax - c) (g) 
d2f = AxTa Ax 

Comparing (g)and (3-24), we see that 
f() = ax - c (h) 
f(21 = a 

The Euler equations are obtained by setting f(i) equal to 0: 
(i)

ax= c 

i: 
The solution of (i) corresponds to a stationary value of (f). If a is positive definite, the 1i 

Istationary point is a relative minimum. One can visualize the problem of solving the 

system ax = c, where a is symmetrical from the point of view of finding the stationary 

value of a second-degree polynomial having the form f - 2xax - xrc. 
,. 

(3) 

Suppose f = u/v. Using the fact that 

. -_ __ + u 
aj Z )t (Xj U (UXj (a) 

1( 3 u uv)1 
_ , _V· _ _. 

we can write 
(b)

df = d () = (du -f dv) 

We apply (b) to 
xTax (c) 

xx 

where a is symmetrical, and obtain (see Prob. 3-5) 

dA = -T (ax - x) 
(d) 

"i 

d2
2 

xTx 

Setting dA = 0 leads to the Euler equations for (c), 

ax - x = 0 (e) I 

which we recognize as the symmetrical characteristic-value problem. 'S 

SEC. 3-3. LAGRANGE MULTIPLIERS 

The quotient xTax/xTx, where x is arbitrary and a is symmetrical, is called Rayleigh's 
quotient. We have shown that the characteristic values of a are stationary values of 

Rayleigh's quotient. This property can be used to improve an initial estimate for a 

characteristic value. For a more detailed discussion, see Ref. 6 and Prob. 3-11. 

3-3. LAGRANGE MULTIPLIERS 

Up to this point, we have considered only the case where the function is 

expressed in terms of independent variables. In what follows, we discuss how 

one can modify the procedure to handle the case where some of the variables 

are not independent. This modification is conveniently effected using Lagrange 

multipliers. 
Suppose f is expressed in terms of n variables, say x,, x2 . .. , Xn, some of 

which are not independent. The general stationary requirement is 

df = -f df =x0 (3-28) 
j=1 Xj 

for all arbitrary differentials of the independent variables. We use dxj instead 

of Axj to emphasize that some of the variables are dependent. In order to 

establish the Euler equations, we must express df in terms of the differentials 

of the independent variables. 
Now, we suppose there are r relations between the variables, of the form 

Yq(xl, X2,...,x)= 0 k = 1,2,...,r (3-29) 

One can consider these relations as constraint conditions on the variables. 

Actually, there are only n - r independent variables. We obtain r relations 

between the nt differentials by operating on (3-29). Since .k = 0, it follows 

that dgk = 0. Then, 

dgk = -g-dxj = 0 k = 1, 2 ... ,r (3-30)
j=t xi 

Using (3-30), we can express r differentials in terms of the remaining n - r 

differentials. Finally, we reduce (3-28) to a sum involving the n - r indepen­
rdent differentials. Equating the coefficients to zero leads to a system of n ­

the r constraint equations, are sufficient toequations which, together with 
determine the stationary points. 

Cv-mnl- I-A 
1A··d.~. u· ,-1- -·r· 

We illustrate the procedure for n = 2 and r = 1: 

f = f(xl, x2) 
9(x 1, x2) = 0 

The first variation is 

df= dx + -f dx2 (a) 
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consider xI, x2 and A to be independent variables, and require H to be sta-
Operating on g(xl, x2) we have tionary. The Euler equations for H are 

(b)
dg dx t + 

ag
dx 2 .= 0 OH Of as 

Now, we suppose ag/ax2 # 0. Solving (b) for dx 2 (we replace dx1 by Ax, to emphasize 
Ox, ax, e X=° 

that xl is the independent variable.) OH O +2 0Og (3-32) 
Ox2 HX2HX2

(c) 
OHf/ax - = (x, x) = 0dX - ib-g-- g j Ax 

and substituting in (a), we obtain 
We suppose Og/Ox 2 # O. Then, solving the second equation in (3-32) for 1, 

(d) 

df [ax (ax / x) X22
and substituting in the first equation, we obtain 

_ 

Finally, the equations defining the stationary points are = x2 /f ax 2 (3-33)
aX2/ aX2 

af ( ag ag = and 
(e) Of (ag oagg O0 (3-34)

g(x1, X2)= X, Ax1 0xg(x,2 x2 

To determine whether a stationary point actually corresponds to a relative extremum, i g(x1 , X2)= 0 

we must investigate'the behavior of the second differential. The general form of d2f for Equations (3-34) and (e) of the previous example are identical. We see that 
a function of two variables (which are not necessarily independent) is the Euler equations for H are the stationary conditions for f including the 

effect of constraints. 
d2f = d dx + d 2 . 

F IlIII1! .!--­22 2 f 2 Of d2xj 
(f) Fermnle 2_.r. 

j=- k=l Xjx aXi f= 3x2 + 2X2 + 2X 1 + 7X 2 

X2 = 0g = X1 -

We reduce (f)to a quadratic form in the independent differential, Ax,, using (c), and noting 
We form H = f + .g, 

,112X, = O, ,?'ll . 2 / '.. 

H = 3x2 + 2x -+2x, + 7X2 + (xl - X2 ) 
d2f (x)2~ji ± 2-- a2 + 

(g 

The stationary requirement for H treating x1, x2, and Aas independent variables is 
where 

ag / ag 6x, + 2 + = 0 
U = - I _ 

axl/ aX2 4x2 + 7 - = 0 

The character of the stationary point is determined from the sign of the bracketed term. - X OX1 2 

Solving this system for xI, x2 and 1 we obtain 

2 = 4x2 + 7
An automatic procedure for handling constraint conditions involves the use 

of Lagrange multipliers. We first describe this procedure for the case of two xi = x = -9/10 

variables and then generalize it for n variables and r restraints. The problem 
con­consists in determining the stationary values of f(x1 , x2) subject to the 

This procedure can be readily generalized to the case of n variables and 
straint condition, g(x1 , x2) = 0. We introduce the function H, defined by 

r constraints. The problem consists of determining the stationary values of 

H(x,, x 2 , A) = f(xl, x2) + g(x1 , X2) 
(3-31) 

f(XI, x2, . . , x,), subject to the constraints g(x1, x2 ,..., x,)= 0, where 

k = 1,2,.. ., r. There will be r Lagrange multipliers for this case, and H has 
where 2 is an unknown parameter, referred to as a Lagrange multiplier. We 
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the form 

H = f + 2kgk = H(x, X2,. , AXn, . 7,r) (3-35)1 , 2 
k=1 

The Euler equations for H are 

O + Ak-a_ = 0 = 1,2,...,n (3-36)
axi + 

k1 lxi 

gk = 0 k = 1,2,..., r (3-37) 

We first solve r equations in (3-36) for the r Lagrange multipliers, and then 
determine the n coordinates of the stationary points from the remaining n - r 
equations in (3-36) and the r constraint equations (3-37). The use of Lag­
range multipliers to introduce constraint conditions usually reduces the amount 
of algebra. 
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PROBLEMS 

3-1. Determine the relative extrema for 
(a) f(x) = 2x2 + 4x + 5 
(b) f(x) = -2x 2 + 8x + 10 

2(c) f(x) = ax + 2bx + c 
(d) f(x) = X3 + 2X2 + x + 10 
(e) f(x)= X 3 +2x 2 + 4x + 15 

-(f) f(x)= (x- a) 4 + (x a) 2 

(g) f(x) = ax 3 + bx 2 + cx + d 
3-2. Expand cos x in a Taylor series about x = 0, taking n = 3. Determine 

the upper and lower bounds on R3. 
3-3. Expand (1 + x)1/ 2 in a Taylor series about x = 0 taking n = 2. Deter­

mine upper and lower bounds on R2. 
3-4. Find df and d2 f for 
(a) f = X2 + 2x + 5 
(b) f = 3X 3 + 2x 2 + 5X + 6 
(c) f = 2 sin x 
(d) f = cos y where y = X3 

PROBLEMS 

3-5. Let f = u(x)/v(x). Show that 

df - (du - f dv) 

d2 f = (d2u - fd2 v) -2 dv df 
v v 

3-6. Let u1, u2, u3 be functions of x and f = f(uI, u2 , U3). Determine df. 
3-7. Suppose f = u(x)w(y) where y y(x). Determine expressions for df

and d2f. Apply to 
(a) u-X 3 - X 

(b) w = cos y 
(c) y = x2 

3-8. Find the first two differentials for the following functions: 
(a) = x, + 31x2 + xx 
(b) f= 3x 2 + 6x 1x 2 + 9x22 + 5X 1 - 4x 2

3-9. Consider f = uv, where 

and 
U = (yl, Y2) V = (y1, Y2) 

Show that 
Y1 = Y1 (X1, X2 ) Y2 = Y2(x1, x2) 

df = d(uv) = u dv + v du d2f = ud 2 v + 2 du dv + vd 2u 

Note that the rule for forming the differential of a product is independent of 
whether the terms are functions of the independent variables (xl, x2) or of
dependent variables. 

3-10. Classify the stationary points for the following functions: 
(a) f= 3 3 + 3x - 9x + 12x 2 - 10 
(b) f= 3x 2 + 6XIX 2 + 2 + 2x, + 7X2 
(c) f = 3x2 +-6xlx2 3x 2 + 2x, + 2x 2
(d) f = 3x2 + 6x 1X2 + 4X2 + 2x, + 7x 2 
(e) f = 3x3 + 6xlx 2 + 3x22 - 3x 

3-11. Consider Rayleigh's quotient, 

x Tax xTaTx 

xx xx 

where x is arbitrary. Since a is symmetrical, its characteristic vectors are linearly
independent and we can express x as 

x = 
j=l 

ciQ1 

where Q (j = 1, 2,. .. , n) are the normalized characteristic vectors for a. 
(a) Show that 

E AjC2 
2 _ j=l 

j=1 



80 
CHAP. 3

RELATIVE EXTREMA FOR A FUNCTION 

(b) Suppose x differs only slightly from Qk. Then, cjl << ck for j = k. 
Specialize (a) for this case. Hint: Factor out ¾,k and ck. 

(c) Use (b) to obtain an improved estimate for . 

a= 1 
x {1,-3} 

The exact result is 
A = x = 1, - ) 

3-12. Using Lagrange multipliers, determine the stationary values for the 
following constrained functions: 

(a) f=x2-x2 
g = x + x2 = O 

(b) f x + X2 + x23 

+gl = xl 2 +x2 3- 1 = 
g2 = xl - x 2 + 2x 3 2= 0 

3-13. Consider the problem of finding the stationary values off = xTax 
xTaTx subject to the constraint condition, xx 1. Using (3-36) we write 

H = f + Ag = xTax - A(x'x - 1) 

(a) Show that the equations defining the stationary points off are 

ax= x xTx = 1 

(b) Relate this problem to the characteristic value problem for a symmetri­
cal matrix. 

3-14. Suppose f = xTx and g = 1 - xTax = 0 where aT = a. Show that 
the Euler equations for H have the form 

1 T 
ax = x xax=1 

We see that the Lagrange multipliers are the reciprocals of the characteristic 
values of a. How are the multipliers related to the stationary values of f? 

4 

Differential Geometry 
of a Member Element 

The geometry of a member element is defined once the curve corresponding 
to the reference axis and the properties of the normal cross section (such as 
area, moments of inertia, etc.) are specified. In this chapter, we first discuss the 
differential geometry of a space curve in considerable detail and then extend 
the results to a member element. Our primary objective is to introduce the 
concept of a local reference frame for a member. 

4-1. PARAMETRIC REPRESENTATION OF A SPACE CURVE 

A curve is defined as the locus of points whose position vector* is a function 
of a single parameter. We take an orthogonal cartesian reference frame having 
directions X1 , X 2, and X3 (see Fig. 4-1). Let r be the position vector to a point 

X3 

i3 
X3(Y) 

X2 

I / xi (Y) 

X2 (Y) 

X1 

Fig. 4-1. Cartesian reference frame with position vector F(y). 

*The vector directed from the origin of a fixed reference frame to a point is called the position 
vector. A knowledge of vectors is assumed. For a review, see Ref. 1. 
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