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(b) 

(c) 

Suppose x differs only slightly from Qk. Then, cj << Ick 
Specialize (a) for this case. Hint: Factor out Xk and C%. 
Use (b) to obtain an improved estimate for ,. 

for j k. 

a=x[ 31 

x {1, -3} 
The exact result is 

) = I x = ( 1 - 2) 

3-12. Using Lagrange multipliers, determine the stationary values for the 
following constrained functions: 

(a) f = X2 - 2 
g = X2 + 2 = 0 

(b) f = x2 + x2 + x2 
gl = xl + 2 + X3- = 00 

2 = X1 - X2 + 2X3 + 2 = 0 
3-13. Consider the problem of finding the stationary values of f = xrax 

xTaTx subject to the constraint condition, xx = 1. Using (3-36) we write 

H =f + g = x'ax - (xx - 1) 

(a) Show that the equations defining the stationary points of f are 

ax = )x xTx = 1 

(b) Relate this problem to the characteristic value problem for a symmetri­
cal matrix. 

3-14. Supposef = XTx and g = 1 - xTax =0 where aT = a. Show that 
the Euler equations for Ii have the form 

1 T 
ax= x xax= 

We see that the Lagrange multipliers are the reciprocals of the characteristic 
values of a. How are the multipliers related to the stationary values of f ? 

4 

Differential Geometry 
of a Member Element 

The geometry of a member element is defined once the curve corresponding 
to the reference axis and the properties of the normal cross section (such as 

area, moments of inertia, etc.) are specified. In this chapter, we first discuss the 

differential geometry of a space curve in considerable detail and then extend 

the results to a member element. Our primary objective is to introduce the 

concept of a local reference frame for a member. 

4-1. PARAMETRIC REPRESENTATION OF A SPACE CURVE 

A curve is defined as the locus of points whose position vector* is a function 

of a single parameter. We take an orthogonal cartesian reference frame having 

directions XI, X2, and X3 (see Fig. 4-1). Let ? be the position Vector to a point 

X3 

13 X3(y) 

X2 

, 2 1I / / 

/___ I / /' x1(0') 

X2 (Y) 

X1 

Fig. 4-1. Cartesian reference frame with position vector f(y). 

*The vector directed from the origin of a fixed reference frame to a point is called the position 

vector. A knowledge of vectors is assumed. For a review, see Ref. 1. 
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on the curve having coordinates Xj 1J , 2, J5)and let y 
I* _. .1. I_ . rI 1 1 .I 

e tne parameter. 
.1 

we 
*1 X2 . .1 Fig. E4-1A 

can represent the curve by 

3 
=(y) (4-1) 

Since r = xjij, an alternate representation is 
j=1 

xj = xj(y) (j = , 2, 3) (4-2) 

Both forms are called the parametric representation of a space curve. 

Example 4-1 

(1 Cnnider a circ.le in the XY.-YX,nne (Fi .4-1A We tke v s the nolnr anole and Y. 

let a = |r|. The coordinates are 

X1 = a cos y 
Y_ -
'12 -

in 
Y"'"' y 

,x 3 

and r =acos yi + asin Y)2 l E4-1B 

(2) Consider the curve (Fig. E4-1B) defined by 

X1 = a cos y 

x2 = b sin y (4-3) 

X3 = cy 

where a, b, c are constants. The projection on the X1 -X2 plane is an ellipse having semiaxes 
n -nr h Th ntifln x/ ort! f-r thiC pllrt . h-. thP f-rlM 

.sst c. s- [ }.'votlull v,.,~,t t*so -U*Y. Ito tl'., t-,-/l l­

r = a cos yl, + b sin y, + cy' 3 
X2 

4-2. ARC LENGTH 

Figure 4-2 shows two neighboring points, P and Q, corresponding to y and 
y + Ay. The cartesian coordinates are 
, - r +X_11-1 r _-1 -I n I -
lengtn OI tne cnora rom r to Q is given 

xj and xj + 
I 
y 

Axj (j = 1, 2, 3) and the 

3 y +Ay) 

IP-Q2 
j=1 

(AXj)2 (a) 

As Ay - 0, the chord length IPQI approaches the arc length, As. In the limit, 
3 

ds2 = Z dxJ (b) 
j=1 

Noting that 
dx 

dxj = 
dv 

dy (c) 

we can express ds as 

[-/(dx1 \2 (dX2'2 dx32]1 
2 ( a I,I 

UO- LTi Y J LdLY"yIt3 Y Fig. 4-2. Differential segment of a curve. 

83 



85 
,.,,,,,f,,,I nhcr-TPY nF A MEMBER ELEMENT CHAP. 4 SEC. 4-3. UNIT TANGENT VECTOR 

,V- .. ._. ... _
84 UltItNt"l-I I IL 

Finally, integrating (4-4) leads to 4-3. UNIT TANGENT VECTOR 

We consider again the neighboring points, P(y) and Q(y + Ay), shown in 

dy ) + + (k) 21 3 dy (4-5) 
Figure 4-3. The corresponding position vectors are 7(y), (y + Ay), ands(y) Y=dX2)2 

PQ = (y + Ay)- f:(y)= AP (a)
We have defined ds such that s increases with increasingy. It is customary to 

call the sense of increasing s the positive sense of the curve. As Ay -- 0, PQ approaches the tangent to the curve at P. Then, the unit tangent 

To simplify the expressions, we let vector at P is given by* 

3 Tx)I 22 /2 (4-6) t = lim P Q =-
ds (4-8)

Ay-' IPQI 

Using the chain rule, we can express t as 
Then, the previous equations reduce to 

ds = a dy dr df dy 1 dr 
(4-9) 

ds dy ds ady 
s -= a dy (4-7) 

Yo Since a > 0, t always points in the positive direction of the curve, that is, in the 

One can visualize a as a scale factor which converts dy into ds. Note that direction of increasings (or y). It follows that d:/dy is also a tangent vector and 

+ 1.x> 0. Also, if we take y = s, then a 

Example 4-2 
da drL1/2 

Consider the curve defined by (4-3). Using (4-6), the scale factor is -Ty dyy (4-10) 

2 
a = [a 2 sin2 y + b2 cos y + c2]

1/2 

Equation (4-10) reduces to (4-6) when is expressed in terms'of cartesian 
coordinates.We suppose that b > a. One can always orient the axes such that this condition is satisfied. 

Then, we express a asC2 
a= (b2 + c2)12 [1 

-
-k 2 sin2 yll2 

where 
b2 - a

2 
2

k = 2b2 +r c

The arc length is given by 
1 r(yx dy - (62 + c2)12 [1 - k2 sin2 

y] /2 dys = 

The integral for s is called an elliptic integral of the second kind and denoted by E(k, y). 

Then, 
s = (b2 + C

2)
i 2 E(k, y) 

Tables for E(k, y) as a function of k and y are contained in Ref. 3. When b = a, the curve 

is called a circularhelix and the relations reduce to 
Fig. 4-3. Unit tangent vector at P(y). 

2 2a = (a + C)112 = const. 

s = ay 
* See Ref. 1,p. 401. 
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L'�m·�·r� .u-� 11 

We determine the tangent vector for the curve defined by (4-3). The position vector is 

= a cos yt + b sin yi2 + cy 3 

Differentiating with respect to y, 
Normal plane 

-= 
dy 

-a sin yT. + b cos y2 + C3 Rectify 

and using (4-9) and (4-10), we obtain 

a = + [a 2 sin2 v + b2 cos 2 
y + C2 

]
112 

t = - [-a sin y + b cos yT2 + c73 ] 

When a = b, a = [a2 + c2] 1/2 = const, and the angle between the tangent and the X 3
direction is constant. A space curve having the property that the angle between the tangent
and a fixed direction (X3 direction for this example) is constant is called a helix.* 

t 

Osculating plane 

Fig. 4-4. Definition of local planes. 

4-4. PRINCIPAL NORMAL AND BINORMAL VECTORS Example 4-4 

Differentiating t · t = 1 with respect to y, we have We determine and b for the circular helix. We have already found that 

t -
dy 

= O (a) and 
a = [a2 

+ Cd2 1/2 

It follows from (a) that d/dy is orthogonal to . The unit vector pointing in the 
t= [-asill yT + a cos yi 2 + c73] 

direction of dt/dy is called the principalnormal vector and is usually denoted by 1/. i Differentiating with respect to y, we obtain 

I 

d 

dl 

dy 

( 

i 

r 

dt 
-

a 
- [cos Yl1 + sin yL2J 

Then, 

where 
di d 1 d7\ 

(4­ t11) 
.. 

//= 
1 dt 

Id = -cos t- sill y2 

dydy \adyy 

The binormal vector, b, is defined by 
The principal normal vector is parallel to the X,-X 2 plane and points in the inwardradial 
direction. It follows that the rectifying plane is orthogonal to the X1 -X2 plane. We can 

b = x (4-12) determine b using the expansion for the vector product.
th bxasf the~ 

We see that b is also a unit vector and the three vectors, i, fi, b comprise a right­
handed mutually orthogonal system of unit vectors at a point on the curve. 
Note that the vectors are uniquely defined once (y) is specified. The frame 
associated with , b and ii is called the moving trihedronand the planes deter­
mined by (, i), (i, ) and (b, ) are referred to as the osculating normal, and This reduces to 

11 122 
-asinyacosy 

- cos v -sin y 

F3 

c 

0 

rectifying planes (see Fig. 4-4). 

* See Ref. 4, Chap. 1. 

b 1 

The unit vectors are shown in Fig. E4-4. 

- - COS Y 2a 
+ -a3

a( 
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Then

Fig. E4-4 
x3 

K = [-sin 01i + Cos 02i]7 d 
dsand 

7 I 7 
IdsO 1 

-Id/dsli dO/ds [-sin 07, + cos 0~2],1 

In the case of a space curve, the tangents at two consecutive points, say P and Q, 
are in the osculating plane at P, that is, the plane determined by and at P.We can interpret as the radius of the osculating circle at P. It should be notedx 2 that the osculating plane will generally vary along the curve. 

I / i 
0ii

A1 

4-5. CURVATURE, TORSION, AND THE FRENET EQUATIONS 

The derivative of the tangent vector with respect to arc length is called the 
curvature vector, K. 

di d2; 
ds ds2 

_:1(4-13) 12 

= = id dy 

Using (4-11), we can write Y. 

ds (4-14) Fig. 4-5. Radius of curvature for a plane curve. 

Note that K points in the same direction as since we have taken K > 0. The The binormal vector is normal to both and fi and therefore is normal to thecurvature has the dimension L - and is a measure of the variation of the tangent osculating plane. A measure of the variation of the osculating plane is given
vector with arc length. by db/ds. Since /bis a unit vector, d/ds isorthogonal to b. To determine whetherWe let R be the reciprocal of the curvature: db/ds involves , we differentiate the orthogonality condition - b = 0, withrespect to s.

R = K-1 (4-15) 
j 

In the case of a plane curve, R is the radius of the circle passing through three 
db ds 

consecutive points* on the curve, and K = ldO/dsl where 0 is the angle between But dt/ds = K and b n = 0, Then, db/ds is also orthogonal to and involvest and it. To show this, we express f in terms of 0 and then differentiate with 1 only i. We express db/ds as 

ds ds 

respect to s. From Fig. 4-5, we have 
db 

t = cos 0il + sin 0i 2 d =- -Tn (4-16)ds 
*See Ref. 4, p. 14, for a discussion of the terminology "three consecutive points." where Tis called the torsion and has the dimension, L-l 
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It remains to develop an expression for z. Now, b is defined by To determine the component of di/ds in the direction, we differentiate the 

b=t xi orthogonality relation, t- · = 0. 

Differentiating with respect to s, we have dn dt 
t = -n-:= -K 

Ab ddb a x - + t - x d± ds ds (b) 

dsIds ds It follows from (a) and (b) that 

This reduces to dii 
db 

-t 
dn d = - K + zb (4-18)d X ds 

ds ds 

since ni x ii = 0. Finally, using (4-16), the torsion is given by 
The differentiation formulas for t, i, and are called the Frenet equations. 

dh 1 . df 
(4-17) 

4-6. SUMMARY OF THE GEOMETRICAL RELATIONS FORT - t X -- = ­
ds a dy A SPACE CURVE 

Note that can be positive or negative whereas K is always positive, according We summarize the geometrical relations for a space curve: 
to our definition. The torsion is zero for a plane curve since the osculating plane 
coincides with the plane of the curve and b is constant. OrthogonalUnit Vectors 

'-�nm�·o �· IrC dr I d
I... ' -- -____ t = d -= tangent vector 

The unit vectors for a circular helix are 
1 di 

n =ld l = principalnormal vector 
t = - [-asin yvl + a cos vY2 + c]31 

Ca 
(4-19)

ii = -cos y'l - s Yl 
= x = binormal vector 

= 1 [c sin y - c cos y12 + aT,] 

Difeo dy p n 
where 

a (a2 + c 2)1/2 DifferentiationFormulas (FrenetEquations)
Then, 

dt I diK = -
)dy 

= -d -a= a_ const2 a2 + c2 ds c dy 
and 

1 dii c c 
= -b --- = = 2 2 2

= const ds a dy 
X dy C2 2 + c 

(4-20) 

We have developed expressions for the rate of change of the tangent and 1 di 
binormal vectors. To complete the discussion, we consider the rate of change 

W.. K - = curvature 
of the principal normal vector with respect to arc length. Since ii is a unit 
vector, d/ilds is orthogonal to ii. From (4-17), f -I =b = torsion 

x dy 
(a)F

b 
dn 

(a) We use the orthogonal unit vectors (, , b) to define the local reference frame 
for a member element. This is discussed in the following sections. The Frenet 
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equations are utilized to establish the governing differential equations for a are related by 
member element. t = t 

t2 = cos ¢bf + sin ¢/b (4-24) 
4-7. LOCAL REFERENCE FRAME FOR A MEMBER ELEMENT t3 = -sin bhi+ cos 

The reference frame associated with t, , and b at a point, say P, on a curve 
is uniquely defined once the curve is specified, that is, it is a property of the 
curve. We refer to this frame as the natural frame at P. The components 

Combining (4-21) and (4-24) and denoting the product of the two direction 
cosine matrices by PJ,the relation between the unit vectors for the local and basic 
frames takes the concise form 

of the unit vectors (, ii, b) are actually the direction cosines for the natural 
frame with respect to the basic cartesian frame which is defined by the ortho­ where 

t = pi (4-25) 

gonal unit vectors (i, 1i, 13). We write the relations between the unit vectors as 
f12 

I D 
13 

_ 

{ 
h 

b 

} = 
== 

t[ i 2 3 
e2l422 423 

f_31 f32 33J 

1{ 
1 2 

T3 

(4-21) 
1= t2ecos + ft31sin 

- 21 sin+e+ e31,,cos 

Note that the elements of 

¢22 COS +t32 sin 

- 22 sin + 3 2 COS 

t2 3 COS - 3 3 sin 

-- 2 3 sin + 33 cos 0 

are the direction cosines for the local frame with 
One can express* the direction cosines in terms of derivatives of the cartesian respect to the basic frame. 
coordinates (x1 , X2 , X3 ) by expanding (4-19). Since (t, 6i,b) are mutually or­
thogonal unit vectors (as well as it, 12, 13) the direction cosines are related by ; : fljk = tj' k = coS(Yj, Xk) (4-26) 

Since both frames are orthogonal, p = - . We will utilize (4-25) in the next 
. jm k = 6jk j, k = 1, 2, 3 (4-22) chapter to establish the transformation law for the components of a vector. 

m=i 

Equation (4-22) leads to the important result 

[ Jk]T = [jk] (4-23) 

and we see that [jk] is an orthogonal matrix.t 
The results presented above are applicable to an arbitrary continuous curve. 

Now, we consider the curve to be the reference axis for a member element and 
Y1 

take the positive tangent direction and two orthogonal directions in the normal 
plane as the directions for the local member frame. We denote the directions 
ofthe local frame by (Y, Y2, Y3 )and the corresponding unit vectors by (t 1 , t 2, t ). 
We will always take the positive tangent direction as the Y, direction (t 1 = t) 
and we work only with right handed systems (t x t2 = t3). This notation 
is shown in Fig. 4-6. I 

When the centroid of the normal cross-section coincides with the origin of 
the local frame (point P in Fig. 4-6) at every point, the reference axis is called 
the centroidal axis for the member. It is convenient, in this case, to take Y2, 
Y3 as the principal inertia directions for the cross section. X2 

In general, we can specify the orientation of the local frame with respect to 
the natural frame in terms of the angle 4)between the principal normal direction 
and the Y2 direction. The unit vectors defining the local and natural frames 

X1 

* See Prob. 4-5. 
t See Prob. 4-6. Fig. 4-6. Definition of local reference frame for the normal cross section. 
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cl·- u��u·r·rr r· ·-
r.XL111 iijl '-V --- The curve through point Q corresponding to increasing yl with Y2 and y3 

We determine PIfor the circular helix. The natural frame is related to the basic frame by 
held constant is called the parametric curve (or line) for y1. In general, there 
are three parametric curves through a point. We define ij as the unit tangent 

a . c vector for the yj parametric curve through Q. By definition,sin y -
a 

cos y ­

0= -cos y -sin y 2 [ljk] 
1 R 

k} 

y(4-28)
_siny -- cosy -JJ 1RI (4-2)
CX a (X · 

Using (4-25) 
The differential arc length along the Yj curve is related to dy byCa 

y --cos y 

1 , ds = I dyj = gj dyj (4-29)cos + - sin y sin -sin y cos - - cos y sinl 
JOTdy yC !~ l 

a This notation is illustrated in Fig. 4-8. One can consider the vectors ui'Csin + -csiny cos sin y sin 4 - - cos y cos , --Cos 
(or aR/Oyj) to define a local reference frame at Q.

C 1 

X3 

4-8. CURVILINEAR COORDINATES FOR A MEMBER ELEMENT 

We take as curvilinear coordinates (yt, Y2, y,) for a point, say Q, the parameter 
y, of the reference axis and the coordinates (Y2, y3) of Q with respect to the
orthogonal directions (Y2, Y3) in the normal cross section (see Fig. 4-7). Let 

-- R(y1 , Y2, Y3) be the position vector for Q(yl, Y2, Y3) and = (y,) the 
position vector for the reference axis. They are related by 

R = r + Y2t2 + y3t 3 
where 

t2 - t(yI) = cos 4 + sin 4ib (4-27) 
axist3 = t3(Yl) = -sin 4,i + cos b 

We consider 4 to be a function of y,. 

Y2 

X1 

Fig. 4-8. Vectors defining the curvilinear directions. 
Y3 _ 

Y1 
Operating on (4-27), the partial derivatives of R are 

AR dF df 2 dT3yY2, aYi = dy ± + + Y y
I 
I 

,./ '"-` Reference axis 0y2 - [ (a) 

Fig. 4-7. Curvilinear coordinates for the cross section. OR, 
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system by taking
We see that 

ii2 = t2 g2 = 1 (4-30) = - T (4-32) 
c23 = t3 g3 = 1 dy 

which requires 
It remains to determine ti and g. = -ycr dy (4-33) 

Now, 
o' 

(a) - When (4-32) is satisfied,d:

-= at = t , 
dy l = cx( - Ky)t, 

Also, dO and 
ay, 

Cos +d do ++ sin k( -
(b) U1 = l (4-34) 

- d4v 91 = (l - Ky2 ) 
-si(dy, -Y+ b 

i In this case, the local frame at Q coincides with the frame at the centroid. One 
d 3 _ -sn0( dy, + cos -d dyl,
dvl 

should note that this simplification is practical only when cTcan be readily 
We use the Frenet equations to expand the derivatives of and b. 

Then, 
integrated. 

dt = -K os t + T + 4) t3 cIrl 1 7 
(c) 

Pr rmn a-

The parameters a and r are constant for a circular helix: 
d3 = OK sin t c + )-)2
dy 1 = (a2 + C2)1 /2 

and finally, 
OR 

-( - Ky')T + ( + (Y2+ 3 - Y3 2 ) (4-31) a2 

aye Then, 
y2 = Y2 cos 4- Y3 sin 4) 

We see from Fig. 4-9 that y2 is the coordinate of the point with respect to the 

principal normal direction. and integrating (4-33), we obtain 

¢5= -(Y - Y) = -rs 
Y 

For this curve, q5varies linearly with y (or arc length). The parameter g1 follows from (4-34). 

ds, 
gc y (1 - Ky) 

2 
a( a 
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PROBLEMS 4-4. The equations for an ellipse can be written as 

4-1. Determine t, h, , , K, for the following curves: x = acos y x2 = b sin y (a) 
or(a) xl = 3 cos y x2 = 3 sin y x3 = 5y 

2 x2(b) xl = 3 cos y x2 = 6 sinl y x3 = 5y 
_ 2 (b)(c) = YIl + y212 + 33 a2 

+ 
b2 

(d) xl = aeoY cos y 
x = ae y sin y Determine a, [, i for both parametric representations. Take xl as the parameter 
X3 = Cy for (b). Does y have any geometrical significance? 
where a, /f, c are real constants. 4-5. Show that 

4-2. If x,3 0, the curve lies in the X,-X2 plane. Then, zr 0 and b = i3. 1 dx, dxk
The sign of b will depend on the relative orientation of hiwith respect to t. lk =a dy ds 

Suppose the equation defining the curve is expressed in the form cady ds 

d2 xk I da dx,
X2 = f(x l) X3 = 0 (a) 

dy dv2 a dy dy 
e2k =Equation (a) corresponds to taking x, as the parameter for the curve. I da dXk2 1/2

(a) Determine the expressions for 7, h, b, a, and K corresponding to this [k1 Edy1 k22 - k--- Id(d2xk - xdy drepresentation. Note that x t _= y and = xjt + /'(X l) + 073. Let 
(df 

2 

df d2f ­ 1 3 

dx=- - f dx1x2 = f" etc. 
dx1 0 - Oe2J e22 

ri(b) Apply the results of (a) to e32- = el3 
4-6. Let 

4a 
X2 = g(xIb - ) 

Then, 
where a and b are constants. This is the equation for a parabola sym­
metrical about x = b/2. Efkl = 

(c) Let 0 be the angle between and 7,. 

cos 0 = It · 1. Using (4-22), show that 
[ _jk] T -I L tjk] I

Deduce that a = sec 0. Express , hi, , and K in terms of 0. 
(d) Specialize (c) for the case where 02 is negligible with respect to unity. 4-7. Determine J for Prob. 4-1a. 

This approximation leads to 4-8. Determine 1 for Prob. 4-lb. 
4--9. Specialize jI for the case where the reference axis is in the X - X2

sin 0 tan 0 0 plane. Note that b = 3 3 3 where 1g331 = 1. When the reference axis is a plane 
cos 0 1 curve and q0 = 0, we call the member a "planar" member. 

4-10. We express the differentiation formulas for ti as
A curve is said to be shallow when 02 << 1. 

4-3. Let K = 1/R and r = 1/R. Show that (see (4-20)) dt 
-= at
ds 

dy R (a) Show that a is, in general, skewsymmetric for an orthogonal system 
of unit vectors, i.e., tj tk Sjk Determine a. 

dfi Rt 
(b) Suppose the reference axis is a plane curve but q - 0. The memberdy. is not planar in this case. Determine a. 

dy R R, 


