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2.3 A gravity current

For the highly nonlinear equation, a relatively simple solution is that of a stationary (or
permanent) wave which is profile advancing at a constant speed without changing its shape.
Mathematically the profile is describable as

h(z,t) = h(z — Ct) = h(o), oc=x—Ct (2.3.1)
By the chain rule of differentiation,
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Hence (2.3.30) reduces to an ordinary differential equation,
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Integrating once we get
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Let the gravity current advance along a dry bed, then h = 0 is a part of the solution. The
constant of integration must be set to zero. Introducing the dimensionless variables

h=H.', o=L.c', with L.= H./tan6, (2.3.3)

where H, is the maximum depth far upstream, we get
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Let the gravity current be uniform far upstream, then
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It follows that
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One of the solution is A" = 0, representing the dry bed. For the nontrivial solution, we
rewrite 2l . ) )
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which can be integrated to give
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This is an implicit relation between A’ and o', and represents a smooth surface decreasing
monotonically from h =1 at ¢’ ~ —oo to b’ = 0 at the front ¢’ = ¢/, as plotted in Figure
2.3.1. Note from (2.3.8) that do’/dh/ = 0 when A’ = 0, implying infinite slope at the tip of
the gravity current. This infinity violates the original approximation that dh'/do’ = O(1).
Fortunately it is highly localized and does not affect the validity of the theory elsewhere (see
Liu & Mei, 1989, JEM).

Figure 2.3.1: Gravity current down an inclined plane

Eq. (2.3.6) tells us that the speed of the front is higher for a thicker layer, steeper slope
or smaller viscosity. This relation can be confirmed by a quicker argument. In the fixed



frame of reference, the total flux must be equal to CH. therefore C' must be equal to the
depth-averaged velocity @ which is given by (2.3.19) with 0h/0x = 0.

A similar analysis has been applied to a fluid-mud which is non-Newtionian characterized
by the yield stress. Laboratory simulations have been reported by Liu & Mei (J. Fluid Mech.
207, 505-529.) who used a kaolinite/water mixture. Figure 2.3.2 shows the setup of the
inclined flume and Figure 2.3.3 shows the recorded profiles of the gravity current along with
the theory . The agreement is very good, despite the steep front where the approximation
is locally invalid.

Figure 2.3.2: Experiment setup for a mud current down an inclined plane. From Liu & Mei
1989.



Figure 2.3.3: Profiles of a mud current down an inclined plane. From Liu & Mei 1989.



