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Nuclear power plants are often located near a large lake so that cold water can be with-
drawn to cool the engines. If the lake is thermally stratified so that there is apprciable
temperature gradient vertically. Cold water can be withdrawn from lake bottom, and warm
water from the power plant can be returned to the top of lake. Due to the fact that stratifi-
cation supresses vertical motion, water motion hence thermal mixing should be limited to a
vertically thin layer not far away from the intake.

In this section we treat the slow and steady flow of an isothermal but stratified fluid, due
perhaps to salinity variation, into a two- dimensional line sink. The molecular diffusivity of
salt is ignored. These simplifications permits a analytical solution which is easy to examine
the physical implicaions.

For a slow flow of a viscous fluid flowing in a vertically stratified fluid. we expect, in light
of Yih’s theorem, that the motion of the fluid should be confined within a thin layer.

2.8.1 Estimation of scales

Governing equation for continuity :

ux + wz = 0 (2.8.1)

Ignoring mass diffusion, the incompressiblity condition reads

uρx + wρz = 0 (2.8.2)

ρ (uux + wu+ z) = −px + µ (uxx + uzz) (2.8.3)

ρ (uwx + wwz) = −py − ρg + µ (wxx + wzz) (2.8.4)
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Anticipating a thin boundary layer due to vertical suppression, we introduce the following
normalization.

u = Uu′, w =
Uδ

U
w′, ρ = ρ0ρ

′, x = Lx′, z = δz′ (2.8.5)

then

u′x + w′

z = 0 (2.8.6)

u′ρ′x + w′ρ′z = 0 (2.8.7)

ρ0U
2

L
[ρ′ (u′u′x + w′u′z)] = −P

L

∂p′

∂x′
+
µU

δ2

(

u′xx

δ2

L2
+ u′zz

)

(2.8.8)

ρU2

L

δ

L
[ρ′ (u′w′

x + w′w′

z)] = −P
δ

∂p′

∂z′
− ρ0gρ

′ + µ
U

δ2

δ

L

[

w′

xx

δ2

L2
+ w′

zz

]

(2.8.9)

Here δ is the boundary layer thickness, L ∼ x is the horizontal length scale, and U is the
horizontal velocity scale which must be of the order ∼ Q/δ.

After dividing the x, y momentum equations by µUδ2, and noting

ρ0U
2

L

δ2

µU
=

(

ρ0Uδ

µ

)

δ

L
≡ R

δ

L
(2.8.10)

we get

R
δ

L
[ρ′ (u′u′x + w′w′

z)] = −
(

Pδ

µU

δ

L

)

p′x +



u′xx

(

δ

L

)2

+ u′zz



 (2.8.11)

Assume

R =
ρ0Uδ

µ
= O(1), and

δ

L
� 1. (2.8.12)

We must have
Pδ

µU

δ

L
= O(1) (2.8.13)

so that the viscous stress is forced by the pressure gradient. Thus we can take the pressure
scale to be

P = µ
UL

δ2
(2.8.14)

To the leading order the x momentum equation is simply

0 = −px + µuzz (2.8.15)

Now the z momentum equation,

ρ0U
2

L

δ

L
[ρ′ (u′w′

x + w′w′

z)] = −P
L

1

δ/L

∂p′

∂z′
− ρ0gρ

′ +
µU

δ2

δ

L

[

w′

xx

δ2

L2
+ w′

zz

]

. (2.8.16)
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Dividing by P/L and using (2.8.14),

R

(

δ

L

)

[ρ′ (w′w′

x + w′w′

z)] = − 1
(

δ
L

)

∂p′

∂z
− ρ0gL

P
ρ′ +

(

δ

L

)



w′

xx

(

δ

L

)2

+ w′

zz



 (2.8.17)

i.e.,

R

(

δ

L

)2

[ρ′ (w′w′

x + w′w′

z)] = −∂p
′

∂z′
− ρ0gδ

P
ρ′ +

(

δ

L

)2


w′

xx

(

δ

L

)2

+ w′

zz



 . (2.8.18)

Since gravity must be important, we must have

ρ0gδ

P
= O(1), (2.8.19)

The z momentum equation reduces to

0 = −∂p
∂z

− ρg (2.8.20)

meaning that pressure is hydrostatic.
Now (2.8.19) implies

ρ0gδ
3

µUL
= O(1) (2.8.21)

since Q = O(Uδ). It follows that
ρ0g

µQ

δ4

L
= O(1) (2.8.22)

i.e.,

δ4 ∼ µQL

ρ0g
(2.8.23)

Since L ∼ x, we have

δ ∼
(

µQx

ρ0g

)1/4

(2.8.24)

Thus by a mere scale estimate, we not only achieved (confirmed) a simplification, but also
conclude that the boundary layer thickness increases with x1/4.

2.8.2 Approximate equations

We summarize the the approximate equations stating continuity,

ux + wz = 0 (2.8.25)

incompressibility,
uρx + wρz = 0 (2.8.26)
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horizontal momentum balance,
0 = −px + µuzz (2.8.27)

and vertical momentum balance
0 = −pz − ρg. (2.8.28)

Let the stream function ψ be defined such that

u = ψz, w = −ψx (2.8.29)

Equation (2.8.26) means that in the direction of the local velocity, the density is constant.
Thus the the density can only be a function of the stream function, i.e.,

ρ = ρ(ψ) (2.8.30)

Let us check that (2.8.30) implies (2.8.26). Clearly

ρx =
dρ

dψ
ψx, ρz =

dρ

dψ
ψz,

so that
dρ

dψ
=
ρx

ψx

=
ρy

ψz

Eq. (2.8.26) follows by using (2.8.29).
Eliminating p between Eqn. (2.8.27) and Eqn. (2.8.28) we get

µuzzz + gρx = 0,

which can be rewritten in terms of the ψ,

ν ψzzzz +
g

ρ

dρ

dψ
ψx = 0. (2.8.31)

Clearly this is a boundary layer equation. For a weakly stratifed fluid, we approximate ρ by
a constant in the boundary layer.

The boundary conditions are:
u, z → ±∞. (2.8.32)

which implies that
uz, uzz, uzzz, ...→ 0, z → ±∞

It follows from Eqn. (2.8.31) that

ψx = w → 0 z → ±∞ (2.8.33)

if dρ/dψ 6= 0 as z → ±∞. Integrating Eqn. (2.8.25) from z = −∞ to z = ∞, and taking
into account Eqn. (2.8.33), we get

∂

∂x

∫

∞

−∞

u dz = 0.
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Therefore,
∫

∞

−∞

u dz = −Q (const.) (2.8.34)

where Q denotes the steady discharge.
In terms of ψ, the boundary conditions Eqns. (2.8.32), (2.8.33) and the integral constraint

Eqn. (2.8.34) can be expressed as

ψx, ψz, ψzz → 0 (z → ±∞) (2.8.35)

and
ψ(x,∞) − ψ(x,−∞) = −Q. (2.8.36)

Remark: Unlike the 2-D laminar jet problem discussed before, the momentum flux rate
is relatively unimportant in the present case of slow flow.

2.8.3 Similarity solution for linear stratification

In the present case u < 0 hence ψ increases as z decreases. Therefore dρ/dψ and dρ/dz have
opposite signs. For a stably stratified fluid, ρ increases as z decreases. Hence dρ/dψ > 0. In
the special case where

g

ρ

dρ

dψ
= const. ≡ ν c > 0

(2.8.31) becomes linear
ψzzzz + cψx = 0. (2.8.37)

Let us look for a one-parameter transformation

x = λαx∗, z = λβz∗, ψ = λγψ∗

such that Eqns. (2.8.35) - (2.8.37) are invariant.
Since Eqn. (2.8.35) is homogeneous, it gives no information about the choice of α, β, γ.

From Eqns. (2.8.36) and (2.8.37), invariance of the boundary value problem requires that

α = 4β, γ = 0.

Therefore, a similarity solution can be found in the form

ψ

Q
= f(η), η =

(

c

x

)1/4

z (2.8.38)

From Eqn. (2.8.38), it follows that

w = −ψx =
Q

4

η

x
f ′(η) (2.8.39)

u = ψz =
(

c

x

)1/4

Qf ′(η), (2.8.40)
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ψzz =
(

c

x

)1/2

Qf ′′(η) (2.8.41)

ψzzzz =
c

x
Q f ′′′′(η) (2.8.42)

Eq(2.8.37) then becomes

4 f ′′′′ − η f ′ = 0 (2.8.43)

and Eqns. (2.8.35) and (2.8.36) become

η f ′, f ′, f ′′ → 0 (η → ±∞) (2.8.44)

f(∞) − f(−∞) = −1. (2.8.45)

Remarks:

(i) Since u(x, 0) must be finite, f ′(0) is finite. It follows that

w(x, 0) = −Q
4

η

x
f ′(η)

∣

∣

∣

∣

η=0

= 0.

suggesting that w is odd in η and antisymmetric about z = 0, in the x, z plane. Hence f(η)
is also anti-symmetric in z about z = 0, i.e., f(−η) = −f(η). Eqn. (2.8.45) may be repleced
by

f(∞) = −1/2 (2.8.46)

It is always possible to take f(0) = 0, amounting to designating the axis as the streamline
ψ = 0.

The anti-symmetry of w also implies symmetry of u in z about z = 0. These properties
are the consequence of the assumption that dρ/dψ is constant and cannot be expected in
general because of gravity.

(ii) The similarity transformation can also be derived heuristically by examining Eqns.
(2.8.35) - (2.8.37). Specifically, Eqn. (2.8.37) implies that

1

δ4
∼ 1

x
, thus δ ∼ x1/4

where δ is the boundary layer thickness. Moreover, Eqn. (2.8.34) gives u · δ ∼ O(1).
Therefore,

u ∼ 1

δ
∼ x1/4, and ψ ∼ uδ ∼ x0.

These results agree with (2.8.40).
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2.8.4 Analytical Solution

Let
g(η) = f ′(η). (2.8.47)

It follows from Eqn. (2.8.43) that
4 g′′′ − η g = 0. (2.8.48)

Furthermore, in view of Eqn. (2.8.44), g and its derivatives vanish at η = ±∞. Let us apply
Fourier transform defined by

ĝ(k) =
1

2π

∫

∞

−∞

e−ikη g(η)dη ;

Eqn. (2.8.48) is then converted to

−4 ik3ĝ − i
dĝ

dk
= 0

The solution is
ĝ(k) = Ae−k4

,

where A is a coefficient.
Taking the inverse Fourier transform of ĝ, we get

g(η) = A
∫

∞

−∞

e−k4+ikη dk = 2A
∫

∞

0

cos kη e−k4

dk. (2.8.49)

It is readily seen from Eqn. (2.8.49) that g(−η) = g(η), confirming the earlier arguments on
the symmetry of u and f ′(η).

In view of Eqns. (2.8.46) and (2.8.47), the constant A must be chosen such that

2A
∫

∞

0

dη
∫

∞

0

dk cos kη e−k4

= −1

2

It is shown in the Appendix that the double integral is −π/2 so that

A = − 1

2π
.

In particular,

g(0) = 2A
∫

∞

0

e−k4

dk =
−
√

2

4Γ(3/4)
= −0.2885.

The integral in Eqn. (2.8.49) may be evaluated numerically. Alternatively, Eqn. (2.8.48)
is solved numerically by Chebyshev-polynomial method for unbounded domains (as, for
example, J.P. Boyd (1992), J. Comp. Phys., 45, 43-79). Homework by Prof C. S. Wu,
1.63 class of 1995, now at U of Wisconsin, Madison)

From Figure 2.8.4 ( Prof. T.S. Yang, National Cheng Kung University, Taiwan (1.63
Class of 1995) it is seen that, away from the center line of the sink, there are regions in
which u > 0. Under the assumption that c > 0, we have, ∂ρ/∂y > 0 so that locally the fluid
may be statically unstable.
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h

g( )/|g(0)|h

Velocity profile of a 2D slow flow into a line sink in a density-stratified fluid. Calculations
by G. D. Lee, 2002

Appendix: A double integral (Yang, 1995, Homework)

Consider the double integral

I(n) =
∫

∞

0

dk e−kn

∫

∞

0

dη cos kη (2.8.50)

Note that
∫

∞

−∞

δ(k)eikη dk = 1

By inverse transform we get the Fourier integral representation of the delta function:

δ(k) =
1

2π

∫

∞

−∞

dk e−ikη =
1

π

∫

∞

0

dη cos kη

Now we use this result in (2.8.50) to get

I(n) = π
∫

∞

0

δ(k)e−kn

dk =
π

2
(2.8.51)

It is interesting that the result is independent of n. Let us verify (2.8.51 ) by independent
calculations for n = 1, 2:

I(1) =
∫

∞

0

dk e−k
∫

∞

0

dη cos kη

Since
∫

∞

0

dk e−k cos kη =
1

1 + η2

and
∫

∞

0

dη
1

1 + η2

= tan−1 η
∣

∣

∣

∞

0
=
π

2
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(2.8.51) is proven.

I(2) =
∫

∞

0

dk e−k2

∫

∞

0

dη cos kη

Since
∫

∞

0

dk e−k2

cos kη =

√
π

2
e−η2/4

and √
π

2

∫

∞

0

dη e−η2/4 =

√
π√
2

∫

∞

0

dη e−η2

=
π

2

(2.8.51) is proven again.


