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7.4 Steady onshore wind in a shallow Sea

Let us model the effect of turbulence by a constant eddy viscosity. Assume that convective
inertia is negligible, the seabed is horizontal and vertical shear is important, the governing
equation in a shallow sea are
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+
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+
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= 0 (7.4.1)
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The boundary conditons are
u = v = w = 0, z = −h (7.4.4)

µ
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= τS

x , µ
∂v

∂z
= τS

y (7.4.5)

As in a thin boundary layer, the vertical shear dominates.
Integrating over depth and defining the horizontal transport rates,
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udz, V =

∫ 0

−h
vdz (7.4.6)

then the
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where
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(7.4.7)
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(7.4.8)

As an order estimate

U ∼
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ρf
∼

u2
∗
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where u∗ is the friction velocity. A vertical boundary layer (of Ekman) can exist wherein
Coriolis force ρfU balances the viscous stress

τB ∼ ρν
∂u

∂z
∼ ρν

U

h

1

δ

Therefore, the Ekman layer thickness is

δ = O

(
√

ν

f

)

A typical value of eddy viscosity is ν = 1 cm2/s and f = 10−4 1/s. Therefore the Ekman
layer thicknss is O(1) m.

Our strategy is to get the horizontal transport, then the details of the boundary layers.

7.4.1 Wind setup due to steady onshore wind

Consider an infinitely long coastline along the x axis. Assume τ S
y to be a given constant.

Consider the steady state ∂/∂t = 0 and ignore τB first. Beginning from the equations :

∂U

∂x
+

∂V

∂y
= 0.

−fV = −gH
∂η

∂x

+fU = −gH
∂η

∂y
+

τS
y

ρ

with

V = 0, y = 0 (7.4.9)

Because of the infinite coast,

U =
∂η

∂x
= 0,

we must have
∂V

∂y
= 0,

It follows that V = 0 everywhere, and

gH
∂η

∂y
=

τS
y

ρ
. (7.4.10)

meaning that there is a sea-level Set-up.
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η =
τS
y

gH
y + constant

=
ρu2

∗

ρgH
y =

u2
∗

gH
y.

If u∗ = 1 cm/sec then τS
y = 0.1 Pa. If g = 10 m/sec2 and H = 30 m

u2
∗

gH
=

(10−2)
2

10 · 30
= 3 × 10−7.

Note that

1 atm = 105N/m2, 1N/m2 = 1Pa =
1

670
psi.

For g = 10m/s2 H = 30m the set up is calculated as follows.

τS
y

∂η
∂y

∆y ∆η

0.1 Pa 3 × 10−7 100 km 3 cm
3 Pa 300 km 3 m

Although there is no mean flow (or flux), there is internal flow. We now look at the
detailed distribution in z, by deviding the depth into three parts: the geostrophic interior,
the surface Ekman layer, and the bottom Ekman layer.

7.4.2 Geostrophic core

Outside the boundary layers, we have

−fvg = −g
∂η

∂x
= 0, (7.4.11)

fug = −g
∂η

∂y
= −

u2
∗

H
(7.4.12)

In this geostropic balance, there is a longshore current in the core.

7.4.3 Surface Ekman layer

Now viscosity is important, so that

−fv = −g
∂η

∂x
+ ν

∂2u

∂z2

fu = −g
∂η

∂y
+ ν

∂2v

∂z2
.
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For this example
∂η

∂x
= 0,

∂η

∂y
=

τS
y

ρgH
=

ρu2
∗

ρgH
=

u2
∗

gH

hence

−fv = ν
∂2u

∂z2
(7.4.13)

fu = −
u2
∗

H
+ ν

∂2v

∂z2
. (7.4.14)

As long as δ/H � 1, bounday-layer approximation can be made. Let us make some estimates
based on empirical data, cited from Csanady :

δ = 0.1
u∗

f
, ν =

u2
∗

200f
, Re∗ =

u∗δ

ν
= 20

Pedlosky :
ν = 1 ∼ 103cm2/sec

δ =

√

1 ∼ 103

10−4
cm = 102cm ∼ 3 × 103cm.

Let the total velocity in the surface boundary layer be

u = ug + uE = −
u∗2

fH
+ uE, v = vg + vE = vE. (7.4.15)

so that (uE, vE) are the boundary layer corections. Then for z < 0, we have

−fvE = ν
∂2uE

∂z2
(7.4.16)

fuE = ν
∂2vE

∂z2
(7.4.17)

The boundary conditions are

ν
∂uE

∂z
= 0, ν

∂vE

∂z
= u2

∗
on z = 0

uE, vE → 0 z → −∞.

This is the Ekman boundary-layer problem. The solution is best obtained by introducing
the complex velocity,

qE = uE + ivE

then

qE = ν
∂2qE

∂z2
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or
d2qE

dz2
−

if

ν
qE = 0

Let the solution be of the form,
qE ∝ eDz

then

D2 −
if

ν
= 0

Since

(i)1/2 = ±eiπ/4 = ±
1 + i√

2
.

We get

qE = A exp





1 + i√
2

z
√

ν/f



 = A e(1+i)z/δ

. (7.4.18)

Let

δ =

√

2ν

f
(7.4.19)

denote the boundary layer thickness. Apply the boundary condition on the sea surface,

ν
∂qE

∂z

∣

∣

∣

∣

∣

0

= i u2
∗

hence

A =
i u2

∗
δ

(1 + i)ν
.

The solution is

qE = uE + i vE =
iδ u2

∗

(1 + i)ν
e(1+i)z/δ =

δ u∗
2

2ν
(1 + i) ez/δ

(

cos
z

δ
+ i sin

z

δ

)

(7.4.20)

Separating real and imaginary parts, we get the velocity components,

uE =
δ

2

u2
∗

ν
ez/δ

[

cos
z

δ
− sin

z

δ

]

(7.4.21)

vE =
δ

2

u2
∗

ν
ez/δ

[

cos
z

δ
+ sin

z

δ

]

. (7.4.22)

The hodograph is shown in Figure 7.4.1,

1. Physical Remark #1:
Maximum velocity occurs on z = 0:

uE(0)

u∗

=
vE(0)

u∗

=
u∗

fδ

(

�
U

u∗h
=

u∗

fh

)

.

and is 45 degrees to the right of wind.
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Figure 7.4.1: Ekman Boundary layer.

2. Physical Remark #2 :
The total flux in Ekman layer is

UE
x + iV E

y =
∫ 0

−∞

dz (uE + i vE) =
∫ 0

−∞

dz qE

=
δ u2

∗

2ν
(1 + i)

∫ 0

−∞

e(1+i)z/δdz

=
δ u2

∗

2ν
(1 + i) ·

δ

1 + i
· e(1+i)z/δ

∣

∣

∣

0

−∞

=
δ2 u2

∗

2ν
=

u2
∗

f
.

where

δ2 =
2ν

f
.

Therefore the total mass flux in Ekman layer is 90 degrees inclined with respect to
wind.

3. Physical remark # 3:
Note that the flux in the surface Ekman layer is counter balanced by the geostrophic
return flow beneath. This implies the assumption that the bottom Ekman layer is very
weak and contributes little to the flux. Let us check.

7.4.4 Bottom Ekman layer

The total flow is governed by

−fv = ν
∂2u

∂z2
fu = fug + ν

∂2v

∂z2
.
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Let
uE = u − ug vE = v (7.4.23)

so that

−fvE = ν
∂2uE

∂z2
, fuE = ν

∂2vE

∂z2
(7.4.24)

Let us shift to new coordinates with the origin on the sea bed so that the boundary conditions
are

z → ∞, uE, vE → 0 (7.4.25)

and
z = 0, uE = −ug, vE = 0 (7.4.26)

Let
qE = uE + ivE qE = A e−(1+i)z/δ (7.4.27)

Since there is no slip at z = 0
qE = −ug.

We conclude,
A = −ug.

and

qE = (uE + ivE) = −ug e−(1+i)z/δ

= −uG e−z/δ
(

cos
z

δ
− i sin

z

δ

)

.

Therefore,

uE = −ug e−z/δ cos
z

δ

vE = ug e−z/δ sin
z

δ
.

The bottom shear stress is

ν
∂qE

∂z
=

1 + i

δ
ug e−(1+i) z/δ

at z = 0

ν
∂qE

∂z

∣

∣

∣

∣

∣

0

=
1 + i

δ
ug = −

1 + i

δ

u2
∗

fH
.

The total flux in bottom Ekman layer is

UE + iVE =
∫

∞

0
(uE + ivE) dz

= −ug

∫

∞

0
e−(1+i/δ)zdz

= −ug
1

−(1 + i)/δ
e−(1+i/δ)z

∣

∣

∣

∞

0

= −ug
δ

1 + i
=

u2
∗

fH

δ

1 + i
=

δ

2
(1 − i)

u2
∗

fH
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It is of order δ and is directed at 135 degrees to the right of wind.

7.4.5 Summary

:

• Total Ekman layer flux on top is u2
∗
/f

• Total geostropic flux is −u2
∗
/f

• Total bottom Ekman layer flux is very small O
[

u2
∗

f

(

δ
H

)]

.


