
1

Lecture Notes on Fluid Dynamics

(1.63J/2.21J)
by Chiang C. Mei, 2002

7.6 Transient longshore wind

[Ref]: Chapter 14, p. 195 ff, Cushman-Roisin
Csanady: Circulation in the Coastal Ocean

Figure 7.6.1: Longshore wind

In view of the last section, we ignore the bottom stress. Assume that the wind is uniform
in space but transient in time, so that ∂/∂y = 0, The flux equations are

∂η

∂t
+

∂U

∂x
= 0 (7.6.1)

∂U

∂t
− fV = −gh

∂η

∂x
(7.6.2)

∂v

∂t
+ fU =

τS
y

ρ
. (7.6.3)

The boundary condition on the coast x = 0 : U = 0.

7.6.1 Sudden long-shore wind

Let the wind stress be

τS
y =

{

0, t ≤ 0,
T, t > 0.

(7.6.4)

the initial conditions are

η, U, V = 0, t = 0, ∀x. (7.6.5)
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This initial-boundary value problem can be solved by Laplace transform (Crépon, 1967).
The solution consists of two parts: one part is oscillatory and decays with time; the other
part increases monotonically with time. To avoid the complex mathematics we only examine
the latter which is the dominant part for large time,

U = Ū(x), V = tV̄ (x), η = tη̄(x) (7.6.6)

The oscillatory part is needed to ensure the initial condition on U .

It is easy to see from (7.6.1) to (7.6.3) that

η̄ +
dŪ

dx
= 0 (7.6.7)

fV̄ = gh
dη̄

dx
(7.6.8)

V̄ + fŪ = T/ρ (7.6.9)

These three equations can be combined into one :

d2Ū

dx2
− f 2

gh
Ū = − fT

ρgh
(7.6.10)

The solution satisfies no flux on the coast is

Ū =
T

ρf

(

1 − e−x/Ro

)

(7.6.11)

where

Ro =

√
gh

f
(7.6.12)

is called the Rossby radius of deformation. Since f = 10−4 1/s, in a shallow sea of h = 10 m
the Rossby radius is about 105 m = 100 km.

It is easy to find that

η = tη̄ = −t
T

ρgh
e−x/Ro (7.6.13)

and

V = tV̄ = t
T

ρf
e−x/Ro (7.6.14)

Clearly when x/Ro � 1, the coast line has no influence. The flux is U = T/ρf, V = 0, and
is inclined to the right of the wind by 90 degrees, as predicted by the Ekman layer theory.
The sea surface sinks near the coast if T > 0 (coast is on the left of wind) and rises if T < 0
(coast is on the right of wind).
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7.6.2 Sinusoidal wind stress

We now consider

τS
y = <

(

τ0e
−iωt

)

= τo sin ωt (7.6.15)

Let

(η, U, V ) = <
[

(η0, U0, V0) e−iωt
]

(7.6.16)

The symbol < (real part of) will be omitted for brevity.

Let us calculate the total flux (The boundary layers can be studied later.),

−iωη0 +
dU0

dx
= 0 (7.6.17)

−iωU0 − fV0 = −gH
dη0

dx
(7.6.18)

−iωV0 + fU0 = i
τ0

ρ
. (7.6.19)

An equation for a single variable can be obtained. For example by solving Eqns. (7.6.18)
and (7.6.19) for U0 and V0, we get

U0 =

∣

∣

∣

∣

∣

−gH dη0

dx
−f

iτ0 −iω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−iω −f
f −iω

∣

∣

∣

∣

∣

=
iωgh dη0

dx
+ iτ0f

−ω2 + f 2

U0 =
iωgh

f 2 − ω2

(

dη0

dx
+

τ0f

ρωgh

)

(7.6.20)

Differentiate Eqn. (7.6.20) and use Eqn. (7.6.17)

−iωη0 +
iωgh

f 2 − ω2

d2η0

dx2
= 0

or
d2η0

dx2
− f 2 − ω2

gh
η0 = 0 (7.6.21)

We now distinguish two cases.
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Low frequency: ω < f

The solution to (7.6.21) bounded at infinity is

η0 = A e−x/R0 (7.6.22)

where

R0 =

√

gh

f 2 − ω2
. (7.6.23)

is the modified Rossby radius.
Applying the B.C. on the coast: U0 = 0, we get from (7.6.20),

dη0

dx
=

−f

ρgH

τ0

ω

(7.6.22)
=

−A

R0
.

and,

A =
τ0

ω

f

ρgH
R0

Hence

η0 =
fτ0

ρωgH
R0 e−x/Ro

and finally

η =
fτ0

ρωgH
R0 e−x/R0 e−iωt (7.6.24)

Now

ηt = − ifτ0

ρgH
R0 e−x/Ro e−iωt = −Ux.

from Eqn. (7.6.1). Integrating with respect to x,

U =
ifτoR

2
0

ρgh

(

1 − e−x/R0

)

e−iωt. (7.6.25)

From Eqn. (7.6.20)

−iωV0 = −fU0 + iτ0/ρ

=
−if 2τ0R

2
0

ρgH

(

1 − e−x/R0

)

+
iτ0

ρ

=
iτ0

ρ

[

1 − f 2

gh
R2

0

(

1 − e−x/R0

)

]

V0 = − τ0

ρω

[

1 − f 2

f 2 − ω2

(

1 − e−x/R0

)

]
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= − τ0

ρω

f 2

f 2 − ω2

[

f 2 − ω2

f 2
− 1 + e−x/R0

]

=
τ0

ρω

ω2

f 2

f 2

f 2 − ω2

[

1 − f 2

ω2
e−x/R0

]

=
τ0ω/ρ0

f 2 − ω2

[

1 − f 2

ω2
e−x/R0

]

.

Let us summarize the results in real form,

τS
y = τ0 sin ωt (7.6.26)

η =
fτ0

ρωgh
R0 e−x/R0 cos ωt (7.6.27)

U =
fτoR

2
0

ρgh

(

1 − e−x/R0

)

sin ωt (7.6.28)

V =
τ0ω

ρ (f 2 − ω2)

(

1 − f 2

ω2
e−x/R0

)

cos ωt. (7.6.29)

If τ0 < 0 (or > 0), i.e., the coast is on the right (left) of wind, the sea level near the coast
rises (sinks).

High frequency : ω > f

Of the two possible oscillatory solutions to (7.6.21), we must choose the one that represents
outgoing waves at infinty (the radiation condition),

η0 = Aeikx, (7.6.30)

where the wavenumber is the inverse of the modified Rossby radius of deformation,

k =

√

ω2 − f 2

gh
(7.6.31)

We leave it to the reader to show that, in complex form,

η =
iτ0f

ρghωk
eikx−iωt (7.6.32)

U = − iτ0f

ρ(ω2 − f 2)

(

1 − eikx
)

e−iωt (7.6.33)

V = = − τ0

ρω

[

1 +
f 2

ω2 − f 2

(

1 − eikx
)

]

e−iωt (7.6.34)

or, in real form,

η = − τ0f

ρghωk
sin(kx − ωt), (7.6.35)
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U = − τ0f

ρ(ω2 − f 2)
(sin ωt + sin(kx − ωt)) (7.6.36)

V = = − τ0

ρω

[

1 +
f 2

ω2 − f 2
(cos ωt − cos(kx − ωt))

]

(7.6.37)


