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7.6 Transient longshore wind

[Ref]: Chapter 14, p. 195 ff, Cushman-Roisin
Csanady: Circulation in the Coastal Ocean

Figure 7.6.1: Longshore wind

In view of the last section, we ignore the bottom stress. Assume that the wind is uniform
in space but transient in time, so that 9/0dy = 0, The flux equations are
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The boundary condition on the coast x =0: U =0
7.6.1 Sudden long-shore wind
Let the wind stress be
0, t<0,
T = { T £ 0. (7.6.4)

the initial conditions are

n, UV =0, t=0, V. (7.6.5)



This initial-boundary value problem can be solved by Laplace transform (Crépon, 1967).
The solution consists of two parts: one part is oscillatory and decays with time; the other
part increases monotonically with time. To avoid the complex mathematics we only examine
the latter which is the dominant part for large time,

U=U(x), V=tV(z), n=tijr) (7.6.6)

The oscillatory part is needed to ensure the initial condition on U.
It is easy to see from (7.6.1) to (7.6.3) that
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These three equations can be combined into one :
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The solution satisfies no flux on the coast is
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is called the Rossby radius of deformation. Since f = 107" 1/s, in a shallow sea of h = 10 m
the Rossby radius is about 10° m = 100 km.
It is easy to find that
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Clearly when x/R, > 1, the coast line has no influence. The flux is U = T'/pf,V = 0, and
is inclined to the right of the wind by 90 degrees, as predicted by the Ekman layer theory.
The sea surface sinks near the coast if 7 > 0 (coast is on the left of wind) and rises if 7' < 0
(coast is on the right of wind).



7.6.2 Sinusoidal wind stress

We now consider

Tzf =R (Toe_i“’t) = T,sinwt (7.6.15)

Let
(777 U; V) =R [(7707 U07 %) e*iwt} (7616)

The symbol R (real part of) will be omitted for brevity.
Let us calculate the total flux (The boundary layers can be studied later.),
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An equation for a single variable can be obtained. For example by solving Eqns. (7.6.18)
and (7.6.19) for Uy and V), we get
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Differentiate Eqn. (7.6.20) and use Eqn. (7.6.17)
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We now distinguish two cases.



Low frequency: w < f

The solution to (7.6.21) bounded at infinity is
o = Ae /o (7.6.22)

where

is the modified Rossby radius.
Applying the B.C. on the coast: Uy = 0, we get from (7.6.20),

do _ —f T ez —A
dr  pgH w Ry’
and,
a=" 1 p
w pgH
Hence ;
70 _
— R z/Ro
o owgH 0€
and finally
n— f7o Ry /R0 =it (7.6.24)
pwgt
Now .t
1] To _ .
_ R z/Ro twt _Uz
Tt —ng 0€ e

from Eqn. (7.6.1). Integrating with respect to x,
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Let us summarize the results in real form,
7 = msinwt (7.6.26)
n = p{u?h Ry e /Fo cos wit (7.6.27)
R
U = fT—hO (1= e7*/M0) sin wt (7.6.28)
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If 79 < 0 (or > 0), i.e., the coast is on the right (left) of wind, the sea level near the coast
rises (sinks).
High frequency : w > f

Of the two possible oscillatory solutions to (7.6.21), we must choose the one that represents
outgoing waves at infinty (the radiation condition),

o = Ae’™?, (7.6.30)

where the wavenumber is the inverse of the modified Rossby radius of deformation,
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We leave it to the reader to show that, in complex form,
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or, in real form,
n o in(kz — wt), (7.6.35)
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