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Multiobjective problems 
 
Benefits and costs are often incommensurate (measured in different units) are they may accrue 
to different parties (equity issues): 
 
Examples: 
  Benefits    Costs 
 
 Hydropower output   Loss of species habitats 
 (MWhrs, $)    or recreational opportunities 
      (Units ???) 
 
 Additional crop revenues  Reduced crop revenues for 
 for upstream farmers benefiting downstream farmers with 
 from a water diversion ($)  less water ($)  
 
 Information provided by  Sampling cost ($) 
 a field monitoring   
 program (Units ??) 
 
Multiobjective analysis recognizes this by revealing tradeoffs among different objectives. 
 
Extension of the crop allocation example 
 
Extend previous example by considering 2 objectives – maximization of crop revenue and 
minimization of pesticide concentration in groundwater: 
 
Decision variables: 

x1 = mass of Crop 1 grown (tonnes = 103 kg)  
x2 = mass of Crop 2 grown (tonnes = 103 kg) 
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All constraints and the feasible region are the same as before. 
 
It is convenient to transform the problem so that both objectives are maximized.  Call the 
negative of pesticide concentration “environmental quality”: 
 
  Maximize
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There is a tradeoff between the revenue and environmental quality objectives : As x1 and/or x2 
increases crop revenue increases environmental quality decreases (and vice versa) 
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The nature of the tradeoff is revealed in plot of  F2 vs F1: 
• Each feasible solution corresponds to a single point in the F2 - F1 plane. 
• If a solution is inferior it is possible to increase one of the objectives without decreasing 

the other. 
• Non-inferior (Pareto optimal) solutions lie on the Pareto frontier which forms a 

boundary separating inferior and infeasible solutions.  
• Different Pareto optimal solutions represent different tradeoffs between the two 

objectives – if one objective is increased by moving to another Pareto solution the other 
objective cannot increase (and usually decreases). 

 
How can we identify the Pareto frontier in general? 
Best alternative is usually to carry out a parametric analysis: 

• Treat all but one objective (Fi, i =,2,…N) in an N-objective problem as constraints with 
specified right-hand values for F2,…, FN . 

• Maximize the remaining objective F1.  As the right-hand side values F2,…, FN  are 
changed the solutions trace out the Pareto frontier.    

 
In the example, treat crop production objective as a constraint and maximize environmental 
quality F2 as a function of F1: 
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The Pareto frontier can be obtained in GAMS by solving the above problem in a loop which 
varies F1 from 275 (the minimum feasible Pareto value) to 440 (the maximum feasible Pareto 
value). 
 
Same result is obtained if we treat environmental quality as a constraint and maximize crop 
production F1 as a function of F2. 
 
Above concepts apply equally well to nonlinear and discrete multi-objective optimization 
problems. 
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Different types of tradeoffs: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F1 

Here small improvements in 
environmental quality have a 
large adverse impact on 

“Knee” looks 
like best 
compromise 

F2 

Here small improvements in 
revenue have a large adverse 
impact on environmental 

Tradeoff is the 
same 

No obvious compromise ! 

F1 

F2

Utility 
 
Tradeoff curves do not tell us which Pareto optimal solution to adopt. 
One approach for finding a single optimum solution is to identify a utility (or preference) 
function. 
The utility function defines combinations of F1, F2 ,…, FN  values that a particular party 
(individual, group, etc.) finds equally acceptable.  Contours of constant utility are called 
indifference curves. 
 
 
 

F1 

Indifference curves 
(contours of equal utility)  

 
 
 
 
 
 
 
 
 
 
 
Pareto curve can be viewed as an equality constraint in a new optimization problem where we 
seek to maximize utility.  Then maximum utility solution lies at the point where the gradients to 
the utility function and Pareto frontier constraint point in the same direction. 
 
Utility functions are difficult to measure, although economists have developed indirect ways to 
estimate them from surveys.   
 
A typical example of a two-objective utility function  that may be fit to survey data is 
the Cobbs-Douglas function: 

),( 21 FFU

Increasing utility 

F2 

Pareto frontier 

Maximum utility 
Pareto solution 
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   where α and β are specified (or fit) non-negative coefficients βα
2121 ),( FFFFU =

 
The dependence of the utility function on any given objective value is typically nonlinear. 
 
Utility and Risk 
For the crop allocation example, consider the dependence of utility on revenue F1 for fixed 
environmental quality F2.  
 
To examine effects of uncertain F1 expand U(F1) in a Taylor series around mean revenue 1F :   
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Mean of this expression is: 
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When there is no uncertainty:  → 02

1
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When there is uncertainty:       → relationship between 02
1
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sign of . 2
1
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Three possibilities: 

• Risk averse:  U(F1) is concave,  mean utility is lower when F0/ 2
1

2 <∂∂ FU 1 is 
uncertain (risk lowers utility) 

• Risk neutral: U(F1) is linear,     mean utility is the same when F0/ 2
1

2 =∂∂ FU 1 is 
uncertain (risk has no effect on utility) 

• Risk seeking: U(F1) is convex,   mean utility is higher when F0/ 2
1

2 >∂∂ FU 1 is 
uncertain (risk raises utility). 

 
Utility is often a concave function of revenue (decision-maker is risk averse) for sufficiently 
large revenue. 
 
In the crop allocation example this could reflect the fact that the marginal utility gained by 
having more revenue gradually decreases as environmental quality declines.  
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Example:  
Consider a risk adverse farmer faced with uncertain revenue because of uncertainty in the farm 
water supply. 
 
F1 has 2 possible values 11 FF δ± , each with probability = 0.5. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Suppose the (concave) utility function for this risk adverse farmer is . The farmer 
can sell a crop option for a price P before the growing season starts. The option guarantees the 
farmer revenue P. The actual value of the crop is either 

)ln()( 11 FFU =

11 FF δ+  or  11 FF δ− , depending on 
uncertain water availability. What price is the farmer willing to accept for the option? 
 
Suppose 1000$1 =F , 200$1 =Fδ  
 
If farmer sells the option for price P the mean (certain) utility is 
 )ln()( 1 PFU =  
 
If farmer does not sell the option and accepts risk the mean utility is: 
 89.634.355.3)ln(5.0)ln(5.0)( 111 =+=−++= FFFFFU δδ  
 
Equate these two mean utilities and solve for P: 
  40.982$)89.6exp( ==P
 
So the farmer is willing to sell the crop option for P = $982.40 rather to obtain expected revenue 
of $1000. The risk premium is $17.60. 
 
If the farmer is risk neutral he would require that P = $1000 and the risk premium would be 
zero. 
 

Average utility when 
revenue is uncertain 

F1 

U 

Average utility when 
revenue is certain 

0.50.5 

0.5 

0.5 

Concave utility function      
(risk averse) 
Uncertainty lowers 
average utility 

Probabilities: 
certain values 

1δFF1 − 11 δFF +1F uncertain values
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