
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Civil and Environmental Engineering

1.731 Water Resource Systems

Lecture 19,20 Real-Time Optimization, Dynamic Programming
Nov. 14, 16, 2006

Real-time optimization
Real-time optimization problems rely on decision rules that specify how decisions should
maximize future benefit, given the current state of a system. State dependence provides a
convenient way to deal with uncertainty. Some examples:

• Reservoir releases – Decision rule specifies how current release should depend on current

storage. Primary uncertainty is future reservoir inflow.

• Water treatment – Decision rule specifies how current operating conditions (e.g. temperature

or chemical inputs) should depend on current concentration in treatment tank. Primary
uncertainty is future influent concentration.

• Irrigation management - Decision rule specifies how current applied irrigation water should

depend on current soil moisture and temperature. Primary uncertainties are future
meteorological variables.

Real-time optimization can be viewed as a feedback control process:

Time loop

ut

State xt+1
Input It

Control

System

Decision rule
ut(xt)

)tI,tu,tg(x1tx =+

t+1→ t

At each time step:
• Observe state
• Derive control from decision rule
• Apply control.

1,...,0 −= Tt

State variables: xt (decision variables, depend on controls and inputs)
Control variables: u (decision variables, selected to maximize benefit) t
Input variables: It (inputs, assigned specified values)
Decision rule: (function that gives u)(tt xu for any x) t t

State equation: initial condition:),,(1 tttt Iuxgx =+ 0x

 1

Dynamic Programming
Dynamic programming provides a general framework for deriving decision rules. Most dynamic
programming problems are divided into stages (e.g. time periods, spatial intervals, etc.):

Stage 1
0

u0 x0

f0(u0, x0, x1)

I0

1 2
u1 x1 x2

f1(u1 ,x1, x2)

I1

Stage 2
…

Stage t
t-1

ut-1 xt-1 xt

ft-1(ut-1, xt-1, xt)

It-1

t
Stage T

T-1
uT-1 xT-1 XT

fT-1(uT-1, xT-1, xT)

IT-1

T

…

VT(xT)

Benefit accrued over Stage t+1 is :),,(1+tttt xxuf

Optimization problem:
Select that maximizes benefit-to-go (benefit accrued from current time t through
terminal time T) at each time t:

1,..., −Tt uu

 t = 0,…,T-1),...,,,...,(11
1,...

−−
−

TtTtt
Tutu

uuxxFMax

)(TT xVwhere benefit-to-go at t is terminal benefit (salvage value) plus sum of benefits for

stages t through T-1:

:)(),,(),...,,,...,(
1

111 TT

T

ti
iiiiTtTtt xVxxufuuxxF += ∑

−

=
+−−

subject to:

Benefit-to-go Terminal
benefit

Benefit from
remaining stages

 ,...,;),,(1 −==+ TtiIuxgx iiiti 1 (state equation)

and other constraints on the decision variables:
 ttt ux Γ∈},{ , TTx Γ∈}{ at t = 0,…,T). (decision variables lie within some set tΓ

Objective may be rewritten if we repeatedly apply state equation to write all as

functions of :

)(tixi >

11 ,...,,,...,, −− TtTtt IIuux
 ,...,,,...,,(),...,,,...,(111 −−− = TtTtttTtTtt IIuuxFuuxxF)

Decision rule) at each t is obtained by finding sequence of controls that
maximizes for a given state and a given set of specified inputs

.

(tt xu 1,..., −Tt uu
),...,,,...,,(11 −− TtTttt IIuuxF tx

1,..., −Tt II

 2

Backward Recursion for Benefit-to-go
Dynamic programming uses a recursion to construct decision rule :)(tt xu

Define return function) to be maximum benefit-to-go from t through T: (tt xV
 []),...,,,...,,()(11

1,...,
−−

−
= TtTttt

Tutu
tt IIuuxFMaxxV

Separate benefit term for Stage t+1:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= −+−+++

−+
+),...,,,...,,(),,()(111111

1,...1
1 TtTttt

Tutu
tttt

tu
tt IIuuxFMaxxxufMaxxV

Replace second term in brackets with definition for :)(11 ++ tt xV

[])(),,()(111 +++ += tttttt
tu

tt xVxxufMaxxV

Substitute state equation for xt+1:
{ })],,([)],,(,,[)(1 tttttttttttt

tu
tt IuxgVIuxgxufMaxxV ++=

This equation is a backward recursion for , initialized with terminal benefit

. Expression in braces depends only on u

)(tt xV

)],,([1 tttT IuxgV + t [which is varied to find the

maximum], xt [the argument of V (xt t)], and I [the specified input]. t

At each stage find the u that maximizes for all possible x)(tt xV . t t
Store the results (e.g. as a function or table) to obtain the desired decision rule .)(tt xu

Example 1: Aqueduct Diversions
Maximize benefits from water diverted from 2 locations along an aqueduct.
Here the stages correspond to aqueduct sections rather than time (T = 2).

State equation:
 t = 0, 1, 2 ttt uxx −=+1
 Inflow
 x Outflowxx0 2 1

Here stage numbers refer to diversion index rather than time.
Benefit at each stage depends only on control (diversion), not on state.
Terminal benefit depends on system outflow. No input included in state equation.

u0 u1

Diversions & benefits

f0(u0) f1(u1)

V2(x2)

 3

Total benefit from diverted water and outflow x3 is:
 ()()(),,(221100101 xVufufuuxF ++=)

The stage benefit and terminal benefit are:

000 2
1)(uuf = 111)(uuf =)1()(2222 xxxV −=

Additional constraints are:
 0 01 ≥u 10 2 ≤≤ x0 ≥u

Solve problem by proceeding backward, starting with last stage (t = 2):

Stage 2: Find V (x) for specified x1 1 1:

[]

[]

[]

[])1(2

)1)((

)()(

)()()(

1111
2
1

1

11111
1

11211
1

2211
1

11

xxuxuMax

uxuxuMax

uxVufMax

xVufMaxxV

u

u

u

u

−++−=

+−−+=

−+=

+=

 Solution that satisfies constraints:
 11 xu = 111)(xxV =

 Stage 1: Maximize V0(x0) for specified x : 0

[]

⎥⎦
⎤

⎢⎣
⎡ −+=

+=

000
0

1100
0

00

2
1

)()()(

uxuMax

xVufMaxxV

u

u

 Solution that satisfies constraints:
 0 =u 0 000)(xxV =

Solution specifies that all water is withdrawn from second diversion point, where it is most
valuable.

Discretization of Variables
In more complex problems the states, controls and inputs are frequently discretized into a finite
number of compatible levels.

Simplest case:
 → ; j, k, l = 1, 2,…, L where L = number of discrete levels. l

t
j

t
k
t Iux ,,ttt Iux ,,

 4

Then the optimization of problem at each stage reduces to an exhaustive search through all
feasible levels of to find the one that maximizes:

j
tu

)],,([)],,(,,[1
l
t

j
t

k
ttt

l
t

j
t

k
tt

k
t

j
tt IuxgVIuxgxuf ++

for each feasible and a single specified input level . k
tx l

tI

This is discrete dynamic programming.

Example 2: Reservoir Operations
Maximize benefits from water released from reservoir with variable inflows.
Stages correspond to 3 time periods (months, seasons, etc. T = 3).

Storage xt

Release ut

Inflow It

State equation:
 t = 0, 1, 2 tttt Iuxx +−=+1

Total benefit from released water and final storage x3:
 ()()()(),...,,(33221100200 xVufufufuuxF +++=)

Discretize all variables into compatible levels:
 u = {0,1,2} xt t = {0,1,2) It = {0,1) t = 0, 1, 2

Inflows: I I I0 1 2
 1 0 1
Terminal (outflow) benefits: V (x) = 0 for all x3 3 3 values

Benefits for each release:
 u ft 0(u0) f1(u f1) 2(u2)
 0 0 0 0
 1 3 4 1
 2 2 5 3

Possible state transitions are derived from state equation, inputs, and permissible variable values:
Benefit is shown in parentheses after each feasible control value.

 5

Show the possible transitions with a diagram where each feasible state level is a circle and

each feasible control level is a line connecting circles:

k
tx

j
tu

Return

Solve series of 3 optimization problems defined by recursion equation for t = 2, 1, 0.
Start at last stage and move backward:

Stage 3: Find V2(x2) for each level of x2:
 [] [])()()()()(222322

2
3322

2
22 IuxVufMaxxVufMaxxV

uu
+−+=+=

Identify optimum u2(x2) values for each possible x2, V3(x3) specified as an input:

 X2 u2(x2) f2(u2) + V3(x3)
 0 0 0 + 0 = 0
 1 1 + 0 = 1 = V2(x2)

 1 0 0 + 0 = 0
 1 1 + 0 = 1
 2 3 + 0 = 3 = V2(x2)

 2 1 1 + 0 = 1
 2 3 + 0 = 3 = V2(x2)

Optimum

Optimum

Optimum

Stage 1 Stage 2 Stage 3

Control, benefit, and
return values

1(3)

3)

3)

1)

1)

1)

0)

0)

0)

0)

0)

2)

2)

3)

3)

0)

0)

4)

5)
4)

1(

1(

1(

1(

1(

0(

0(

0(

0(

0(

2(

2(

2(

2(

0(

0(

1(

2(
1(

10 0 3 7

8 0 3 5

5 0 1 1

Control Benefit

 6

) for each level of xStage 2: Find V (x1 1 1:
[] [])()()()()(111211

1
2211

1
11 IuxVufMaxxVufMaxxV

uu
+−+=+=

Identify optimum u (x1 1) value for each possible x1, obtain V2(x2) from Stage 2:

 x1 u1(x) f1 1(u1) + V2(x2)

Optimum 0 0 0 + 1 = 1 = V1(x1)

 1 0 0 + 3 = 3

Optimum 1 4 + 1 = 5 = V1(x1)

 2 0 0 + 3 = 4

Optimum 1 4 + 3 = 7 = V1(x1)
 2 5 + 1 = 6

) for each level of xStage 1: Find V (x0 0 0:
[] [])()()()()(000100

0
1100

0
00 IuxVufMaxxVufMaxxV

uu
+−+=+=

Identify optimum u (x0 0) values for each x0, obtain V (x) from Stage 1: 1 1
 x1 u0(x) f0 0(u0) + V (x1 1)
 0 0 0 + 5 = 5 = V0(x Optimum

Optimum

Optimum

0)
 1 3 + 1 = 4

 1 0 0 + 7 = 7 = V0(x0)
 1 3 + 5 = 8
 2 2 + 1 = 3

 2 1 3 + 7 = 10 = V0(x0)
 2 2 + 5 = 7

The optimum u (xt t) decision rules for t = 0, 1, 2 define a complete optimum decision strategy:

x0 u0 x u1 1 x2 u2
0 0 0 0 0 1
1 1 1 1 1 2
2 1 2 1 2 2

 7

21

 1

 1

1

0

0

2 1

10 0 3 7

8 0 3 5

5 0 1 1

Optimal
control

Optimum controls
and corresponding
return values

Return function value

Note that there is a path leaving every state value. The optimum paths give a strategy for
maximizing benefit-to-go from t onward, for any value of state xt.

Optimal benefit for each possible initial storage is V (x). 0 0

Computational Effort

The solution to the discretized optimization problem can be found by exhaustive enumeration
(by comparing benefit-to-go for all possible combinations).)(tt xu

Dynamic programming is much more efficient than enumeration since it divides the original T
stage optimization problem into T smaller problems, one for each stage.

To compare computational effort of enumeration and dynamic programming assume:

• State dimension = M, Stages = T, Levels = L
• Equal number of levels for ut and xt at every stage
• All possible state transitions are permissible (i.e. L2 transitions at each stage)

Then total number of evaluations required is: tV

 Exhaustive enumeration: LM(T+1)

2M Dynamic Programming: TL
For M = 1, L = 10, T = 10 the number of evaluations required is: tV

11 Exhaustive enumeration: 10
 Dynamic Programming: 103

 8

