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When is a local optimum also a global optimum? 
 
A local maximum/ minimum is a global maximum/minimum over the feasible region F if: 

1. The feasible region is convex 
2. The objective function is convex (for a maximum) or concave (for a minimum) 

 If the objective function is strictly convex or concave, the optimum is unique. 
 
We need to define terms to apply this criterion. 
 
Vector functions and derivatives: 
Use vector notation used to represent multiple functions of multiple variables: 
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Selected derivatives of scalar and vector functions:  

 Gradient vector of scalar function f(x): 
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 Hessian matrix of scalar function f(x): 
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 Jacobian matrix of vector function gi(x) 
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Convex/concave functions 
Convexity of  functions can be defined geometrically or in terms of Hessian: 
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f(x) is a convex function if: 
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f(x) is a concave function if:  
 Linear functions are both 

convex and concave ! 
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Convex feasible region F:  
 F  is convex if line connecting any pair of points (xA, xB) lies completely inside region: 
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Convex feasible region may be constructed from m constraints that meet following 
requirements: 
 
All gi(x) are convex when gi(x) ≤ 0  
Or:   
All gi(x) are concave when gi(x) ≥ 0 
 
Feasible regions constructed from linear 
functions are always convex. 
 
 
 
Summary: 
A local maximum/ minimum is a global maximum/minimum over the feasible region F if: 

1. The feasible region is convex 
2. The objective function is convex (for a maximum) or concave (for a minimum) 

 If the objective function is strictly convex or concave, the optimum is unique. 
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1D Examples: 
  
1. Objective is convex/concave, feasible region is convex  →  local maxima/minima are global 
maxima/minima. 
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2. Objective is convex/concave, feasible region is not convex  →  local maxima/minima are not 
necessarily global maxima/minima. 
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3. Objective is not convex/concave, feasible region is convex  →  local maxima/minima are not 
necessarily global maxima/minima. 
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