12.005 Lecture Notes 15

Elasticity
So far:
Stress — angle of repose vs accretionary wedge
Strain — reaction to stress — but how?
Constitutive relations
5y = T (gkl) =& (Tkl)
For example,
Elasticity
Isotropic
Anisotropic
Viscous flow
Isotropic
Anisotropic

Power law creep

Viscoelasticity
Trade offs:
simplicity <> realism
constant variable
1sotropic anisotropic
elastic, viscous viscoelastic
history history dependent
independent




Tensors

Most physical quantities that are important in continuum mechanics like temperature,
force, and stress can be represented by a tensor. Temperature can be specified by stating
a single numerical value called a scalar and is called a zeroth-order tensor. A force,
however, must be specified by stating both a magnitude and direction. It is an example of
a first-order tensor. Specifying a stress is even more complicated and requires stating a
magnitude and two directions—the direction of a force vector and the direction of the
normal vector to the plane on which the force acts. Stresses are represented by second-

order tensors.

Tensors are quantities independent of coordinate system.
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Tensors:

a. 0" order (scalar) — quantity dependent only on position

1 order (3' components) A'= o AJ.

c. 2™ order (3*=9 components) AU. ‘=, A,

d. 3"order (3°=27 components) A”.k '=ao0 A, )

th 4 _ "
e. 4 order (3= 81 components) A”.kI —aisajtakpalqutpq

Linear Elastic Solid

Tij = Gy
Cyj 18 elastic modulus tensor

Cyq =constants (# history, # displacement, # time)

3* =81 components

T, =T, € =¢€; > cutsto36
Strain Energy
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Write in terms of powers of €;
U=a+ ge+ 7€

0 (to avoid spontaneous expansion, contraction)



Z_:_ = (7ijk| + Vi )ekl

Cin = Cyij = 21 individual components.

21 components — data fitting — ugh!
Lots of available information, but lots of hard work.

Reality — 21 components (triclinic)

\

Simplicity — derive in homework

Isotropic
Ciju = ﬂ'é‘ijé‘kl + :u(é‘iké‘jl + 5i|5jk)

A and u are Lame parameters.

T = 4840y + 2 €y

Can also express

€ = SijkITkI

Compliance tensor
Aside

€ = STy

T

triclinic, trigonal
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Sheer leads to lengthening.
Isotropic — can relate ¢, and Sy, directly

T = A8y 0y +2u€; = (3/1 + 2/1) €

AG;
2uey =7 — 20+34 Tk

Conventional moduli:

1. Hydrostatic comp.
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where K =A4+2/3u is bulk modulus.

2. Uniaxial stress
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T”=T

other T, = 0




2ue =T —

2u+32

T = E (sometimesY)
e1

where E = Hpt+34) is Young’s modulus

U+ A
Hook’s law:
T=Ee
Cn & _ —v  This is called Poisson’s ratio.
ell ell
208, = ‘

-— 7, = v=
2u+34 2(u+A)
O=¢,+e,+e;=¢,(1-2v)

fluid: >0 = v—)%

most material: v=0.2-0.3

V= 1 = A=pu Itis Poisson solid.

steel: v: 0.3-0.33

seismically measured

\ p p

compare V,,V, — v —> discriminate rock types

3. Simple shear
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Tp =Ty =7
T = 2/1912 = ZGelz

where G is shear modulus.

Note: Among A, 1, K, v, E, G only two are independent.



Useful forms:

T, =(A+2u)e, + e, + 165
Ty = A8y +(A+ 2408y, + A8y,
T3y = A8 + A8y, +(A+21)8;,

or
o _Tu_Vin Vi
=
E E E

e — Vi [ Ty Vi
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