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Back-scattered electron detector




Compositional and topographic
imaging with BSE

a solid-state diode detector in (A) A+B, or compositional mode; (B) A-B, or topographic mode

A+B A-B
Compositional Topographic
mode mode



Secondary electrons

- Specimen electrons mobilized by electron
beam through inelastic scattering

- Secondary electrons have lower energy
compared to backscattered electrons

(useful in studying surface topography)



Secondary electron detector
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Secondary electron imaging
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Cathodoluminescence

Light generated from sample through electron beam interaction
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Cathodoluminescence detector
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Photomultiplier for secondary electron imaging is used as CL detector
Optical arrangement is the same as for the optical microscope



Cathodoluminescence spectrometer
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Integrated CL and X-ray
spectrometry

CL spectrum

BB »-contsijmop

223134
216883

130548

104330

Scatter plot
3 band CL map 3 element X-ray map

CL wavelength band may be correlated with an element



Wavelength Dispersive Spectrometer

(WDS)




WDS Analyzing crystal




Bragg’'s Law

0 = angle of

diffraction

d = lattice spacing

nA = 2dsin @
= path length ABC

n = order of reflection

(any integer)




First and second order
reflections

Same element

1A = 2d sin0, 2A = 2d sin0,
=ABC =DEF

path DEF = 2% path ABC



Diffraction angle

Different elements

Ay

(Element 1)

nA; = 2d sin0, nA, = 2d sinf,

Diffraction angle changes with wavelength being
diffracted (for the same order of reflection, n)



WDS Analyzing crystals
with different “d” spacings

Name 2d (A) Type

LDEC 98 Ni/C Multi-layer

STE

1004  Pb stearate

LDE1 59.8  W/Si Multi-layer
TAP 258  Thallium acid phthalate
PET 8.742  Pentaerythritol

LIF

4028  Lithium fluoride

Elements usually analyzed

B-O (Kat), optimized for C analysis
B-O (Kai), optimized for C analysis
C-F (Kay), optimized for O analysis
Na-P (Ka); Cu-Zr (Lot); Sm-Au (Ma)
S5-Mn (Ka); Nb-Pm (Lat); He-U (Ma)
Ti-Rb (Kar); Ba-U (La)



WDS detector: Proportional countet

Count rate
depends
on bias
and
gas used

m Tungsten collection wire set at 1-3 kV bias

s Flow counter: 90% Ar +10% CH, (P-10);
poly-propylene window

m Sealed counter: Xe or Kr; Be window



Bias in proportional counter
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Counting efficiency of gas
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WDS signal processing

Single channel analyzer (SCA)
and
pulse height analysis (PHA)

window
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WDS Focusing geometry
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Curved diffracting crystals

Johansson type
bending curvature: 2R
polished and gronnd to R

Johan type
only bent to 2R,

not ground

FWHM of fully focusing Johansson-type crystal ~10 eV

Some defocusing in Johan-type, but resolution is not compromised



Defocusing in beam-rastered
WDS X-ray maps

% Focusing
\\Circle

.\\ I'.' II.- _.a"-
WDS defocusing S o major axis of
during mapping Proportional WDS focusing
Counter ellipsoid

As the beam moves off the optic axis, the displacement \

in the specimen plane is equivalent to a change in the angle
of incidence of the x-rays on the crystal by an angle Af.

direction of
defocusin




WDS: changing the angle
of diffraction

ni1 = 2d sin 01

L1 =nA1.R/d

oft, n,A; = 2d sin 6,
L, = n,A.R/d



Theoretical and actual limits of

spectrometer movement




EPMA: Quantitative analysis
procedure

m Sample preparation
m Qualitative analysis with EDS

m Standard intensity measurement
(calibration)

m Measurement of X-ray
intensities in the specimen

® Data reduction through matrix
corrections



Sample preparation

m Sample cut and mounted in epoxy

m Polished first with coarse SiC paper, then with

alumina grit slurry (final size: <0.25 um) !

m Washed with water in ultrasonic cleanet 2

B Dried with blow duster and air

m Carbon coated °
1: diamond paste or colloidal silica for some samples; dry polishing paper for

water-soluble samples

2: ethanol may be used sparingly; cleaned with blow duster and cloth for samples
that dissolve in water

3: for insulators; if standards are coated, however, all samples must be coated



Sample prep: carbon coating
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