Essentials of Geophysics 12.201/501
Problem Set 1

1 Review of vector calculus.

The following is a brief refresher of vector calculus to the extent that we'll
be using it in class.

Notation:
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would typically denote a position vector. (You may think of this as a column
vector; r* would then be a row vector.)
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is a unit vector.
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is a vector dyad (notation as in Problem 7). In matrix representation, we
would write ab”™ showing how it can be obtained as the matrix product of a
column and a row vector. It is indeed the tensor (or matrix) with a;b; as the
17** element.

Let U(z,y, z) be a scalar function of position. )

Let B(z,y,2) = (B:(=,¥, 2), By(z,y, 2), B.(z,y, 2)) be a vector function of
position. It defines a vector at every point in space, B.(z, y, z) X+B,(z,y, 2) ¥+
B.(z,y,2) 2.

The gradient operator V has components (3%,3%,%). It augments the
order of a tensor with one: from our scalar function U, it defines the vector
field
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It makes a second-order tensor from a vector, and so on.



The divergence operator V- (the dot product of the gradient with the argu-

ment) reduces the order with one - from our wvector field, it makes a scalar
field.
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The divergence measures sources and sinks in the material. In continuum
mechanics, the best example of what this means is: a material with invariant
volume (incompressible) has a velocity field (specifying the velocity of each

particle at each point in space) which is said to be divergence-free: V-u = 0.

The Laplacian operator V-V or V? leaves the order of a tensor intact. For
the scalar function U,
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The curl or rotation operator Vx (the cross product of the gradient with

the argument) also leaves the order intact - for our vector function B, the
easiest representation is in determinant form:
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which is as much as
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which defines a vector field normal to B and its gradient. It measures the

vorticity of the B-field (see problem 6 for a clarifying example of what this
means).




2 Problems.

Let U = 2% + 252%?1 + 3zt
Let B = 2% + 2829 + 2L

1.

S

o

Calculate the gradient of U.

Calculate the divergence of B.

Calculate the Laplacian of U.

Verify that the curl of the gradient of U is 0.
Verify that B - (B x VU) is 0.

Let uf = w(—y% + z¥) describe a velocity field in a material.

(a)
(b)
(c)

What kind of motion is this material undergoing?
Make a plot of this vector field.
Calculate %V x u”. Explain what you get.

Let I be the identity tensor/matrix. What kind of an operator is

(a)
(b)

(c)

(I1—22)-7 (6)

Calculate the (scalar) moment of inertia (around one axis) of a
spherically symmetric body with constant density.

Now derive an expression for the moment of inertia for spherically
symmetric bodies with a two-step variation of density. Apply this
to a planet with a uniform-density mantle and a uniform core
of half the total radius R, and with a density that is f times
the mantle density. What values of f would be required to give
moments of inertia of 293/886 M R?, 73/200 M R?, and 391/1000
M R?, corresponding to Earth, Mars and Moon, respectively?

The next step is a continuous, functional variation of density with

radius. The following are data on the density variations within
the Sun.



r/rs | p (kgm™®)
0 160,000
0.04 | 141,000
0.1 89,000
0.2 41,000
0.3 13,300
0.4 3,600
0.5 1,000
0.6 350
0.7 80
0.8 18
0.9 P
0.95 0.4
1.0 0

Assume a monotonous decrease of density with distance from the
center. Describe p(r) functionally by fitting a low-order polyno-
mial through the data. (Note: MATLAB™’s function polyfit
might come in handy here. Use these expressions to obtain an
estimate of the moment of inertia of the Sun. A detailed estimate
yields 5.7x10% kgm?.) What fraction is this value of the moment
of inertia of a uniform sphere of the same mass and radius?

The outer radius is r5=6.96x 10® m and the total mass is Ms=1.989x10%°
kg.



3 Matlab

We don’t want to require you to use MATLAB™ but in fact, for many prob-
lems, there will be a part where you can find out how fun MATLAB™ really
can be. For your convenience & entertainment, see what happens if you run
the following programs...

% Program jello.m

clear all

x1=2:2:10;

x2=2%ones (size(x1));
X=[x1; x2];
t=0:0.05:1;

om=2%pi;

for ind=1:length(X),

r1=X(1,ind) *cos(om*t)+X(2,ind)*sin(om*t) ;
r2=-X(1,ind)*sin(om*t)+X(2,ind) *cos (om*t) ;

vi=-om*X (1, ind) *sin (om*t)+om*X(2,ind)*cos (om*t) ; !
v2=-om*X (1,ind)*cos (om*t)-om*X(2,ind) *sin(om*t);

Ri(:,ind)=r1’;

R2(:,ind)=r2’;

Vi(:,ind)=vl’;

V2(:,ind)=v2’;

end

quiver (R1,R2,V1,V2,0.75)
axis([-10 10 -10 10])
axis(’square’)

grid

% Program flow.m

clear all

ri=-5:1:5;

r2=-5:1:5;
[R1,R2]=meshgrid(r1l,r2);
vi=ri;

v2=-r2;
[Vi,V2]=meshgrid(vi,v2);
quiver (R1,R2,V1,V2,2)
axis([-6 6 -5 5])
axis(’square’)

grid



