
Chapter 2


The Earth’s Gravitational 
field 

2.1	 Global Gravity, Potentials, Figure of the Earth, 
Geoid 

Introduction 

Historically, gravity has played a central role in studies of dynamic processes in 
the Earth’s interior and is also important in exploration geophysics. The concept 
of gravity is relatively simple, high-precision measurements of the gravity field 
are inexpensive and quick, and spatial variations in the gravitational acceleration 
give important information about the dynamical state of Earth. However, the 
study of the gravity of Earth is not easy since many corrections have to be 
made to isolate the small signal due to dynamic processes, and the underlying 
theory — although perhaps more elegant than, for instance, in seismology — 
is complex. With respect to determining the three-dimensional structure of the 
Earth’s interior, an additional disadvantage of gravity, indeed, of any potential 
field, over seismic imaging is that there is larger ambiguity in locating the source 
of gravitational anomalies, in particular in the radial direction. 

In general the gravity signal has a complex origin: the acceleration due to 
gravity, denoted by g, (g in vector notation) is influenced by topography, as-
pherical variation of density within the Earth, and the Earth’s rotation. In 
geophysics, our task is to measure, characterize, and interpret the gravity sig-
nal, and the reduction of gravity data is a very important aspect of this scientific 
field. Gravity measurements are typically given with respect to a certain refer-
ence, which can but does not have to be an equipotential surface. An  important  
example of an equipotential surface is the geoid (which itself represents devia-
tions from a reference spheroid). 
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The Gravity Field 

The law of gravitational attraction was formulated by Isaac Newton (1642-1727) 
and published in 1687, that is, about three generations after Galileo had deter-
mined the magnitude of the gravitational acceleration and Kepler had discovered 
his empirical “laws” describing the orbits of planets. In fact, a strong argument 
for the validity of Newton’s laws of motion and gravity was that they could be 
used to derive Kepler’s laws. 

For our purposes, gravity can be defined as the force exerted on a mass m due 
to the combination of (1) the gravitational attraction of the Earth, with mass M 
or ME and (2) the rotation of the Earth. The latter has two components: the 
centrifugal acceleration due to rotation with angular velocity ω and the existence 
of an equatorial bulge that results from the balance between self-gravitation and 
rotation. 

The gravitational force between any two particles with (point) masses M 
at position r0 and m at position r separated by a distance r is an attraction 
along a line joining the particles (see Figure 2.1): 

Mm  
F = ‖F‖ = G

r2 
, (2.1) 

or, in vector form: 

Mm  
rF = −G ‖r − r0‖3 

(r − r0) =  −G 
Mm  ′̂ . (2.2) ‖r − r0‖2 

Figure 2.1: Vector diagram showing the geometry of the gravitational attraction. 

where r̂′ is a unit vector in the direction of (r − r0). The minus sign accounts for 
the fact that the  force  vector  F points inward (i.e., towards M) whereas the unit 
vector ′̂ points outward (away from M). In the following we will place M atr
the origin of our coordinate system and take r0 at O to simplify the equations 
(e.g., r − r0 = r and the unit vector ˆ r) (see Figure 2.2). r′ becomes ˆ

3 kg−1G is the universal gravitational constant: G = 6.673 × 10−11 m
s−2 (or N m2 kg−2), which has the same value for all pairs of particles. G must 
not be confused with g, the  gravitational acceleration, or force of a unit 



2.1. GLOBAL GRAVITY, POTENTIALS, FIGURE OF THE EARTH, GEOID33 

Figure 2.2: Simplified coordinate system. 

mass due to gravity, for which an expression can be obtained by using Newton’s 
law of motion. If M is the mass of Earth: 

Mm  F M 
F = ma = mg = −G 

r2 
r̂ ⇒ g = 

m 
= −G 

r2 
r̂ (2.3) 

M 
and g = ‖g‖ = G 

r2 
. (2.4) 

The acceleration g is the length of a vector g and is by definition always 
positive: g >  0. We define the vector g as the gravity field and take, by 
convention, g positive towards the center of the Earth, i.e., in the −r direction. 

The gravitational acceleration g was first determined by Galileo; the magni-
tude of g varies over the surface of Earth but a useful ball-park figure is g= 9.8  
ms−2 (or just 10 ms−2) (in  S.I.  — Système International d’Unités — units). In 
his honor, the unit often used in gravimetry is the Gal. 1  Gal  =  1  cms−2 = 0.01  
ms−2 ≈ 10−3g. Gravity anomalies are often expressed in milliGal, i.e., 10−6g or 
microGal, i.e., 10−9g. This precision can be achieved by modern gravimeters. 
An alternative unit is the gravity unit, 1 gu = 0.1 mGal = 10−7g. 

When G was determined by Cavendish in 1778 (with the Cavendish torsion 
balance) the mass of the Earth could be determined and it was found that the 
Earth’s mean density, ρ ∼ 5, 500 kgm−3, is much larger than the density of rocks 
at the Earth’s surface. This observations was one of the first strong indications 
that density must increase substantially towards the center of the Earth. In 
the decades following Cavendish’ measurement, many measurements were done 
of g at different locations on Earth and the variation of g with latitude was 
soon established. In these early days of “geodesy” one focused on planet wide 
structure; in the mid to late 1800’s scientists started to analyze deviations of 
the reference values, i.e. local and regional gravity anomalies. 

Gravitational potential 

By virtue of its position in the gravity field g due to mass M , any  mass  m has 
gravitational potential energy. This energy can be regarded as the work 
W done on a mass m by the gravitational force due to M in moving m from 
rref to r where one often takes rref = ∞. The  gravitational potential U is 
the potential energy in the field due to M per unit mass. In other words, it’s 
the work done by the gravitational force g per unit mass. (One can define U as 
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either the positive or negative of the work done which translates in a change of 
sign. Beware!). The potential is a scalar field which is typically easier to handle 
than a vector field. And, as we will see below, from the scalar potential we can 
readily derive the vector field anyway. 

(The gravity field is a conservative field so just how the mass m is moved 
from rref to r is not relevant: the work done only depends on the initial and 
final position.) Following the definition for potential as is common in physics, 
which considers Earth as a potential well — i.e. negative — we get for U: 

r r GM r 1 GM 
U = g · dr = − r̂ · dr = GM dr = − (2.5) 

r2 ∞ r
2 rrref rref 

Note that ˆ r and dr point in opposite directions. r · dr = −dr because ˆ

Figure 2.3: By definition, the potential is zero at infinity and decreases towards 
the mass. 

U represents the gravitational potential at a distance r from mass M . Notice  
that it is assumed that U (∞) = 0 (see Figure 2.3). 

The potential is the integration over space (either a line, a surface or a 
volume) of the gravity field. Vice versa, the gravity field, the gravity force per 
unit mass, is the spatial derivative (gradient) of the potential. 

GM ∂ GM ∂ 
g = − r̂ = = − U = −gradU ≡ −∇U (2.6) 

r2 ∂r r ∂r 
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Intermezzo 2.1 The gradient of the gravitational poten-
tial 

We may easily see this in a more general way by expressing dr (the incremental 
distance along the line joining two point masses) into some set of coordinates, 
using the properties of the dot product and the total derivative of U as follows 
(by our definition, moving in the same direction as g accumulates negative 
potential): 

dU = g · dr 

= −gxdx − gy dy − gz dz 

. (2.7) 

By definition, the total derivative of U is given by: 

∂U ∂U ∂U 
dU ≡ dx + dy + dz	 (2.8) 

∂x ∂y ∂z 

Therefore, the combination of Eq. 2.7 and Eq. 2.8 yields: 

∂U ∂U ∂U 
g = − , , = −grad U ≡ −∇U	 (2.9) 

∂x ∂y ∂z 

One can now see that the fact that the gravitational potential is defined to be 
negative means that when mass m approaches the Earth, its potential (energy) 
decreases while its acceleration due to attraction the Earth’s center increases. 
The slope of the curve is the (positive) value of g, and the minus sign makes 
sure that the gradient U points in the direction of decreasing r, i.e. towards the 
center of mass. (The plus/minus convention is not unique. In the literature one 
often sees U = GM/r and g = ∇U .) 

Some general properties: 

•	 The gradient of a scalar field U is a vector that determines the rate and 
direction of change in U . Let an equipotential surface S be the surface of 
constant U and r1 and r2 be positions on that surface (i.e., with U1 = U2 = 
U ). Then, the component of g along S is given by (U2 − U1)/(r1 − r2) =  0.  
Thus g = −∇U has no components along S : the field is perpendicular to 
the equipotential surface. This is always the case, as derived in Intermezzo 
2.2. 

•	 Since fluids cannot sustain shear stress — the shear modulus µ = 0,  the  
forces acting on the fluid surface have to be perpendicular to this surface 
in steady state, since any component of a force along the surface of the 
fluid would result in flow until this component vanishes. The restoring 
forces are given by F = −m∇U as in Figure 2.4; a fluid surface assumes 
an equipotential surface. 

•	 For a spherically symmetric Earth the equipotential would be a sphere and 
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Figure 2.4: F = −m∇U provides the restoring force 
that levels the sea surface along an equipotential sur-
face. 

g would point towards the center of the sphere. (Even in the presence of 
aspherical structure and rotation this is a very good approximation of g. 
However, if the equipotential is an ellipsoid, g = −∇U does not point to 
r = 0; this lies at the origin of the definition of geographic and geocentric 
latitudes.) 

•	 Using gravity potentials, one can easily prove that the gravitational ac-
celeration of a spherically symmetric mass distribution, at a point outside 
the mass, is the same as the acceleration obtained by concentrating all 
mass at the center of the sphere, i.e., a point mass. 

This seems trivial, but for the use of potential fields to study Earth’s 
structure it has several important implications: 

1.	 Within a spherically symmetric body, the potential, and thus the 
gravitational acceleration g is determined only by the mass between 
the observation point at r and the center of mass. In spherical coor-
dinates: 

r 

g(r) =  4π
G 

ρ(r ′)r ′2 dr′	 (2.10) 
r2


0


This is important in the understanding of the variation of the gravity 
field as a function of radius within the Earth; 

2. The gravitational potential by itself does not carry information about 
the radial distribution of the mass. We will encounter this later when 
we discuss more properties of potentials, the solutions of the Laplace 
and Poisson equations, and the problem of non-uniqueness in gravity 
interpretations. 

3.	 if there are lateral variations in gravitational acceleration on the sur-
face of the sphere, i.e. if the equipotential is not a sphere there must 
be aspherical structure (departure from spherical geometry; can be 
in the shape of the body as well as internal distribution of density 
anomalies). 



∣ 

∣ 

2.1. GLOBAL GRAVITY, POTENTIALS, FIGURE OF THE EARTH, GEOID37 

Intermezzo 2.2 Geometric interpretation of the gradi-
ent 

Let C be a curve with parametric representation C(τ ), a vector function. Let 
U be a scalar function of multiple variables. The variation of U , confined to the 
curve C, is given  by:  

d dC(τ )
[U (C(t))] = ∇U (C(t)) · (2.11) 

dt dt 

dTherefore, if C is a curve of constant U , 
dt [U (C(τ ))] will be zero.


Now let C(τ ) be a straight line in space:


C(τ ) =  p + at (2.12) 

then, according to the chain rule (2.11), at t0 = 0:  

d ∣ 
[U (C(τ ))]∣ = ∇U (p) · a (2.13) 

dt t=t0 

It is useful to define the directional derivative of U in the direction of a at 
point p as: 

a 
DAU (p) =  ∇U (p) · (2.14) ‖a‖ 

From this relation we infer that the gradient vector ∇U (p) at  p gives the 
direction in which the change of U is maximum. Now let S be an equipotential 
surface, i.e. the surface of constant U . Define a set of curves Ci (τ ) on  this  
surface S. Clearly, 

d ∣ dCi
[U (Ci (τ ))]∣ = ∇U (p) · (t0 ) = 0 (2.15) 

dt t=t0 dt 

for each of those curves. Since the Ci (τ ) lie completely on the surface S, the  
dCi (t0 ) will define a plane tangent to the surface S at point p. Therefore, the 
dt 

gradient vector ∇U is perpendicular to the surface S of constant U . Or:  the  
field is perpendicular to the equipotential surface. 

In global gravity one aims to determine and explain deviations from the 
equipotential surfaces, or more precisely the difference (height) between equipo-
tential surfaces. This difference in height is related to the local g. In  practice  
one defines anomalies relative to reference surfaces. Important surfaces are: 

Geoid the actual equipotential surface that coincides with the average sea level 
(ignoring tides and other dynamical effects in oceans) 

(Reference) spheroid : empirical, longitude independent (i.e., zonal) shape 
of the sea level with a smooth variation in latitude that best fits the geoid 
(or the observed gravity data). This forms the basis of the international 
gravity formula that prescribes g as a function of latitude that forms the 
reference value for the reduction of gravity data. 
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Hydrostatic Figure of Shape of Earth : theoretical shape of the Earth if 
we know density ρ and rotation ω (ellipsoid of revolution). 

We will now derive the shape of the reference spheroid; this concept is very 
important for geodesy since it underlies the definition of the International Grav-
ity Formula. Also, it introduces (zonal, i.e. longitude independent) spherical 
harmonics in a natural way. 

2.2	 Gravitational potential due to nearly spher-

ical body 

How can we determine the shape of the reference spheroid? The flattening of 
the earth was already discovered and quantified by the end of the 18th cen-
tury. It was noticed that the distance between a degree of latitude as mea-
sured, for instance with a sextant, differs from that expected from a sphere: 
RE (θ1 − θ2) �= RE dθ, with  RE the radius of the Earth, θ1 and θ2 two different 
latitudes (see Figure 2.5). 

Figure 2.5: Ellipticity of the Earth measured by the 
distance between latitudes of the Earth and a sphere. 

In 1743, Clairaut1 showed that the reference spheroid can also be computed 
directly from the measured gravity field g. The derivation is based on the 
computation of a potential U (P ) at point  P due to a nearly spherical body, and 
it is only valid for points outside (or, in the limit, on the surface of) the body. 

The contribution dU to the gravitational potential at P due to a mass ele-
ment dM at distance q from P is given by 

G 
dU = − dM	 (2.16) 

q 

Typically, the potential is expanded in a series. This can be done in two 
ways, which lead to the same results. One can write U (P ) directly in terms 
of the known solutions of Laplace’s equation (∇2U = 0), which are spherical 
harmonics. Alternatively, one can expand the term 1/q and integrate the re-
sulting series term by term. Here, we will do the latter because it gives better 

1 In his book, Théorie  de la  Figure de la  Terre.  
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Figure 2.6: The potential U of the aspherical body is calcu-
lated at point P , which is external to the mass M = dM ; 
OP = r, the distance from the observation point to the 
center of mass. Note that r is constant and that s , q, and  
θ are the variables. There is no rotation so U (P ) represents  
the gravitational potential. 

understanding of the physical meaning of the terms, but we will show how these 
terms are, in fact, directly related to (zonal) spherical harmonics. A formal 
treatment of solutions of spherical harmonics as solutions of Laplace’s equation 
follows later. The derivation discussed here leads to what is known as MacCul-
lagh’s formula2 and shows how the gravity measurements themselves are used 
to define the reference spheroid. Using Figure 2.6 and the law of cosines we can 
write q2 = r2 + s2 − 2rs cos θ so that 

G 
dU = − ( )2 ( ) 

r 1 +  s − 2 s cos Ψ r r 

1
2 

dM (2.17) 

We can use the Binomial Theorem to expand this expression into a power 
series of (s/r). So we can write: 

[ ]−( )2 ( ) s s 
1
2 ( s )21 

1 +  − 2 cos θ = 1  − 
r r 2 r ( ) ( s )2 ( 

+ 
s 

cos θ + 
3 

cos 2 θ 
) 

+ h.o.t. 
r 2 r ( ) ( s )2 ( 

= 1  +  
s 

cos θ + 
1 

3 cos  2 θ − 1 
) 

r 2 r 
+ h.o.t. (2.18) 

and for the potential: 

U (P ) =  dU 
V 

2 After James MacCullagh (1809–1847). 
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( ) 1 ( s )2 (s 
= − 

G 
1 +  cos θ + 3 cos  2 θ − 1 

) 
dM 

r r 2 r 
G G 

= − dM − s cos θ dM  
r r2 

2 
( − 

G
s 3 cos  2 θ − 1 

) 
dM (2.19) 

2r3 

In Equation 2.19 we have ignored the higher order terms (h.o.t). Let us 
rewrite eq. (2.19) by using the identity cos2 θ + sin  2 θ = 1:  

G G G 
U (P ) =  − dM − s cos θ dM  − s 2 dM +

3 G
s 2 sin2 θ dM  (2.20) 

r r2 r3 2 r3 

Intermezzo 2.3 Binomial theorem 

(a + b)n = a n + na n−1b +
1 

n(n − 1)a n−2 b2 

2! 
1 

+ n(n − 1)(n − 2)a n−3 b3 + . . .  (2.21) 
3! ( )2 ( ) 

sfor | b | < 1. Here we take b = − 2 s cos θ and a = 1.  
a r r 



∫ [ ] 

∑ ( 

∫ 

2.2. GRAVITATIONAL POTENTIAL DUE TO NEARLY SPHERICAL BODY41 

Intermezzo 2.4 Equivalence with (zonal) spherical har-
monics 

Note that equation (2.19) is, in fact, a power series of (s/r), with the multi-
plicative factors functions of cos(θ): 

( ( )1 ( 
G s 

)0 s 3 s 
U (P ) = − 1 + cos  θ + cos 2 θ − 

1 
)(  )2 

dM 
r r r 2 2 r ∫ 2 
G s 

)l 

= − Pl(cos θ) dM (2.22) 
r r 

l=0 

In spectral analysis there are special names for the factors Pl multiplying (s/r)l 

and these are known as Legendre polynomials, which define the zonal surface 
spherical harmonicsa . 
We will discuss spherical harmonics in detail later but here it is useful to point 
out the similarity between the above expression of the potential U (P ) as  a  power  
series of (s/r) and  cos  θ and the lower order spherical-harmonics. Legendre 
polynomials are defined as 

1 dl (µ2 − 1)l 

Pl(µ) =  (2.23) 
2ll! dµl 

with µ some function. In our case we take µ = cos  θ so that the superposition of 
the Legendre polynomials describes the variation of the potential with latitude. 
At this stage we ignore variations with longitude. Surface spherical harmonics 
that depend on latitude only are known as zonal spherical harmonics. For 
l = 0, 1, 2 we get  for  Pl 

P0 (cos θ) = 1 (2.24) 

P1 (cos θ)  =  cos  θ (2.25) 

3 
P2 (cos θ) = cos 2 θ − 

1 
(2.26) 

2 2 

which are the same as the terms derived by application of the binomial theorem. 
The equivalence between the potential expression in spherical harmonics and 
the one that we are deriving by expanding 1/q is no coincidence: the potential 
U satisfies Laplace’s equation and in a spherical coordinate system spherical 
harmonics are the general solutions of Laplace’s equation. 

aSurface spherical harmonics are at the surface of a sphere what a Fourier 
series is to a time series; it can be thought of as a 2D Fourier series which can be 
used to represent any quantity at the surface of a sphere (geoid, temperature, 
seismic wave speed). 

We can get insight in the physics if we look at each term of eq. (2.20) 
separately: 

1. − G dM = − GM is essentially the potential of a point mass M at O. r r 
This term will dominate for large r; at a large distance the potential due 
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to an aspherical density distribution is close to that of a spherical body 
(i.e., a point mass in O). 

2. s cos θ dM  represents a torque of mass × distance, which also underlies 
the definition of the center of mass rcm = r dM/  dM . In  our  case,  
we have chosen O as the center of mass and rcm = 0 with respect to O. 
Another way to see that this integral must vanish is to realize that the 
integration over dM is essentially an integration over θ between 0 and 
2π and that cos θ = − cos( π − θ). Integration over θ takes s cos θ back 2 
and forth over the line between O and P (within the body) with equal 
contributions from each side of O, since  O is the center of mass. 

3.	 s2 dM represents the torque of a distance squared and a mass, which 
underlies the definition of the moment of inertia (recall that for a ho-
mogeneous sphere with radius R and mass M the moment of inertia is 0.4 
MR2). The moment of inertia is defined as I = r2 dM . When talking 
about moments of inertia one must identify the axis of rotation. We can 
understand the meaning of the third integral by introducing a coordinate 

2system x, y, z so that s = (x, y, z), s2 = x2 + y2 + z so that s2 dM = 
(y2	 (x2(x2 + y2 + z2) dM = 1/2[ + z2) dM + (x2 + z2) dM + + y2) dM ] 

(y2 (x2	 (x2and by realizing that + z2) dM, + z2) dM and + y2) dM 
are the moments of inertia around the x-, y-, and z-axis respectively. See 
Intermezzo 2.5 for more on moments of inertia. 

With the moments of inertia defined as in the box we can rewrite the third 
term in the potential equation 

G G − s 2 dM = − 
2r3 

(A + B + C)	 (2.27) 
r3 

4.	 s2 sin2 θ dM  . Here, s sin θ projects s on a plane perpendicular to OP and 
this integral thus represents the moment of inertia of the body around OP . 
This moment is often denoted by I. 

Eq. (2.20) can then be rewritten as 

GM G 
U (P ) =  − − 

2r3 
(A  + B + C  − 3I)	 (2.28) 

r 

which is known as MacCullagh’s formula. 
At face value this seems to be the result of a straightforward and rather 

boring derivation, but it does reveal some interesting and important properties 
of the potential and the related field. Equation (2.20) basically shows that in 
absence of rotation the gravitational attraction of an irregular body has two 
contributions; the first is the attraction of a point mass located at the center of 
gravity, the second term depends on the moments of inertia around the principal 
axes, which in turn depend completely on the shape of the body, or, more 
precisely, on the deviations of the shape from a perfect sphere. This second 
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term decays as 1/r3 so that at large distances the potential approaches that of 
a point  mass  M and becomes less and less sensitive to aspherical variations in 
the shape of the body. This simply implies that if you’re interested in small 
scale deviations from spherical symmetry you should not be to far away from 
the surface: i.e. it’s better to use data from satellites with a relatively low 
orbit. This phenomenon is in fact an example of up (or down)ward continuation, 
which we will discuss more quantitatively formally when introducing spherical 
harmonics. 
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Intermezzo 2.5 Moments and products of inertia 

A moment of inertia of a rigid body is defined with respect to a certain axis of 
rotation. 

2 2 2For discrete masses: I = m1 r1 + . .  .  = miri 
2 ∫ + m2 r2 + m3 r3


and for a continuum: I = r2 dM


The moment of inertia is a tensor quantity 

MI = r 2 (I − ̂ r T) dM (2.29) rˆ

Note: we revert to matrix notation and manipulation of tensors. I is a second-
order tensor. 

rˆ zˆT )a projects the vector (I − ̂ r T ) is a projection operator: for instance, (I − ˆz

a on the (x,y) plane, i.e., perpendicular to ˆ
z. This is very useful in the general 
expression for the moments of inertia around different axis. 

1 0 0 
I = 0 1 0 (2.30) 

0 0 1 

and 

2x2 + y2 + z 0 0 
2r 2I = 0 x2 + y2 + z 0 (2.31) 

20 0 x2 + y2 + z

and r 2r̂r̂ T = rr̂ · rr̂ T = r · r T ( ) ( ) 
x ( ) x2 xy xz 

= y x y z = yx y2 yz (2.32) 
z zx zy z2 

So that: 

y2 + z2 −xy −xz 
rˆr 2(I − ̂ r T ) =  −yx x2 + z2 −yz (2.33) 

x2 + y2−zx −zy 

The diagonal elements are the familiar moments of inertia around the x, y,

and z axis. (The off-diagonal elements are known as the products of inertia,

which vanish when we choose  x, y, and  z as the principal axes.)


Moment of Inertia around x-axis

around y-axis

around z-axis


Ixx = (y2 + z2) dM = A 
Iyy = (x2 + z2) dM = B 

(x2Izz = + y2 ) dM = C 

We can pursue the development further by realizing that the moment of 
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inertia I around any general axis (here OP ) can be expressed as a linear com-
bination of the moments of inertia around the principal axes. Let l2 , m2, and  
n2 be the squares of the cosines of the angle of the line OP with the x-, y-, and 
z-axis, respectively. With l2 + m2 + n2 = 1  we  can  write  I  =  l2A +  m2B +  n2C 
(see Figure 2.7). 

Figure 2.7: Definition of direction cosines. 

So far we have not been specific about the shape of the body, but for the 
Earth it is relevant to consider rotational geometry so that A = B �= C.  This  
leads to: 

I =  A  +  (C  − A)n 2 (2.34) 

Here, n = cos  θ with θ the angle between OP and the z-axis, that is θ is the 
co-latitude. (θ = 90  − λ, where  λ is the latitude). 

I =  A  +  (C  − A) cos 2 θ (2.35) 

and 

GM G 3 
U(P ) =  − + 

r3 
(C − A) cos 2 θ − 

1 
(2.36) 

r 2 2 

It is customary to write the difference in moments of inertia as a fraction J2 

of Ma2, with  a the Earth’s radius at the equator. 

C − A =  J2Ma2 (2.37) 

so that 

U(P ) =  − 
GM 

+ 
GJ2Ma2 3 

cos 2 θ − 
1 

(2.38) 
r r3 2 2 

J2 is a measure of ellipticity; for a sphere C = A, J2 = 0, and the potential 
U(P ) reduces to the expression of the gravitational potential of a body with 
spherical symmetry. 
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Intermezzo 2.6 Ellipticity terms 

Let’s briefly return to the equivalence with the spherical harmonic expansion. 
If we take µ = cos  θ (see box) we can write for U (P ) 

U (P ) = U (r, θ) 

GM 
( 

a 
) 

= − [J0P0(cos θ) +  J1 P1(cos θ) 
r r ( 
a 
)2 

+ J2 P2(cos θ)] (2.39) 
r 

The expressions (2.20), rewritten as (2.38), and (2.39) are identical if we define 
the scaling factors Jl as follows. Since P0(cos θ) =  1,  J0 must be 1 because 
−GM/r is the far field term; J1 = 0 if the coordinate origin coincides with the 
center of mass (see above); and J2 is as defined above. This term is of particular 
interest since it describes the oblate shape of the geoid. (The higher order terms 
(J4 , J6 etc.) are smaller by a factor of order 1000 and are not carried through 
here, but they are incorporated in the calculation of the reference spheroid.) 

The final step towards calculating the reference gravity field is to add a 
rotational potential. 

Let ω = ωˆ be the angular velocity of rotation around the z-axis. Thez 
choice of reference frame is important to get the plus and minus signs right. A 
particle that moves with the rotating earth is influenced by a centripetal force 
Fcp = ma, which can formally be written in terms of the cross products between 
the angular velocity ω and the position vector as mω × (ω × s). This shows 
that the centripetal acceleration points to the rotation axis. The magnitude of 
the force per unit mass is sω2 = rω2 cos λ. The source of Fcp is, in fact, the 

Fcpgravitational attraction g (geff + Fcp = g).  The effective gravity  geff = g − mm 
(see Figure 2.8). Since we are mainly interested in the radial component (the 
tangential component is very small) we can write geff = g − rω2 cos2 λ. 

Figure 2.8: The gravitational attraction produces the centripetal force due to 
the rotation of the Earth. 

In terms of potentials, the rotational potential has to be added to the grav-
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itational potential Ugravity = Ugravitation + Urot, with  

1 
Urot = − rω2 cos 2 λdr  = − 

1 
r 2ω2 cos 2 λ = − r 2ω2 sin2 θ (2.40) 

2 2 

(which is in fact exactly the rotational kinetic energy (K = 1 Iω2 = 1 mr2ω2) per  2 2 
unit mass of a rigid body − 1 ω2r2 = − 1 v2, even though we used an approxima-2 2 
tion by ignoring the component of geff in the direction of varying latitude dλ. 
Why? Hint: use the above diagram and consider the symmetry of the problem) 

The geopotential can now be written as 

GM G 1 1 
U (r, θ) =  − + J2Ma2 3 

cos 2 θ − − r 2ω2 sin2 θ (2.41) 
r r3 2 2 2 

which describes the contribution to the potential due to the central mass, the 
oblate shape of the Earth (i.e. flattening due to rotation), and the rotation 
itself. 

We can also write the geopotential in terms of the latitude by substituting 
(sin λ = cos  θ): 

GM G 3 1 
U (r, λ) =  − + 

r3 
(C − A) sin2 λ − 

1 − r 2ω2 cos 2 λ (2.42) 
r 2 2 2 

We now want to use this result to find an expression for the gravity potential 
and acceleration at the surface of the (reference) spheroid. The flattening is 
determined from the geopotential by defining the equipotential U0, the  surface  
of constant U . 

Since U0 is an equipotential, U must be the same (U0) for a point at the 
pole and at the equator. We take c for the  polar radius and  a for the equatorial 
radius and write: 

U0,pole = U (c, 90) = U0,equator = U (a, 0) (2.43) 

GM G 
Upole = − + 

c3 
J2Ma2 (2.44) 

c

GM G


Uequator = − − J2Ma2 − 
1 
a 2ω2 (2.45) 

a 2a3 2 
(2.46) 

and after some reordering to isolate a and c we get 

a − c 3 J2Ma2 1 aω2 3 1 
f ≡ ≈ + = J2 + m (2.47) 

a 2 Ma2 2 GM/a2 2 2 

Which basically shows that the geometrical flattening f as defined by the 
relative difference between the polar and equatorial radius is related to the 
ellipticity coefficient J2 and the ratio m between the rotational (aω2) to the  
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gravitational (GMa−2) component of gravity at the equator. The value for the 
flattening f can be accurately determined from orbital data; in fact within a 
year after the launch of the first artificial satellite — by the soviets — this 
value could be determined with much more accuracy than by estimates given 
by many investigators in the preceding centuries. The geometrical flattening 
is small (f = 1/298.257 ≈ 1/300) (but larger than expected from equilibrium 
flattening of a rotating body). The difference between the polar and equatorial 
radii is thus about REf = 6371km/300 ≈ 21 km. 

In order to get the shape of the reference geoid (or spheroid) one  can  use  the  
assumption that the deviation from a sphere is small, and we can thus assume 
the vector from the Earth’s center to a point at the reference geoid to be of the 
form 

rg ∼ r0 + dr = r0(1 + ε) or,  with  r0 = a , rg ∼ a(1 + ε) (2.48) 

It can be shown that ε can be written as a function of f and latitude as given 
by: rg ∼ a(1 − f sin2 λ) and (from binomial expansion) rg 

−2 ≈ a−2(1 + 2f sin2 λ). 
Geoid anomalies, i.e. the geoid “highs” and “lows” that people talk about are 

deviations from the reference geoid and they are typically of the order of several 
tens of meters (with a maximum (absolute) value of about 100 m near India), 
which is small (often less than 0.5%) compared to the latitude dependence of 
the radius (see above). So the reference geoid with r = rg according to (2.48) 
does a pretty good job in representing the average geoid. 

Finally, we can determine the gravity field at the reference geoid with a shape 
as defined by (2.48) calculating the gradient of eqn. (2.42) and substituting the 
position rg defined by (2.48). 

In spherical coordinates: 

g = −∇U = − 

( 
∂U 
∂r 

, 
1 
r 

∂U 
∂λ 

) 

(2.49) 

g = |g| = 

{ ( 
∂U 
∂r 

)2 

+ 

( 
1 
r 

∂U 
∂λ 

)2 
} 1 

2 

∼ 
∂U 
∂r 

(2.50) 

∂Ubecause 1 is small. r ∂λ 
So we can approximate the magnitude of the gravity field by: 

GM 
g = − 3 

GJ2Ma2 3 
sin2 λ − 

1 − rω2 cos 2 λ (2.51) 
r2 r4 2 2 

and, with r = rg = a 1 − f sin2 λ 
) 

GM 3GJ2Ma2 3 
sin2 λ − 

1 
g = − 

a2(1 − f sin2 λ)2 a4(1 − f sin2 λ)4 2 2 

− aω2(1 − f sin2 λ) cos  2 λ (2.52) 
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or, with the approximation (binomial expansion) given below Eqn. (2.48) 

GM 1 
g(λ) =  (1 + 2f sin2 λ) − 3J2 

3 
sin2 λ − − m(1 − sin2 λ) 

a2 2 2 

GM 3 9 
= (1 + J2 − m) +  2f − J2 + m sin2 λ 

a2 2 2 

GM 3 2f − (9/2)J2 + m 
= (1 + J2 − m) 1 +  sin2 λ 

a2 2 1 + (3/2)J2 − m 
GM { 

= (1 + 
3 
J2 − m) 1 +  f ′ sin2 λ 

} 
(2.53) 

a2 2 

Eqn. (2.53) shows that the gravity field at the reference spheroid can be 
expressed as some latitude-dependent factor times the gravity acceleration at 
the equator: 

GM 3 
geq(λ = 0)  =  1 +  J2 − m (2.54) 

a2 2 

Information about the flattening can be derived directly from the relative 
change in gravity from the pole to the equator. 

gpole = geq(1 + f ′) → f ′ = 
gpole − geq 

(2.55) 
geq 

Eq. 2.55 is called Clairaut’s theorem3 . The above quadratic equation for 
the gravity as a function of latitude (2.53) forms the basis for the international 
gravity formula. However, this international reference for the reduction of grav-
ity data is based on a derivation that includes some of the higher order terms. 
A typical form is 

g = geq(1 + α sin 2λ + β sin2 2λ) (2.56) 

with the factor of proportionality α and β depending on GM , ω, a, and  f . 
The values of these parameters are being determined more and more accurate by 
the increasing amounts of satellite data and as a result the international gravity 
formula is updated regularly. The above expression (2.56) is also a truncated 
series. A closed form expression for the gravity as function of latitude is given 
by the Somigliana Equation4 

1 +  k sin2 λ 
g(λ) =  geq √ . (2.57) 

1 − e2 sin2 λ 

This expression has now been adopted by the Geodetic Reference System 
and forms the basis for the reduction of gravity data to the reference geoid 
(or reference spheroid). geq = 9.7803267714 ms−2; k = 0.00193185138639 ; 
e = 0.00669437999013. 

3 After Alexis Claude Clairaut (1713–1765).

4 After C. Somigliana.
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2.3 The Poisson and Laplace equations 

The gravitational field of the Earth is caused by its density. The mass distri-
bution of the planet is inherently three-dimensional, but we mortals will always 
only scratch at the surface. The most we can do is measure the gravitational 
acceleration at the Earth’s surface. However, thanks to a fundamental relation-
ship known as Gauss’s Theorem5, the link between a surface observable and 
the properties of the whole body in question can be found. Gauss’s theorem is 
one of a class of theorems in vector analysis that relates integrals of different 
types (line, surface, volume integrals). Stokes’s, Greens and Gauss’s theorem 
are fundamental in the study of potential fields. The theorem due to Gauss 
relates the integral over the volume of some property (most generally, a tensor 
T) to a surface integral. It is also called the divergence theorem. Let V be a 
volume bounded by the surface S = ∂V (see Figure 2.9). A differential patch 
of surface dS can be represented by an outwardly pointing vector with a length 
corresponding to the area of the surface element. In terms of a unit normal 
vector, it is given by n̂‖dS‖. 

V 
ds = n|ds| 

Figure by MIT OCW. 

Figure 2.9: Surface enclosing a volume. Unit normal vector. 

Gauss’s theorem (for generic “stuff” T) is as follows: 

∫ ∫ 
∇ · T dV = n̂ · T dS. (2.58) 

V ∂V 

Let’s see what we can infer about the gravitational potential within the 
Earth using only information obtained at the surface. Remember we had 

GM 
g = and g = −∇U. (2.59) 

r2 

5After Carl-Friedrich Gauss (1777–1855). 
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Suppose we measure g everywhere at the surface, and sum the results. What 
we get is the flux of the gravity field 

g · dS.	 (2.60) 
∂V 

At this point, we can already predict that if S is the surface enclosing the 
Earth, the flux of the gravity field should be different from zero, and further-
more, that it should have something to do with the density distribution within 
the planet. Why? Because the gravitational field lines all point towards the 
center of mass. If the flux was zero, the field would be said to be solenoidal 
. Unlike the magnetic field the gravity field is essentially a monopole. For the 
magnetic field, field lines both leave and enter the spherical surface because 
the Earth has a positive and a negative pole. The gravitational field is only 
solenoidal in regions not occupied by mass. 

Anyway, we’ll start working with Eq. 2.60 and see what we come up with. 
On the one hand (we use Eq. 2.58 and Eq. 2.59)6 , 

g · n̂ dS = ∇ · g dV = − ∇ · ∇U dV  = − ∇
2U dV.  (2.61) 

∂V V V	 V 

On the other hand (we use the definition of the dot product and Eq. 2.59, 
and define gn as the component of g normal to dS): 

g · n̂ dS = − gn dS = −4πr2 GM 
= −4πG ρ dV  .  (2.62) 

r2 
∂V ∂V	 V 

We’ve assumed that S is a spherical surface, but the derivation will work for 
any surface. Equating Eq. 2.61 and 2.62, we can state that 

∇2U (r) =  4πGρ(r) Poisson’s Equation	 (2.63) 

and in the homogeneous case 

∇2U (r) =  0  Laplace’s Equation	 (2.64) 

The interpretation in terms of sources and sinks of the potential fields and 
its relation with the field lines is summarized in Figure 2.10: 

Poisson’s equation is a fundamental result. It implies 

1. that the total mass of a body (say, Earth) can be determined from mea-
surements of ∇U = −g at the surface (see Eq. 2.62), and 

2.	 no information is required about how exactly the density is distributed 
within V 

6 Note that the identity ∇2U = ∇ · ∇U is true for scalar fields, but for a vector field V we 
should have written ∇2 V = ∇(∇ · V) − ∇ × (∇ × V). 
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Figure 2.10: Poisson’s and Laplace’s equations. 

If there is no potential source (or sink) enclosed by S Laplace’s equation 
should be applied to find the potential at a point P outside the surface S that 
contains all attracting mass, for instance the potential at the location of a 
satellite. But in the limit, it is also valid at the Earth’s surface. Similarly, we 
will see that we can use Laplace’s equation to describe Earth’s magnetic field 
as long as we are outside the region that contains the source for the magnetic 
potential (i.e., Earth’s core). 

We often have to find a solution for U of Laplace’s equation when only the 
value of U , or its derivatives |∇U | = g are known at the surface of a sphere. For 
instance if one wants to determine the internal mass distribution of the Earth 
from gravity data. Laplace’s equation is easier to solve than Poisson’s equation. 
In practice one can usually (re)define the problem in such a way that one can 
use Laplace’s equation by integrating over contributions from small volumes dV 
(containing the source of the potential dU , i.e., mass dM ), see Figure 2.11 or 
by using Newton’s Law of Gravity along with Laplace’s equation in an iterative 
way. 

Figure 2.11: Applicability of Poisson’s and Laplaces’ equations. 

See Intermezzo 2.7. 
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Intermezzo 2.7 Non-uniqueness 

One can prove that the solution of Laplace’s equation can be uniquely deter-
mined if the boundary conditions are known (i.e. if data coverage at the surface 
is good); in other words, if there are two solutions U1 and U2 that satisfy the 
boundary conditions, U1 and U2 can be shown to be identical. The good news 
here is that once you find a solution for U of ∇2U = 0 that satisfies the BC’s 
you do not have to be concerned about the generality of the solution. The bad 
news is (see also point (2) above) that the solution of Laplace’s equation does 
not constrain the variations of density within V . This leads to a fundamental 
non-uniqueness which is typical for potentials of force fields. We have seen this 
before: the potential at a point P outside a spherically symmetric body with to-
tal mass M is the same as the potential of a point mass M located in the center 
O. In between O and P the density in the spherical shells can be distributed in 
an infinite number of different ways, but the potential at P remains the same. 

2.4 Cartesian and spherical coordinate systems 

In Cartesian coordinates we write for ∇2 (the Laplacian) 

∂2 ∂2 ∂2 

∇2 = + + . (2.65) 
∂x2 ∂y2 ∂z2 

For the Earth, it is advantageous to use spherical coordinates. These are 
defined as follows (see Figure 2.12): ⎧ ⎨ x = r sin θ cos ϕ 

y = r sin θ sin ϕ (2.66) ⎩ 
z = r cos θ 

Figure 2.12: Definition of r, θ 
and ϕ in the spherical coordinate 
system. 

where θ = 0  → π = co-latitude, ϕ = 0  → 2π = longitude. 
It is very important to realize that, whereas the Cartesian frame is described 

by the immobile unit vectors ˆ ˆ z, the unit vectors ˆ ˆ arex, y and ˆ r, θ̂ and ϕ 
dependent on the position of the point. They are local axes. At point P , r̂ 
points in the direction of increasing radius from the origin, θ̂ in the direction of 
increasing colatitude θ and ϕ̂ in the direction of increasing longitude ϕ. 
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One can go between coordinate axes by the transformation ⎛ ⎞ ⎛ ⎞⎛ ⎞ 

⎝ θ 
ϕ 

r̂
ˆ

ˆ

sin θ cos ϕ sin θ sin ϕ cos θ 
cos θ cos ϕ cos θ sin ϕ − sin θ 

x̂ 
ŷ 
ẑ 

⎠ (2.67) = ⎠ ⎝ ⎠⎝ 

− sin ϕ cos ϕ 0 

Furthermore, we need to remember that integration over a volume element 
dx dy dz becomes, after changing of variables r2 sin θ dr  dθ  dϕ. This  may  be  
remembered by the fact that r2 sin θ is the determinant of the Jacobian matrix, 
i.e. the matrix obtained by filling a 3×3 matrix with all partial derivatives of 
Eq. 2.66. After some algebra, we can write the spherical Laplacian: 

∂U 1 ∂ ∂U2∇2U =
1 ∂

r + sin θ +
1 ∂2U 

= 0.(2.68) 
r2 ∂r ∂r r2 sin θ ∂θ ∂θ r2 sin2 θ ∂ϕ2 

2.5 Spherical harmonics 

We now attempt to solve Laplace’s Equation ∇2U = 0, in spherical coordinates. 
Laplace’s equation is obeyed by potential fields outside the sources of the field. 
Remember how sines and cosines (or in general, exponentials) are often solutions 
to differential equations, of the form sin kx or cos kx, whereby  k can take any 
integer value. The general solution is any combination of sines and cosines of 
all possible k’s with weights that can be determined by satisfying the boundary 
conditions (BC’s). The particular solution is constructed by finding a linear 
combination of these (basis) functions with weighting coefficients dictated by 
the BC’s: it is a series solution. In the Cartesian case they are Fourier Series. 
In Fourier theory, a signal, say a time series s(t), for instance a seismogram, can 
be represented by the superposition of cos and sin functions and weights can be 
found which approximate the signal to be analyzed in a least-squares sense. 

Spherical harmonics are solutions of the spherical Laplace’s Equation: they 
are basically an adaption of Fourier analysis to a spherical surface. Just like 
with Fourier series, the superposition of spherical harmonics can be used to 
represent and analyze physical phenomena distributed on the surface on (or 
within) the Earth. Still in analogy with Fourier theory, there exists a sampling 
theorem which requires that sufficient data are provided in order to make the 
solution possible. In geophysics, one often talks about (spatial) data coverage, 
which must be adequate. 

We can find a solution for U of ∇2U = 0 by the good old trick of separation 
of variables. We look for a solution with the following structure: 

U(r, θ, ϕ) =  R(r)P (θ)Q(ϕ) (2.69) 

Let’s take each factor separately. In the following, an outline is given of how 
to find the solution of this elliptic equation, but working this out rigorously 
requires some more effort than you might be willing to spend. But let’s not try 
to lose the physical meaning what we come up with. 
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Radial dependence: R(r) 

It turns out that the functions satisfying Laplace’s Equation belong to a special 
class of homogeneous7 harmonic8 functions. A first property of homogeneous 
functions that can be used to our advantage is that in general, a homogeneous 
function can be written in two different forms: 

U1(r, θ, ϕ) =  r lYl(θ, ϕ) (2.70) 

1 
)(l+1) 

U2(r, θ, ϕ) =  Yl(θ, ϕ) (2.71) 
r 

This, of course, gives the form of our radial function: 

lr
R(r) =  ( 

1 
)l+1 (2.72) 

r 

The two alternatives R(r) =  rl and R(r) = (1/r)l+1 describe the behavior 
of U for an external and internal field, respectively (in- and outside the mass 
distribution). Whether to use R(r) =  rl and R(r) =  (1/r)l+1 depends on the 
problem you’re working on and on the boundary conditions. If the problem 
requires a finite value for U at r = 0 than we need to use R(r) =  rl . However if 
we require U → 0 for  r → ∞ then we have to use R(r) =  (1/r)l+1 . The latter 
is appropriate for representing the potential outside the surface that encloses 
all sources of potential, such as the gravity potential U = GM r−1 . However, 
both are needed when we describe the magnetic potential at point r due to an 
internal and external field. 

Longitudinal dependence: Q(ϕ) 

Substitution of Eq. 2.69 into Laplace’s equation with R(r) given by Eq. 2.72, 
and dividing Eq. 2.69 out again yields an equation in which θ- and  ϕ-derivatives 
occur on separate sides of the equation sign. For arbitrary θ and ϕ this must 
mean: 

d2


dϕ2 Q

− = constant, (2.73) 

Q 

which is best solved by calling the constant m2 and solving for Q as: 

Q(ϕ) =  A cos mϕ + B sin mϕ. (2.74) 

Indeed, all possible constants A and B give valid solutions, and m must be a 
positive integer. 

7 A homogenous function f of degree n satisfies f(tx, ty, tz) =  tn f(x, y, z).

8 By definition, a function which satisfies Laplace’s equation is called harmonic.
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Latitudinal dependence: P (θ) 

The condition is similar, except it involves both l and m. After some rearrang-
ing, one arrives at 

sin θ
d 

sin θ
d

P (θ) + [l(l + 1)  sin  2 θ − m 2]P (θ) =  0. (2.75) 
dθ dθ 

This equation is the associated Legendre Equation. It turns out that 
the space of the homogeneous functions has a dimension 2l +1, hence 0 ≤ m ≤ l. 

If we substitute cos θ = z, Eq. 2.75 becomes 

2 

(1 − z 2) 
d2 

P (z) − 2z
d

P + l(l + 1)  − 
m

P (z) =  0. (2.76) 
dz2 dz 1 − z2 

Eq. 2.76 is in standard form and can be solved using a variety of techniques. 
Most commonly, the solutions are found as polynomials P m(cos θ). The asso-l 
ciated Legendre Equation reduces to the Legendre Equation in case m = 0.  In  
the latter case, the longitudinal dependence is lost as also Eq. 2.74 reverts to a 
constant. The resulting functions Pl(cos θ) have a rotational symmetry around 
the z-axis. They are called zonal functions. 

It is possible to find expressions of the (associated) Legendre polynomials 
that summarize their behavior as follows: 

1 dl 

Pl(z) =  2 − 1)l (2.77) 
2ll! dzl 

(z 

dl+m
2(1 − z2) 
m 

P m(z) =  (z 2 − 1)l , (2.78) l l!2l dzl+m 

written in terms of the (l + m)th derivative and z = cos  θ. It is easy to make a 
small table with these polynomials (note that in Table 2.1, we have used some 
trig rules to simplify the expressions.) — this should get you started in using 
Eqs. 2.77 or 2.78. 

l 

0 

1 

2 

3 

Pl(z)


1


z

1 
2 (3z2 − 1) 
1 
2 (5z3 − 3z) 

Pl(θ) 

1 

cos θ 
1 
4 (3 cos 2θ + 1)  
1 
8 (5 cos 3θ + 3  cos  θ) 

Table 2.1: Legendre polynomials. 

Some Legendre functions are plotted in Figure 2.13. 
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Figure 2.13: Legendre polynomials. 

Spherical harmonics 

The generic solution for U is thus found by combining the radial, longitudinal 
and latitudinal behaviors as follows: 

lr m
l cos mϕ + Bm

l sin mϕ]Pm
l (cos θ) (2.79) U (r, θ, ϕ) =  ( 

1 
)l+1 [A

r 

These are called the solid spherical harmonics of degree l and order m. 
The spherical harmonics form a complete orthonormal basis. We implicitly 

assume that the full solution is given by a summation over all possible l and m 
indices, as in: 

∞ l l ∑∑ r m
l cos mϕ+Bm

l sin mϕ]Pm
l (cos θ)(2.80) U (r, θ, ϕ) =  ( 

1 
)l+1 [A

l=0 m=0 r 

The constants need to be determined from the boundary conditions. Because 
the spherical harmonics form a complete orthonormal basis, an arbitrary real 
function f (θ, ϕ) can be expanded in terms of spherical harmonics by 

∞ l 
m
l cos mϕ + Bm

l sin mϕ]Pm
lf (θ, ϕ) =  [A (cos θ). (2.81) 

l=0 m=0 

m
l 

m
l is analogous to The process of determining the coefficients A and B

that to determine the coefficients in a Fourier series, i.e. multiply both sides 
of Eq. 2.81 by cos m′ϕP m � 

(cos θ) or sin  m′ϕP m (cos θ), integrate, and use the l� l� 

m
l . For unequal data distributions, orthogonality relationship — out comes A

the coefficients may be found in a least-squares sense. 
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Visualization 

It is important to visualize the behavior of spherical harmonics, as in Figure 
2.14. 

Figure 2.14: Some spherical harmonics. 

Some terminology to remember is that on the basis of the values of l and m 
one identifies three types of harmonics. 

0The zonal harmonics are defined to be those of the form Pl (cos θ) =• 
Pl(cos θ). The superposition of these Legendre polynomials describe vari-
ations with latitude; they do not depend on longitude. Zonal harmonics 
vanish at l small circles on the globe, dividing the spheres into latitudinal 
zones. 

The sectorial harmonics are of the form sin(mϕ)Pm
m (cos θ) or  • 

cos(mϕ)Pm
m (cos θ). As they vanish at 2m meridians (longitudinal lines, so 

m great circles), they divide the sphere into sectors. 

The tesseral harmonics are those of the form sin(mϕ)Pm
l (cos θ)• 

or cos(mϕ)Pm
l (cos θ) for  l �= m. The amplitude of a surface spherical 
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harmonic of a certain degree l and order m vanishes at 2m meridians of 
longitude and on (l − m) parallels of latitude. 

Intermezzo 2.8 Cartesian vs spherical representation 

If you work on a small scale with local gravity anomalies (for instance in explo-
ration geophysics) it is not efficient to use (global) basis functions on a sphere 
because the number of coefficients that you’d need would simply be too large. 
For example to get resolution of length scales of 100 km (about 1◦) you need to 
expand up to degree l=360 which with all the combinations 0 < m  <  l  involves 
several hundreds of thousands of coefficients (how many exactly?). Instead you 
would use a Fourier Series. The concept is similar to spherical harmonics. A 
Fourier series is just a superposition of harmonic functions (sine and cosine func-
tions) with different frequencies (or wave numbers k = 2π/λ, λ the wavelength): 

2πz2πx − 
gz = constant · sin(kx x)e −kxz = constant · sin e λx (2.82) 

λx 

(For a 2D field the expression includes y but is otherwise be very similar.) Or, 
in more general form 

∞ [ ( ) ( )] 
nπz ∑ nπx nπx − 

gz = an cos + bn sin e λx (2.83) 
λx λx 

n=0 

(compare to the expression of the spherical harmonics). In this expression the 
up- and downward continuation of the 1D or 2D harmonic field is controlled by 
an exponential form. The problem with downward continuation becomes imme-
diately clear from the following example. Suppose in a marine gravity expedition 
to investigate density variation in the sediments beneath the sea floor, say, at 2 
km depth, gravity measurements are taken at 10 m intervals on the sea surface 
(x0 specifies the size of the grid at which the measurements are made). Upon 
downward continuation, the signal associated with the smallest wavelength al-
lowed by such grid spacing would be amplified by a factor of exp(2000π/10) = 
exp(200π) ≈ 10273 . (The water does not contain any concentrations of mass 
that contribute to the gravity anomalies and integration over the surface enclos-
ing the water mass would add only a constant value to the gravity potential but 
that is irrelevant when studying anomalies, and Laplace’s equation can still be 
used.) So it is important to filter the data before the downward continuation 
so that information is maintained only on length scales that are not too much 
smaller than the distance over which the downward continuation has to take 
place. 

In other words the degree l gives the total number of nodal lines and the 
order m controls how this number is distributed over nodal meridians and nodal 
parallels. The higher the degree and order the finer the detail that can be 
represented, but increasing l and m only makes sense if data coverage is sufficient 
to constrain the coefficients of the polynomials. 

A different rendering is given in Figure 2.15. 
An important property follows from the depth dependence of the solution: 
From eqn. (2.80) we can see that (1) the amplitude of all terms will decrease 

with increasing distance from the origin (i.e., the internal source of the potential) 





61 2.6. GLOBAL GRAVITY ANOMALIES 

So in terms of a surface spherical harmonic potential U (l) on the unit circle, 
we get the following equations for the field in- and outside the mass distribution: 

( r )l

U in(r, l) =  U (l)


a ( a )l+1 
U out(r, l) =  U (l) (2.87) 

r 

For gravity, this becomes: 

ling (r, l) =  − r l−1U (l)r̂ 
al 

1outg (r, l) =  a l+1(l + 1)  
rl+1 

U (l)ˆ (2.88) r 

What is the gravity due to a thin sheet of mass of spherical harmonic degree 
l? Let’s represent this as a sheet with vanishing thickness, and call σ(l) the  mass  
density per unit area. This way we can work at constant r and use the results 
for spherical symmetry. We know from Gauss’s law that the flux through any 
surface enclosing a bit of mass is equal to the total enclosed mass (times −4πG). 
So constructing a box around a patch of surface S with area dS, enclosing a bit 
of mass dM , we can deduce that 

gout − gin = 4πGσ(l) (2.89) 

On this shell — give it a radius a, we can use Eqs. 2.88 to find gout = 
U (l)(l + 1)/a and −gin = −U (l)l/a, and  solve  for  U (l) using  Eq.  2.89 as  U (l) =  
4πGσ(l)a/(2l + 1). Plugging this into Eqs. 2.88 again we get for the gravity in-
and outside this mass distribution 

4πGl rl−1 
ing (r, l) =  σ(l) 

al−12l + 1  
4πGl(l + 1)  al+2 

outg (r, l) =  σ(l) 
rl+2 

(2.90) 
2l + 1  

Length scales 

Measurements of gravitational attraction are — as we have seen — useful in the 
determination of the shape and rotational properties of the Earth. This is im-
portant for geodesy. In addition, they also provide information about aspherical 
density variations in the lithosphere and mantle (important for understanding 
dynamical processes, interpretation of seismic images, or for finding mineral de-
posits). However, before gravity measurements can be used for interpretation 
several corrections will have to be made: the data reductions plays an important 
role in gravimetry since the signal pertinent to the structures we are interested 
in is very small. 
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Let’s take a step back and get a feel for the different length scales and 
probable sources involved. If we use a spherical harmonic expansion of the 
field U we can see that it’s the up- or downward continuation of the field and 
its dependence on r and degree l that controls the behavior of the solution at 
different depths (or radius) (remember Eq. 2.87). 

With increasing r from the source the amplitude of the surface harmonics 
become smaller and smaller, and the decay in amplitude (spatial attenuation) 
is stronger for the higher degrees l (i.e., the small-scale structures). 

Table 2.2 gives and idea about the relationship between length scales, the 
probable source regions, and where the measurements have to be taken. 

λ 
(λ <  l >  36) (λ >  l <  36) 

wavelength short wavelength long wavelength 
1000 km or 1000 km or 

Source region shallow: probably deep 
crust, lithosphere (lower mantle) but shallower 

source cannot be excluded 
Measurement: close to source: surface, Larger distance from origin 
how, where? sea level, ”low orbit” of anomalies; perturbations 

satellites, planes of satellite orbits 
Representation values at grid points; spherical harmonics 

2D Fourier series 
Coordinate system cartesian spherical 

Table 2.2: Wavelength ranges of gravity anomalies 

The free-air gravity anomaly 

Let’s assume that the geoid height N with respect to the spheroid is due to an 
anomalous mass dM . If  dM represents excess mass, the equipotential is warped 
outwards and there will be a geoid high (N >  0); conversely, if dM represents 
a mass deficiency, N <  0 and there will be a geoid low. 

We can represent the two potentials as follows: the actual geoid, U(r, θ, ϕ) 
is an equipotential surface with the same potential W0 as the reference geoid U0, 
only 

U(r, θ, ϕ) =  U0(r, θ, ϕ) +  ∆U(r, θ, ϕ) (2.91) 

We define the free-air gravity anomaly as the gravity g(P ) measured  at  point  
P minus the gravity at the projection Q of this point onto the reference geoid 
at r0, g0(Q). Neglecting the small differences in direction, we can write for the 
magnitudes: 

∆g = g(P ) − g0(Q) (2.92) 

In terms of potentials: 
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Gravity 

A B 

Mass Deficit 

Geoid - Equipotential Reference Spheroid 

Mass Excess 

Figure by MIT OCW. 

Figure 2.16: Mass deficit leads to geoid undulation. 

( ) ∣ 
dU0 ∣ 

U0(P ) =  U0(Q) +  ∣ N 
dr ∣ 

r0 

= U0(Q) − g0N (2.93) 

(Remember that g0 is the magnitude of the negative gradient of U and therefore 
appears with a positive sign.) We knew from Eq. 2.91 that 

U (P ) =  U0(P ) + ∆U (P ) 

= U0(Q) − g0N + ∆U (P ) (2.94) 

But also, since the potentials of U and U0 were equal, U (P ) =  U0(Q) and  
we can write 

g0N = −∆U (P ) (2.95) 

This result is known as Brun’s formula. Now for the gravity vectors g and 
g0, they are given by the familiar expressions 

g = −∇U


g0 = −∇U0


(2.96) 

and the gravity disturbance vector δg = g − g0 can be defined as the 
difference between those two quantities: 



( ) ∣ 
∣ ( ) ∣ 
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Figure 2.17: Derivation. Note that in this figure, the 
sign convention for the gravity is reversed; we have 
used and are using that the gravity is the negative 
gradient of the potential. 

δg = −∇∆U

∂∆U


δg = g − g0 = − (2.97) 
∂r 

On the other hand, from a first-order expansion, we learn that 

dg0 ∣ ∣ Ng0(P ) =  g0(Q) +  
dr r0 

dg0 ∣ d∆U 
g(P ) =  g0(Q) +  ∣ N − (2.98) 

dr ∣ dr r0 

(2.99) 

Now we define the free-air gravity anomaly as the difference of the gravi-
tational accelartion measured on the actual geoid (if you’re on a mountain you’ll 
need to refer to sea level) minus the reference gravity: 

∆g = g(P ) − g0(Q) (2.100) 

This translates into 

dg0 ∣ ∂∆U 
∆g = ∣ N − 

dr ∣ ∂r r0 



( ) ∣ 
( ) 

{ } { } 

� { } { } 

� 

65 2.6. GLOBAL GRAVITY ANOMALIES 

d GM ∣ ∂∆U 
= ∣ N − 

dr r2 ∣ ∂r r0 

2 GM ∂∆U 
= − N −2r0 r0 ∂r 

2 ∂∆U 
= − g0N − 

r0 ∂r

2 ∂∆U


∆g = ∆U − (2.101) 
r0 ∂r 

(2.102) 

So at this arbitrary point P on the geoid, the gravity anomaly ∆g due to 
the anomalous mass arises from two sources: the direct contribution dgm due 
to the extra acceleration by the mass dM itself, and an additional contribution 
dgh that arises from the fact that g is measured on height N above the reference 
spheroid. The latter term is essentially a free air correction, similar to the 
one one has to apply when referring the measurement (on a mountain, say) to 
the actual geoid (sea level). 

Note that Eq. (2.95) contains the boundary conditions of ∇2U = 0.  The  
geoid height N at any point depends on the total effect of mass excesses and de-
ficiencies over the Earth. N can be determined uniquely at any point (θ, ϕ) from  
measurements of gravity anomalies taken over the surface of the whole Earth 
— this was first done by Stokes (1849) — but it does not uniquely constrain 
the distribution of masses. 

Gravity anomalies from geoidal heights 

A convenient way to determine the geoid heights N(θ, ϕ) from either the poten-
tial field anomalies ∆U(θ, ϕ) or the gravity anomalies ∆g(θ, ϕ) is  by  means  of  
spherical harmonic expansion of N(θ, ϕ) in terms  of  ∆U(θ, ϕ) or  ∆g(θ, ϕ). 

It’s convenient to just give the coefficients of Eq. 2.86 since the basic ex-
pressions are the same. Let’s see how that notation would work for eq. (2.86): 

UA GM Am
l= − (2.103) 

BmUB a l 

Note that the subscripts A and B are used to label the coefficients of the 
cos mϕ and sin mϕ parts, respectively. Note also that we have now taken the 
factor −GM a−l as the scaling factor of the coefficients. 

We can also expand the potential U0 on the reference spheroid: 

mU0,A = − 
GM Al (2.104) 

U0,B a 0 

(Note that we did not drop the m , even though m = 0 for the zonal harmonics 
used for the reference spheroid. We just require the coefficient A m to be zero l 
for m �= 0. By doing this we can keep the equations simple.) 
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The coefficients of the anomalous potential ∆U(θ, ϕ) are  then  given  by:  

∆UA GM (Am
l 

m 
l )− A 

= − (2.105) 
∆UB a Bm

l 

We can now expand ∆g(θ, ϕ) in a similar series using eq. (2.101). For the 
∆U , we can see by inspection that the radial derivative as prescribed has the 
following effect on the coefficients (note that the reference radius r0 = a from 
earlier definitions): 

d∆U l + 1  → −  (2.106) 
dr r0 

and the other term of Eq. 2.101 brings down 

2 2 
∆U → (2.107) 

r0 a 

As a result, we get 

{ } ( ){  
GM l + 1  (A∆gA = 

m
l 

m 
l )− A− − (2.108) 

∆gB a a Bm
l 

m
l 

m 
l )(A − A 

= g0(l − 1) (2.109) m
lB

The proportionality with (l − 1)g0 means that the higher degree terms are 
magnified in the gravity field relative to those in the potential field. This leads to 
the important result that gravity maps typically contain much more detail than 
geoid maps because the spatial attenuation of the higher degree components is 
suppressed. 

Using Eq. (2.95) we can express the coefficients of the expansion of N(θ, ϕ) 
in terms of either the coefficients of the expanded anomalous potential 

NA GM (A
= 

m
l 

m 
l ) 

(2.110) − A 
g0 NB a Bm

l 

which, if we replace g by ḡ and by assuming that g ≈ ḡ gets the following form 

NA (A
= a 

m
l 

m 
l ) 

(2.111) − A 
NB Bm

l 

or in terms of the coefficients of the gravity anomalies (eqns. 2.109 and 2.111) 

NA a ∆gA (A
= = a 

m
l 

m 
l )− A 

(2.112) 
NB (l − 1)g0 ∆gB Bm

l 

The geoid heights can thus be synthesized from the expansions of either the 
gravity anomalies (2.112) or the anomalous potential (2.111). Geoid anomalies 
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have been constructed from both surface measurements of gravity (2.112) and 
from satellite observations (2.111). Equation (2.112) indicates that relative to 
the gravity anomalies, the coefficients of N(θ, ϕ) are suppressed by a factor of 
1/(l − 1). As a result, shorter wavelength features are much more prominent on 
gravity maps. In other words, geoid (and geoid height) maps essentially depict 
the low harmonics of the gravitational field. A final note that is relevant for the 
reduction of the gravity data. Gravity data are typically reduced to sea-level, 
which coincides with the geoid and not with the actual reference spheroid. Eq. 
8 can then be used to make the additional correction to the reference spheroid, 
which effectively means that the long wavelength signal is removed. This results 
in very high resolution gravity maps. 

2.7	 Gravity anomalies and the reduction of grav-

ity data 

The combination of the reduced gravity field and the topography yields impor-
tant information on the mechanical state of the crust and lithosphere. Both 
gravity and topography can be obtained by remote sensing and in many cases 
they form the basis of our knowledge of the dynamical state of planets, such 
as Mars, and natural satellites, such as Earth’s Moon. Data reduction plays 
an important role in gravity studies since the signal caused by the aspherical 
variation in density that one wants to study are very small compared not only 
to the observed field but also other effects, such as the influence of the position 
at which the measurement is made. The following sum shows the various com-
ponents to the observed gravity, with the name of the corresponding corrections 
that should be made shown in parenthesis: 

Observed gravity = attraction of the reference spheroid, PLUS: 

•	 effects of elevation above sea level (Free Air correction), which should 
include the elevation (geoid anomaly) of the sea level above the reference 
spheroid 

•	 effect of ”normal” attracting mass between observation point and sea level 
(Bouguer and terrain correction) 

•	 effect of masses that support topographic loads (isostatic correction) 

•	 time-dependent changes in Earth’s figure of shape (tidal correction) 

•	 effect of changes in the rotation term due to motion of the observation 
point (e.g. when measurements are made from a moving ship. (E¨ osotv¨
correction) 

•	 effects of crust and mantle density anomalies (”geology” or ”geodynamic 
processes”). 
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Only the bold corrections will be discussed here. The tidal correction is 
small, but must be accounted for when high precision data are required. The 
application of the different corrections is illustrated by a simple example of a 
small density anomaly located in a topography high that is isostatically com-
pensated. See series of diagrams. 

Free Air Anomaly 

So far it has been assumed that measurements at sea level (i.e. the actual geoid) 
were available. This is often not the case. If, for instance, g is measured on the 
land surface at an altitude h one has to make the following correction : 

hg
dgFA = −2 (2.113) 

r 

For g at sea level this correction amounts to dgFA = −0.3086h mgal or 
0.3086h × 10−5 ms−2 (h in meter). Note that this assumes no mass between 
the observer and sea level, hence the name “free-air” correction. The effect of 
ellipticity is often ignored, but one can use r = Req(1 − fsin2λ). Note: per 
meter elevation this correction equals 3.1 × 10−6 ms−2 ∼ 3.1 × 10−7g: this  is  
on the limit of the precision that can be attained by field instruments, which 
shows that uncertainties in elevation are a limiting factor in the precision that 
can be achieved. (A realistic uncertainty is 1 mgal). 

Make sure the correction is applied correctly, since there can be confusion 
about the sign of the correction, which depends on the definition of the poten-
tial. The objective of the correction is to compensate for the decrease in gravity 
attraction with increasing distance from the source (center of the Earth). For-
mally, given the minus sign in (2.114), the correction has to be subtracted, but 
it is not uncommon to take the correction as the positive number in which case 
it will have to be added. (Just bear in mind that you have to make the measured 
value larger by “adding” gravity so it compares directly to the reference value at 
the same height; alternatively, you can make the reference value smaller if you 
are above sea level; if you are in a submarine you will, of course, have to do the 
opposite). 

The Free Air anomaly is then obtained by the correction for height above 
sea level and by subtraction of the reference gravity field 

∆gFA = gobs − dgFA − g0(λ) = (gobs + 0.3086h × 10−3) − g0(λ) (2.114) 

(Note that there could be a component due to the fact that the sea level (≡ the 
geoid) does not coincide with the reference spheroid; an additional correction 
can then be made to take out the extra gravity anomaly. One can simply apply 
(2.114) and use h′ = h + N as the elevation, which is equivalent to adding a 
correction to g0(λ) so that it represents the reference value at the geoid. This 
correction is not important if the variation in geoid is small across the survey 
region because then the correction is the same for all data points.) 
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Bouguer anomaly 

The free air correction does not correct for any attracting mass between obser-
vation point and sea level. However, on land, at a certain elevation there will 
be attracting mass (even though it is often compensated - isostasy (see below)). 
Instead of estimating the true shape of, say, a mountain on which the measure-
ment is made, one often resorts to what is known as the ”slab approximation” 
in which one simply assumes that the rocks are of infinite horizontal extent. 
The Bouguer correction is then given by 

dgB = 2πGρh (2.115) 

where G is the gravitational constant, ρ is the assumed mean density of crustal 
rock and h is the height above sea level. For G = 6.67 × 10−11 m3kg−3s−2 and 
ρ = 2, 700 kgm−3 we obtain a correction of 1.1×10−6 ms−2 per meter of elevation 
(or 0.11 h mgal, h in meter). If the slab approximation is not satisfactory, for 
instance near the top of mountains, on has to apply an additional terrain 
correction. It is straightforward to apply the terrain correction if one has 
access to digital topography/bathymetry data. 

The Bouguer anomaly has to be subtracted, since one wants to remove the 
effects of the extra attraction. The Bouguer correction is typically applied after 
the application of the Free Air correction. Ignoring the terrain correction, the 
Bouguer gravity anomaly is then given by 

∆gB = gobs − dgFA − g0(λ) − dgB = ∆gFA − dgB (2.116) 

In principle, with the Bouguer anomaly we have accounted for the attraction 
of all rock between observation point and sea level, and ∆gB thus represents 
the gravitational attraction of the material below sea level. Bouguer Anomaly 
maps are typically used to study gravity on continents whereas the Free Air 
Anomaly is more commonly used in oceanic regions. 

Isostasy and isostatic correction 

If the mass between the observation point and sea level is all that contributes 
to the measured gravity one would expect that the Free Air anomaly is large, 
and positive over topography highs (since this mass is unaccounted for) and 
that the Bouguer anomaly decreases to zero. This relationship between the two 
gravity anomalies and topography is indeed what would be obtained in case 
the mass is completely supported by the strength of the plate (i.e. no isostatic 
compensation). In early gravity surveys, however, they found that the Bouguer 
gravity anomaly over mountain ranges was, somewhat surprisingly, large and 
negative. Apparently, a mass deficiency remained after the mass above sea level 
was compensated for. In other words, the Bouguer correction subtracted too 
much! This observation in the 19th century lead Airy and Pratt to develop 
the concept of isostasy. In short, isostasy means that at depths larger than 
a certain compensation depth the observed variations in height above sea level 
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no longer contribute to lateral variations in pressure. In case of Airy Isostasy 
this is achieved by a compensation root, such that the depth to the interface 
between the loading mass (with constant density) and the rest of the mantle 
varies. This is, in fact Archimedes’ Law, and a good example of this mechanism 
is the floating iceberg, of which we see only the top above the sea level. In the 
case of Pratt Isostasy the compensation depth does not vary and constant 
pressure is achieved by lateral variations in density. It is now known that both 
mechanisms play a role. 
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Figure 2.18: Airy (left) and Pratt (right) isostasy. 

The basic equation that describes the relationship between the topographic 
height and the depth of the compensating body is (see Figure 2.19): 

ρch 
H = (2.117) 

ρm − ρc 
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Figure 2.19: Airy isostasy. 

Assuming Airy Isostasy and some constant density for crustal rock one can 
compute H(x, y) from known (digital) topography h(x, y) and thus correct for 
the mass deficiency. This results in the Isostatic Anomaly. If all is done cor-
rectly the isostatic anomaly isolates the small signal due to the density anomaly 
that is not compensated (local geology, or geodynamic processes). 

2.8	 Correlation between gravity anomalies and 
topography. 

The correlation between Bouguer and Free Air anomalies on the one hand and 
topography on the other thus contains information as to what level the topog-
raphy is isostatically compensated. 

In the case of Airy Isostasy it is obvious that the compensating root causes 
the mass deficiency that results in a negative Bouguer anomaly. If the topog-
raphy is compensated the mass excess above sea level is canceled by the mass 
deficiency below it, and as a consequence the Free Air Anomaly is small; usually, 
it is not zero since the attracting mass is closer to the observation point and is 
thus less attenuated than the compensating signal of the mass deficiency so that 
some correlation between the Free Air Anomaly and topography can remain. 

Apart from this effect (which also plays a role near the edges of topographic 
features), the Free air anomaly is close to zero and the Bouguer anomaly large 
and negative when the topography is completely compensated isostatically (also 
referred to as “in isostatic equilibrium”). 

In case the topography is NOT compensated, the Free air anomaly is large 
and positive, and the Bouguer anomaly zero. 

(This also depends on the length scale of the load and the strength of the 
supporting plate). 

Whether or not a topographic load is or can be compensated depends largely 
on the strength (and the thickness) of the supporting plate and on the length 
scale of the loading structure. Intuitively it is obvious that small objects are not 
compensated because the lithospheric plate is strong enough to carry the load. 
This explains why impact craters can survive over very long periods of time! 
(Large craters may be isostatically compensated, but the narrow rims of the 
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crater will not disappear by flow!) In contrast, loading over large regions, i.e. 
much larger than the distance to the compensation depth, results in the devel-
opment of a compensating root. It is also obvious why the strength (viscosity) 
of the plate enters the equation. If the viscosity is very small, isostatic equilib-
rium can occur even for very small bodies (consider, for example, the floating 
iceberg!). Will discuss the relationship between gravity anomalies and topog-
raphy in more (theoretical) detail later. We will also see how viscosity adds a 
time dependence to the system. Also this is easy to understand intuitively; low 
strength means that isostatic equilibrium can occur almost instantly (iceberg!), 
but for higher viscosity the relaxation time is much longer. The flow rate of the 
material beneath the supporting plate determines how quickly this plate can 
assume isostatic equilibrium, and this flow rate is a function of viscosity. For 
large viscosity, loading or unloading results in a viscous delay; for instance the 
rebound after deglaciation. 

2.9 Flexure and gravity. 

The bending of the lithosphere combined with its large strength is, in fact, one 
of the compensation mechanisms for isostasy. When we discussed isostasy we 
have seen that the depth to the bottom of the root, which is less dense than 
surrounding rock at the same depth, can be calculated from Archimedes’ 
Principle: if crustal material with density ρc replaces denser mantle material 
with density ρm a mountain range with height h has a compensating root with 
thickness H 

hρc
H = (2.118) 

ρm − ρc 

This type of compensation is also referred to as Airy Isostasy. It  does  
not account for any strength of the plate. However, it is intuitively obvious 
that the depression H decreases if the strength (or the flexural rigidity) of the 
lithosphere increases. The consideration of lithospheric strength for calculates 
based on isostasy is important in particular for the loading on not too long a 
time scale. 

An elegant and very useful way to quantify the effect of flexure is by consid-
ering the flexure due to a periodic load. Let’s consider a periodic load due to to-
pography h with maximum amplitude h0 and wavelength λ: h = h0 sin(2πx/λ). 
The corresponding load is then given by 

2πx 
V (x) =  ρcgh0 sin (2.119) 

λ 

so that the flexure equation becomes 

d4w 2πx 
D + (ρm − ρc)gh = ρcgh0 sin (2.120) 

dx4 λ 
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The solution can be shown to be 

h0 sin 2πx 2πx 
w(x) =  { λ } = w0 sin (2.121) 

ρm − 1 +  D 2π 
)4 λ 

ρc ρc g λ 

From eq. (2.121) we can see that for very large flexural rigidity (or very large 
elastic thickness of the plate) the denominator will predominate the equation 
and the deflection will become small (w → 0 for  D → ∞ ); in other words, 
the load has no effect on the depression. The same is true for short wave-
lengths, i.e. for λ � 2π(D/ρcg)1/4 . In contrast, for very long wave lengths 
(λ � 2π(D/ρcg)1/4) or for a very weak (or thin) plate the maximum depression 
becomes 

ρch0 
w0 ≈ (2.122) 

ρm − ρc 

which is the same as for a completely compensated mass (see eq. 2.118). In 
other words, the plate “has no strength” for long wavelength loads. 

The importance of this formulation is evident if you realize that any topog-
raphy can be described by a (Fourier) series of periodic functions with different 
wavelengths. One can thus use Fourier Analysis to investigate the depression or 
compensation of any shape of load. 

Eq. (2.121) can be used to find expressions for the influence of flexure on 
the Free Air and the Bouguer gravity anomaly. The gravity anomalies depend 
on the flexural rigidity in very much the same way as the deflection in (2.121). 

Free-air gravity anomaly: ⎧ ⎫ ⎨ e−2πbm /λ ⎬ 2πx 
∆gfa = 2πρcG ⎩ 

1 − 
1 +  D 

( 
2π 
)4 ⎭ 

h0 sin 
λ 

(2.123) 
(ρm −ρc )g λ 

Bouguer gravity anomaly: 

−2πρcGe−2πbm /λ 2πx ( h0 sin (2.124) ∆gB = 
1 +  D 2π 

)4 λ 
(ρm −ρc )g λ 

where bm is the depth to the Moho (i.e. the depressed interface between ρc and 
ρm) and the exponential in the numerator accounts for the fact that this interface 
is at a certain depth (this factor controls, in fact, the downward continuation). 

The important thing to remember is the linear relationship with the topog-
raphy h and the proportionality with D−1 . One can follow a similar reasoning 
as above to show that for short wavelengths the free air anomaly is large (and 
positive) and that the Bouguer anomaly is almost zero. This can be explained 
by the fact that the flexure is then negligible so that the Bouguer correction suc-
cessfully removes all anomalous structure. However, for long wavelength loads, 
the load is completely compensated so that after correction to zero elevation, 
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the Bouguer correction still ’feels’ the anomalously low density root (which is 
not corrected for). The Bouguer anomaly is large and negative for a completely 
compensated load. Complete isostasy means also that there is no net mass 
difference so that the free air gravity anomaly is very small (practically zero). 
Gravity measurements thus contain information about the degree of isostatic 
compensation. 

The correlation between the topography and the measured Bouguer anoma-
lies can be modeled by means of eq. (2.124) and this gives information about 
the flexural rigidity, and thus the (effective!) thickness of the elastic plate. The 
diagram below gives the Bouguer anomaly as a function of wave length (i.e. 
topography was subjected to a Fourier transformation). It shows that topog-
raphy with wavelengths less than about 100 km is not compensated (Bouguer 
anomaly is zero). The solid curves are the predictions according to eq. 2.124 
for different values of the flexural parameter α. The parameters used for these 
theoretical curves are ρm = 3400 kgm−3 , ρc = 2700 kgm−3 , bm = 30  km,  
α = [4D/(ρm − ρc)g]1/4 = 5, 10, 20, and 50 km. There is considerable scatter 
but a value for α of about 20 seems to fit the observations quite well, which, 
with E= 60 GPa  and  σ= 0.25, gives an effective elastic thickness h ∼ 6 km.  
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Figure 2.20: Bouguer anomalies and topography. 

Post-glacial rebound and viscosity 
So far we have looked at the bending or flexure of the elastic lithosphere to 
loading, for instance by sea mounts. To determine the deflection w(x) we  used  
the principle of isostasy. In order for isostasy to work the mantle beneath the 
lithosphere must be able to flow. Conversely, if we know the history of loading, 
or unloading, so if we know the deflection as a function of time w(x, t), we can 
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investigate the flow beneath the lithosphere. The rate of flow is dependent on 
the viscosity of the mantle material. Viscosity plays a central role in under-
standing mantle dynamics. Dynamic viscosity can be defined as the ratio of the 
applied (deviatoric) stress and the resultant strain rate; here we mostly consider 
Newtonian viscosity, i.e., a linear relationship between stress and strain rate. 
The unit of viscosity is Pascal Second [Pa s]. 

A classical example of a situation where the history of (un)loading is suffi-
ciently well known is that of post-glacial rebound. The concept is simple: 

1.	 the lithosphere is depressed upon loading of an ice sheet (viscous mantle 
flow away from depression make this possible) 

2.	 the ice sheet melts at the end of glaciation and the lithosphere starts 
rebound slowly to its original state (mantle flow towards the decreasing 
depression makes this possible). The uplift is well documented from el-
evated (and dated) shore lines. From the rate of return flow one can 
estimate the value for the viscosity. 

Load 
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Ice Melts at End 

of Glaciation 

Subsequent Slow 

Rebound of Lithosphere 

Load Causes 

Elastic Lithosphere 

Figure by MIT OCW.
Two remarks: 

1.	 the dimension of the load determines to some extend the depth over which 
the mantle is involved in the return flow → the comparison of rebound 
history for different initial load dimensions gives some constraints on the 
variation of viscosity with depth. 

2.	 On long time scales the lithosphere has no “strength”, but in sophisticated 
modeling of the post glacial rebound the flexural rigidity is still taken into 
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account. Also taken into account in recent models is the history of the 
melting and the retreat of the ice cap itself (including the changes in 
shore line with time!). In older models one only investigated the response 
to instantaneous removal of the load. 

Typical values for the dynamic viscosity in the Earth’s mantle are 1019 Pa s 
for the upper mantle to 1021 Pa s for the lower mantle. The lithosphere is even 
“stiffer”, with a typical viscosity of about 1024 (for comparison: water at room 
temperature has a viscosity of about 10−3 Pa s; this seems small but if you’ve 
ever dived of a 10 m board you know it’s not negligible!) 

Things to remember about these values: 

1. very large viscosity in the entire mantle 

2. lower mantle (probably) more viscous than upper mantle, 

3. the difference is not very large compared to the large value of the viscosity 
itself. 

An important property of viscosity is that it is temperature dependent; the  
viscosity decreases exponentially with increasing temperature as η = η0e

−30T/Tm , 
where Tm is the melting temperature and -30 is an empirical, material dependent 
value. 
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This temperature dependence of viscosity explains why one gets convection 
beneath the cooling lithosphere. As we have discussed before, with typical 
values for the geothermal gradient (e.g., 20 Kkm−1) as deduced from surface 
heat flow using Fourier’s Law the temperature would quickly rise to near the 
solidus, the temperature where the rock starts to melt. However, we know from 
several observations, for instance from the propagation of S- waves, that the 
temperature is below the solidus in most parts of the mantle (with the possible 
exception in the low velocity zone beneath oceanic and parts of the continental 
lithosphere). So there must be a mechanism that keeps the temperature down, 
or, in other words, that cools the mantle much more efficiently than conduction. 
That mechanism is convection. We saw above that the viscosity of the litho-
sphere is very high, and upper mantle viscosity is about 5 orders of magnitude 
lower. This is largely due to the temperature dependence of the viscosity (as 
mentioned above): when the temperature gets closer to the solidus (Tm) the  
viscosity drops and the material starts to flow. 
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