Chapter 1

Shallow water gravity waves

1.1 Surface motions on shallow water

Consider two-dimensional (z-z) motions on a nonrotating, shallow body of
water, of uniform density p, as shown in Fig. 1.1 below.
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Figure 1.1: The shallow water system.

The flow is assumed to be inviscid and independent of the spatial dimen-
sion y (into the paper). We shall assume that the water is so shallow that
the flow velocity u(z,t) is constant with depth. (We'll see later under what
conditions this is reasonable; for now, let’s just assume it to be true.) At the
free surface, located at height z = h(z,t), pressure is equal to atmospheric
pressure po, assumed constant and uniform.
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2 CHAPTER 1. SHALLOW WATER GRAVITY WAVES

Consider the volume of water bounded by the vertical surfaces A and B in
the figure. These surfaces are located at  and x + dx respectively. The mass
of this volume, per unit length in y, is just dm = ph dz. Now, mass cannot
be created or destroyed within the volume, so the only way it can change is
because of the fluxes of mass across the interfaces A and B. Consider Fig.
1.2.

dx=u dt
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Figure 1.2: Tllustrating the flux of mass across the interface A.

Since the velocity at A is u, in a time interval dt all the fluid between A’
and A passes across A, where the distance between A’ and A is dz = u dt.
Thus, the area (i.e., the volume per unit length in y) passing across A in this
time is hu dt, and so the mass (per unit length in y) is phu dt. Therefore
the mass flux—the mass crossing A per unit time, per unit length in y—is
pu(z)h(z). The mass flux across interface B is pu(z + dz)h(z +dz) (directed
toward positive z, out of the volume). Therefore the rate of accumulation of
mass (per unit length in y) within the volume defined by AB is

0
8—? = pu(z)h(z) — pu(z + dx)h(z + dz)
O(uh)
—p——=d.
P~oz
Since m = ph dz, the factors of p dx cancel, leaving us with
Oh  O(uh)
ot Ox

Differentiating the RHS by parts and rearranging, we arrive at the equation
of continuity:

oh oh ou
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This equation expresses the local rate of change of surface height in terms of
two contributions:

(i) by advection of height —udh/dx

(i) by volume convergence —hou/dzx .

These two effects are depicted (both in a sense to increase h locally) in Fig,.

1.3.
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advection convergence

Figure 1.3: Contributions to 8h/0t.

Now, in a similar way, consider the momentum balance of the water in
the volume. We shall need to know the distribution of pressure p within
the water. To do this, we use the principle of hydrostatic balance, which
states that the pressure increases with depth according to the overhead mass
per unit area. Specifically (see Fig. 1.1), the pressure at any depth A — 2
below the surface is related to surface pressure by

h

p(z,t) =po+ | pgdz=po+pg(h—2z), (1.2)

where ¢ is the acceleration due to gravity (and both p and g are constants).
The second term on the RHS of (1.2) simply represents the mass of water
per unit area above level z. Newton’s law of motion applied to the volume
gives
du
m— = F
dt
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4 CHAPTER 1. SHALLOW WATER GRAVITY WAVES

where F' is the net force (per unit length in ¥) applied to the volume. Since
we are assuming friction to be negligible, the only such forces acting are
pressure forces, which are as depicted in Fig. 1.4!.
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Figure 1.4: Forces acting on the fluid volume.

That acting on the volume across interface A (tending to accelerate the
volume in the positive z direction) is equal to a force, per unit length in y, of
Fy = [2p(z,2) dz; that acting across interface B (tending to accelerate the
volume in the negative z direction) is Fy = [§ p(z+dz, 2) dz. However, there
is a third component of the net force acting on the free surface, represented
in the figure as Fs. Atmospheric pressure exerts a force pgdl per unit length
in y, where dl is the volume’s width along the surface. Because the surface
is tilted, this has a nonzero component podlsin o acting in the positive z-
direction, where « is the angle of the interface. Since dl = dz/ cos @, this
contribution to the z-force is

oh

F, = py—d
S pOGx z

(since tana = Oh/Ox). Therefore the net force on the volume, per unit
length in v, is

ah h h
F = po—dax + / p(x,z) dz — / plr +dx,z)dz .
dx 0 0

L'We are in fact neglecting here one contribution to the force felt at the surface, that
due to surface tension. Surface tension effects are negligible for motions of large horizontal
scale (typically a few cm.), so this analysis is restricted to these large scales. Small-scale
motions for which surface tension effects are important are known as capillary waves.
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But, from (1.2), we have

h h h
/pdz = /podz+pg/(h—z)dz,
0 0 0
1

So

h h
[p(z,2)dz — [p(z +dz,z)dz = poh(z) — poh(z + dx)
0 0

1 1
+5p9h* (@) = Zpgh* (2 + dz)

Oh oh
= —po—dz — pgh—dz .
Poam z—pg . Z

Therefore the acceleration of the volume is given by

miii—z == —pgh%da} .
Note that this is independent of surface pressure py (the terms involving it
have cancelled): the net force on the volume is entirely due to the pressure
gradients within the water which, because of hydrostatic balance, are entirely
due to gradients in surface height. Now, using our expression m = ph dz,
the preceding equation gives us (cancelling the factors ph dx)

du 8h

at = Yoz
Here the derivative d/dt i1s the material derivative—this tells us how the
velocity of the marked volume changes as it moves around. We need to

convert this into a form that tells us how u changes in fixed coordinates.
Since u = u(z,t) = dz/dt, we simply apply the chain rule to write

du Ou N drdu  Ou +u8u
dt = 9l dtox O Oz
and thus to write owr equation of motion in final form

Ou Ou ah.
E + Ua—a = —g% . (13)

Like (1.1), this links the local rate of change of velocity to two terms:
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(i) the pressure gradient term and

(ii) the advection of momentum.

The two equations (1.1) and (1.3) give us two predictive equations in the
two unknowns u(z,t) and h(z,t), and so in principle tell us all we need to
know to determine how this system will evolve, given initial and boundary
conditions. The equations are nonlinear (through the advective terms) and
have complex properties in general, but they become quite simple under
circumstances where they can be linearized.

1.2 Small-amplitude shallow-water surface waves

Suppose now our shallow water system is motionless (v = 0), with uniform
depth D; this state trivially satisfies eqs. (1.1) and (1.3). Now suppose we
perturb this state, such that u(z,t) = «/(z,t) and h(z,t) = D + h'(z,t),
where the perturbation is small in the sense that

(i) |M| < D, and

(i) |u/| < L/T,

where L and T are respectively length and time scales for the motion. Now,

eq. (1.1) becomes

ah' L0’ N

o TYas = _(D+h)—3_x_ :
since the derivatives of D are zero. We now replace (D + /') by D (using
assumption (i)) and neglect the second term compared to the first (since
Oh' /Ot ~ |h'| /T and wOh'/dx ~ || |1 /L, so the ratio of the latter to the
former is |/| /LT, which is small by assumption (ii)), leaving the linearized

equation
on' N

ot~ oz

(1.4)
Similarly, (1.3) becomes
ou' ,ou’ oh'

5 T = Ve
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again we can use assumption (ii) to neglect the second term, leaving

ou’ oh/

We can now combine the two equations (1.4) and (1.5) to get a single
equation for h, by combining 8/0t of (1.4):

O’ . %/
a2 oot
with 9/0z of (1.5):
Ou B O?n’
ozot 7 o2
to give
K O
oz g ox? 0. (1.6)

This is a wave equation, which describes how small-amplitude surface
height perturbations evolve.

1.3 Background theory—mnondispersive waves

1.3.1 Oescillations

Oscillations (e.g., small amplitude oscillations of a simple pendulum) are
often described by an equation of the form
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Figure 1.5: Characteristics of a simple oscillation.

d%x
T2 + Q% =0 (1.7)

where t is time and x is some system variable (angular displacement in the
case of the simple pendulum). (1.7) has solutions of the form

x(t) = Re (Y ei“’t) = Y, cos(wt — €) (1.8)

where frequency w = £}, amplitude Y; and phase € are real constants, and
Y = Yye " is a complex amplitude. Thus, as shown in Fig. 1.5, an oscillation
is characterized by three constants: amplitude, frequency, and phase.

1.3.2 Nondispersive waves

Unlike such simple oscillations, waves are functions of both time and space.
The simplest wave equation, of which (1.6) is an example, is of the form

d%x . c‘z& _
ot? 092

(1.9)

where ¢p is some constant. (In our case, x represents surface height perturba-
tions on shallow water of depth D and ¢q = \/gD. However, it could equally



1.3. BACKGROUND THEORY-—NONDISPERSIVE WAVES 9

well represent the electric or magnetic field in vacuo, with ¢y the speed of
light; or pressure perturbations in a compressible fluid, with ¢y the sound
speed.)

We can find solutions to (1.9) by separating the variables, writing

x(z.t) = Re[A(t)B(z)] .

More specifically, if we look for “wave-like” solutions for which B(z) = e*7,
where k is a real wavenumber (so 27/k is wavelength)?, then d?B/dz? =
—k’B, SO

A%y d’B )

T = e | AT )| = ~RelABG)

and (1.9) becomes

d’A .
I + }CQCéA =0.
This has solutions like
A= X+e—iwt A = y_etiot

where x, and y_ are constant (complex) amplitudes and the frequency w
satisfies

w? =kt (1.10)
The full solution is

X(-{E, t) — Re [X_},ci(kx_wt) + X_ei(l\:m+wt)] . (1‘11)

Each of the two terms in (1.11) describes a progressive wave (Fig. 1.6):

2In general, any function of z can be expressed as a Fourier integral of such waves.



10 CHAPTER 1. SHALLOW WATER GRAVITY WAVES

X

A
|
|
!
!

0

I
I
|
I
|

\ s

VYV

Figure 1.6: Characteristics of a progressive wave.

e at any instant, it is just a sinusoidal wave disturbance, of wavelength

2r/k

e at any fixed location x = xy, it is just an oscillation of the form Det*?,

where D = y, €% is its complex amplitude, of period T' = 27/w

e it propagates with phase speed ¢ = w/k = £¢¢. Note from (1.11)
that x is constant along characteristics with kz £ wt =constant, i.e.,
Z = FEt+constant.

Eqg. (1.10) is the dispersion relation for the wave: for a given wavenum-
ber k, it tells us the wave’s frequency. This form is particularly simple, as
shown in Fig. 1.7.
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w= kco

Figure 1.7: The dispersion relation for 1-D shallow water waves.

[Note that this is drawn for positive k only—we may define k positive,
without loss of generality, as long as we do not try to constrain the sign of w.]
The phase speed ¢ = w/k = $cg; the waves can propagate in either direction.

These waves are nondispersive, i.e., their phase speed is independent
of wavenumber. Thus, all waves, of any wavenumber, propagate at the same
speed (in either direction), which means that non-sinusoidal disturbances
propagate without change of shape. In fact, any function

x(z,t) = F(x + cot) (1.12)

is a solution to (1.9)%. Eq. (1.12) just describes any shape of disturbance,
including a localized one, that propagates at speed ¢ without changing its
shape (Fig. 1.8).

3To see this, note that if X = 2 + cpt, then F = F(X) and the chain rule gives us

ox OF dF 0X  dF

oz dr ~ dX 9z~ dX '

2y & (dF\ _ 80X d®F _ d&°F

dx? 5:;<E>_6~xm_~d)(—2’

dx 8F  dF 90X 3

v = =5 = X+

ot ot~ dx o dX

&*x d dF\ | 0X d*F _ ,d'F
E A" <ﬂ°E§E> = oG axe ~ Ogxe

So, (1.9) is satisfled by (1.12).
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C

X

Figure 1.8: Nondispersive waves: arbitrary disturbances propagate without
change of shape.

1.3.3 Two-dimensional waves

In two dimensions (x,y), (1.9) is replaced by

%y
ot?

~ 2V =0 (1.13)

2 2 .
where V? = 5%7 + %9 We can now look for plane wave solutions of the

form

x(z,y,t) = Re {Ag ei(k”ly“"t)] . (1.14)

Then
VQX — _k2Re [Ao ei(kz-Hy—wt)]

where kK = k% +1? is the total wavenumber. Therefore, substituting into
(1.13) gives the dispersion relation for this case

w? = kil . (1.15)

[Note that the one-dimensional case we discussed above is just a special case
of the two-dimensional problem, with { = 0.]

Eq. (1.14) describes a plane wave because x is constant along lines of
constant phase kx + ly — wt = constant, so at any instant in time, kx + ly =
constant; see I'ig. 1.9.



1.3. BACKGROUND THEORY-—-NONDISPERSIVE WAVES 13

Figure 1.9:

The wave pattern moves at right angles to the phase lines, with speed c.

Plane waves are a special, and particularly simple, form of 2-D waves.
Exactly what shape the wavefronts have will in general depend on the geom-
etry of the system and of the process that generated the wave. If the source
is very localized (e.g., a stone dropped into water), the wavefronts will be
circular, as shown in Fig. 1.10. Note that, far from the source (in the dashed
rectangle), the wavefronts will look almost plane.

Figure 1.10: Circular wave fronts radiating from a localized source.
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1.4 Motions within a wave

Returning to the 1-D problem, we can write the general solution, for a given
wavenumber k, to (1.6) as

W (2,t) = Re [Hy e ol 4 H ettt (1.16)

the first term representing a sinusoidal wave propagating to the right, the
second one propagating to the left. Now, from (1.5),

C ik(x—c Co ik(z+c
(z,t) = Re [—Eme amcat) - By eiktead (1.17)

So, for that mode propagating to the right (left), velocity and height pertur-
bations are in phase (in antiphase), as shown in Fig. 1.11.

p—  —

YIY YL

Figure 1.11: The relation between height and velocity perturbations for sur-
face waves propagating to the right and left.

This means that convergence is occurring to the right of the height max-
imum for the wave propagating to the right, and to the left of the height
maximum for one propagating to the left, which of course is consistent with
the sense of propagation. (Note that the advective term in (1.1) vanished
when we linearized.)

1.5 Surface wave reflection and modes

1.5.1 1-D reflection

In general, H. in eq. (1.16) are arbitrary constants, to be determined by
initial and boundary conditions. Of course, if the waves are propagating
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boundary itself, therefore, while both waves are present there, the two waves
[see eq. (1.16)] interfere constructively in the h field while they interfere
destructively in u. So the height field perturbation actually amplifies while
the wave packet is close to the boundary (Fig. 1.12(b)). (If you think this is
getting something for nothing, note that the wave packet becomes laterally
compressed during this time.) Subsequently, the entire incoming wave has
been reflected and the wave packet propagates away to the left (c).

1.5.2 Modes in a bounded 1-D domain

Consider now a bounded domain, with coasts at x = 0 and x = L, at each
of which «' = 0. The solutions (1.16) and (1.17) that satisfy these boundary
conditions are

W(xz,t) = H coskzcos(kcgt — €) ;
(1.18)

u(z,t) = %]H sin kz sin(kcot — €) ;

where H is a real constant amplitude and € is an arbitrary constant phase
(which could be eliminated by a choice of origin for t). This is a solution pro-
vided u'(L,t) = 0, which requires the modal condition that the wavenumber
satisfy k = k,,, where

kn=n—, (1.19)

where n is a nonzero integer; the wave has n half-wavelengths across the
domain. Thus, the allowable wavenumber spectrum is quantized, as is the
allowable frequency spectrum:

TCo
Wy, = kpcg = n— .

L

u’ O’t) = QQRG }1+6—ikCol _ H* e+i]ccul')
D +
= P Re [(H+€"'““°‘) - (wa-w)*} =0,

since Re (a —a*) =0 for any a.



1.5. SURFACE WAVE REFLECTION AND MODES 15

in an unbounded domain, the location of the sources will tell us which is
nonzero (e.g., if the only source for the wave is to the left, H_ = 0).

If, however, the domain is bounded, the wave may be reflected from the
boundaries. Consider the semi-infinite domain bounded at its eastern side
by a vertical coast at z =0 (Fig. 1.12).

JRUUESV. Y

—

Figure 1.12: A shallow water wave reflecting from an eastern boundary.

A wave packet* generated at large negative x propagates in toward the
boundary (a). According to Fig. 1.11, it has a nonzero u component in the
peaks and troughs. After the wave has reached the boundary (b), it has
to meet the boundary condition of zero motion normal to the coast (i.e.,
u = 0 for all t), which a single wave component cannot do. The only way
for the boundary condition to be met is for a second wave to be radiated
from the boundary; in order for the u component of this wave to cancel that
of the incoming wave at the boundary at all ttmes, it must have the same
magnitude of frequency and therefore, from (1.10), the same wavenumber.
In short, it must be the mirror-image wave, propagating to the left, with
equal and opposite amplitude to that of the incoming wave. In terms of
(1.17), H- = HY, where the asterisk denotes complex conjugate®. At the

4By "wave packet”, I mean a wave with a finite number of, but many, wavelengths.
>This guarantees u = 0 at the boundary x = 0, since then
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x=0 x=L

Figure 1.13: The n=5 1-D mode in a bounded domain.

So a finite 1-D domain of width L supports a countably infinite number
of discrete modes, the lowest frequency of which is 7¢g/L, or a maximum
period of 2L/co. Fig. 1.13 shows the u and h structure of the n = 5 mode;
the patterns oscillate without propagation.

Of course, these standing wave modes can, in terms of (1.16) and (1.17),
simply be regarded as sums of two equal and opposite propagating waves,
continuously being reflected from the boundaries.

1.5.3 Reflection of plane waves

Reflection of plane waves is only slightly less straightforward than that of 1-D
waves. At a straight boundary they suffer specular reflection (equal angles
of incidence and reflection), as shown in Fig. 1.14.

a) b) c)
\ \
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Figure 1.14: Reflection of plane waves.
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[Note the interference between incident and reflected waves in (b). It is
easy to generate almost-plane waves In a container (or a bathtub) and to see

this effect.]

Modes also exist in 2-D containers with simple geometry (e.g., rectangular
or circular). In a rectangular basin of dimensions (L, L,), modes are found
with wavenumber components

(where either m or n, but not both, can be zero) with corresponding allowable

frequencies
Winn = Coy/ k2, + 12 .

Fig, 1.15 shows a (3,2) mode, which has period
2 2L,L,

way co\/9LZ +4L2 .
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Figure 1.15: The structure of surface height displacement in a (3,2) mode in
a rectangular basin.
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1.6 Further reading

Elementary but brief descriptions of water waves (not confined to those on
shallow water) can be found in:

Waves, tides and shallow-water processes, by the Open University Course
Team, The Open University, Pergamon Press, 1989 (Chapter 1).
Elementary Fluid Dynamics, by D.J. Acheson, Clarendon Press, Oxford,
1990.

Other treatments can be found in many fluid dynamics texts, but are
usually much more advanced and more mathematical than these two. One
particularly thorough treatment is in
Waves in Fluids, by James Lighthill, Cambridge University Press, 1978
(Chapter 3).





