Chapter 2

Deep water gravity waves

2.1 Surface motions on water of finite depth

We now move on to consider motions in water that is not shallow, i.e., we
will allow the flow to vary with z within the water:
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Figure 2.1: Configuration of deep water system.

As before, the system is nonrotating and inviscid, and the water density
p is assumed constant. Basically, we follow the same procedures as for the
shallow water case. However, rather than consider balances for columns of
water we must do so separately for elemental volumes dz dz, such as the box
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32 CHAPTER 2. DEEP WATER GRAVITY WAVES

in the figure. The horizontal and vertical momentum equations are!

du ou ou ou dp
e T P S S
(2.1)
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Thus, the processes tending to accelerate the flow in the z-direction are: the
z-gradient of pressure and advection of z-momentum; in the z-direction: the
z-gradient of pressure, gravity, and advection of z-momentum.

We now consider conservation of mass within the marked volume; its
mass, per unit length in y, is m = p dx dz, which for this incompressible
medium is constant with time.
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Figure 2.2: Mass continuity.

However, there are fluxes of mass across the volume, as shown in Fig.
2.2. Across the left face, into the box, is a mass flux, per unit length in y,
of p u(z, z) dz; there is an outward flux of p u(z + dz, z) dz across the right
face. Similarly, there is a flux p w(z, z) dz in through the lower face and

1Since the varaibles are now functions of (z,z,t), the substantive derivative is now

i _ 0 ,ded , dd
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a flux p w(z, 2z + dz) dz out through the upper face. Altogether, the net
convergence of the mass fluxes into the box is

C = pdzlu(z,z) —ulz+dz, 2)] + pdz|w(z, z) — w(z, z + dz)]
Ju Ow

= —pdxrdz (ég-f-a—z-):—pdmdzv-u

where u is the vector velocity (u, w). Continuity of mass demands, since there
is no change of mass within the box, that C be zero, whence our continuity
equation
ou  Ow
0x * 8z
This tells us that incompressible flow is nondivergent.

So we have 3 equations, the 2 momentum eqgs. (2.1) and the continuity
eq. (2.2), in three unknowns u, w, and p. We also have boundary conditions.
At the lower boundary z = 0, there can be no normal motion, whence w = 0
there?. The motion will in general be nonzero at the free surface, since this
can move. However, fluid on the surface (which is a material surface) must
remain there—it cannot pass through, which tells us that a fluid parcel on
the surface must move with the local fluid speed along the surface, or

0. (2.2)

dh
E = ’U)Iz:h . (23)
Finally, we also know that the pressure in the air immediately above the
surface is atmospheric pressure py which, as before, we assume constant.
Since pressure must be continuous across the surface (to be otherwise would
imply an infinite pressure gradient and therefore infinite acceleration, which
would be unphysical®). So our final boundary condition is

Pl—p =0 - (2.4)

2Note that we can impose no similar condition on u at the lower boundary, since we
have assumed inviscid flow and so cannot include viscous boundary effects.

3We are in fact neglecting surface tension here. If the surface is curved, as it will be
in the presence of the wave, surface tension will exert an effective pressure on the fluid
beneath. Such effects are significant only for waves of wavelength a few cm or less (and
such waves are known as capillary waves).
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2.2 Small-amplitude deep-water surface waves

As before, we investigate the properties of small-amplitude disturbances to
a stationary basic state, described by

u = w=0,
h = D, (2.5)
p = po+gp(D—z).

Introducing small perturbations v/, w’, h’, and p’, the momentum egs. (2.1)
can then be written as

ou' 10y ,0u’ ,0u’
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Now, the terms in the RHS are nonlinear, in fact quadratic in the perturba-
tion quantities; we neglect these on the grounds that the perturbations are
small, leaving

ow 104
at  pozx

ow' 10y
5 " poz

0, (2.6)

0. (2.7)

The continuity eq. (2.2) becomes simply
ou  ouw
— =0. 2.8
0z + 0z (28)
We now proceed to derive a single equation in a single unknown from

these three. In fact, it is very simple to do so: taking the z-derivative of
(2.6), the z-derivative of (2.7), and adding gives

0 [ou N ow'’ N 1 /0% N %’ _0
ot \ oz Oz p\0z2  922)
But, from (2.8), the term in the first parenthesis is zero, so
62 / 82 !
P 4 P
ox? = 022

=0. (2.9)
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As before, we focus attention on wave-like disturbances, for which
P(z,2,t) = Re [ﬁ(z,t)ei’ﬂ : (2.10)

substitution into (2.9) then gives

P,
—— — kP —
022 0,
which has solutions of the form
P(z,t) = Pi(t)e" + Py(t)e ** . (2.11)

(Note that this tells us that the vertical scale of the motion is k=1, which is
formally the same as the horizontal length scale.) Now, the lower boundary
condition tells us that w’ = 0 at z = 0; therefore, from (2.7), 9p'/0z = 0
there. So, using (2.10), we have

oP
5. (0.8)=0

whence, in (2.11), P, = P, = P(t)/2, say, and so (2.10) becomes
p'(z,z,t) = Re [P(t) coshkz e**] . (2.12)

It is now straightforward, from (2.6) and (2.7), to obtain the form:of the
velocity perturbations

u(z,2,t) = Re {—iEQ(t) cosh kz e““} : (2.13)
p

w'(z,2,t) = Re [— Q(t) sinh kz e”””] : (2.14)

where dQ/dt = P.
Notice that, at this stage we have defined the spatial structure of the

motions, but not the time dependence. To define the latter, we have to
include consideration of the surface dynamics.
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Figure 2.3: Near-surface details.

Consider the level z = D — d, where d is just greater than |h'|, so the
level lies just beneath the wave troughs, as shown in Fig. 2.3. (Since our
equations are valid only within the water, we cannot choose z = D.) Now,
since [eq. {2.4)] the surface pressure is pg, the total pressure (background +
perturbation) is, using hydrostatic balance,

p(z,D —d,t) =po+gp(d+ 1) .
But, since the basic state pressure is, from (2.5), po + gpd, the perturbation

is p'(z, D — d,t) = gph'; taking the limit d — 0 (recall that b’ is arbitrarily
small), we have

p'(z,D,t) = gph', (2.15)
so, from (2.12),
1 ‘
h(z,t) = —Re [P(t) cosh kD e**] . (2.16)
gp

(Note that p'(z, D, t) is nonzero—it is the pressure perturbation at the surface
z = D + h’' that is zero.) The material surface condition (2.3), neglecting

nonlinear terms, is

/
%% =w'(z,D,t) .

Using (2.15),
op' ,
gpt—(z,D,t) = gpuw'(z, D, 1) .
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Substituting from (2.12) and (2.14), we get

%(t) cosh kD = —gk Q(t) sinh kD

or, since P = d@Q/dt,

d2Q
—— 4+ gk tanh kD Q =0. (2.17)
dt?
This has solutions ' _
Q — Q+e—zwt + Q_ezwt (218)

provided w satisfies the dispersion relation

w? = gk tanh kD . (2.19)

Eq. (2.19) can be rewritten as
W= :t%\/kD tanh kD | (2.20)

where ¢ = /gD is the shallow water wave speed. (2.20) is plotted in Fig.
24.
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Figure 2.4: Dispersion relation for deep water gravity waves. Dashed lines
show the shallow water relation.
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Note the departure from shallow water behavior for kD > 1. In gen-
eral, the most important difference is that, for deep water waves, the phase
speed ¢ = w/k is not independent of wavenumber—such waves are known as
dispersive waves.

2.2.1 The long wave (shallow water) limit

Note from (2.20) that, in the limit kD — 0, w? — gDk?, so we recover the
shallow water dispersion relation (and, in fact, shallow water dynamics) in
this limit when the wavelength is much greater than the depth. However,
kD in fact has to be very small for this approximation to be valid: the
wavelength 27 /k must be greater than 14 times the depth before the shallow
water result for ¢ becomes within 3% of the correct value.

From (2.13), since coshkz — 1 as kD — 0 (note that z < D) the
horizontal velocity becomes independent of z in this limit, as we assumed in
our shallow water analysis.

2.2.2 The short wave (deep water) limit
For kD — oo, tanh kD — 1, so (2.19) becomes

w=++/gk (2.21)

which is independent of D. In fact, the whole problem becomes insensitive to
the background depth in this limit, as the waves do not feel the bottom. The
vertical structure functions cosh kz and sinh kz appearing in (2.13), (2.14)
and (2.12) are

coshkz =

sinhkz =

both of which can be approximated as %e’“z (except close to the bottom) as
kD — oo. This means that the solutions decay downwards from the surface
as exp (—k (D — z)), and becoming vanishingly small at depth, as shown in
Fig. 2.5. Thus, though the waves can propagate great distances horizontally,
they remain trapped near the surface and do not penetrate deep into the
water. So, the water depth becomes irrelevant. This is because all the
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Figure 2.5: Surface waves on deep water.

dynamics of the waves—the effective elasticity that allows their existence—
is tied up with the density discontinuity at the water surface. Thus, the
surface acts as a wave guide, channeling the wave propagation.

2.3 Background theory—dispersive waves

2.3.1 Dispersion

The general dispersion relation for the frequency w of 1-D waves of wavenum-
ber k can be written

w=w(k) (2.22)
and the phase speed is

Clearly, c is independent of k for all k only if w(k) =constant x k—this is the
nondispersive case we discussed earlier and, as we saw, it implies that all
disturbances, including localized ones, propagate without change of shape.
This can be thought of in terms of Fourier components. Any non-sinusoidal
disturbance can be described a sum of components of different wavenumber;
if all these waves propagate at the same speed, so will the disturbance itself,
and its shape will not change.

For many kinds of wave motion, however (including surface waves on
deep water), ¢ varies with k, in which case the different wavenumber compo-
nents will have different speeds, a phenomenon known as wave dispersion.
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Therefore the way they interfere with one another will change with time—so
the shape of the disturbance will change.

2.3.2 Group velocity

There is one particularly important aspect of dispersion, which concerns the
way that modulations propagate on a wave train.
A monochromatic wave of the form

x(z,t) = Re [A elFor—w(ko)]

with single wavenumber kg has the simple spectrum of a §-function A6(k—ko)
[Fig. 2.6(a)], and behaves in the way we have discussed, propagating with a
speed ¢ = w(ko)/ko.

a) b)

Ak)

Figure 2.6: Wavenumber spectra for (a) a monochromatic wave, and (b) an
almost-monochromatic wave.

Consider now an almost monochromatic wave, with a narrow spectrum
[Fig. 2.6(b)]. This can be written

x(z,t) = Re / A(k) eltke=w® g (2.24)
0

where A(k) is nonzero only for wavenumbers in the vicinity of ky. Writing
k = ko + Ok, we can rewrite this as

X($,t) - Re/ A(k0+5k) ei[kom—w(ko)t] ei[ék z—6w t]dk,
0
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where dw = w(ko + 6k) — w(ko) ~ (Ow/0k)bk. At t =0, this is simply
X(z,t) = F(z) e™°

where -
F(z) = Re/ Alkg + 6k) ' %= dk
0

is the modulating envelope of the wave train, which has carrier wavenumber
ko, as illustrated in Fig. 2.7.

/6K

Figure 2.7: An almost-monochromatic wave packet, comprising many wave-
lengths. The phase of the carrier wave propagates at the phase speed, but
the modulation envelope propagates at the group velocity.

Now, for ¢ > 0, the wave packet behaves as

x(z,t) = {Re/ A(ko + 6k) ei[ak(z’cﬁ’t)]dk} gilko(z—ct)]
0

= F(z — c,t) eilfole—tll (2.25)
where 5
w
Cg= = (2.26)
© Ok |y,

is the group velocity. Thus, while the carrier wave propagates at the phase
speed, the modulation envelope propagates at the group velocity. This is an
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important concept, as it is the latter velocity that governs the propagation
of information, as we shall see.

Nondispersive waves have w = cpk, with constant phase speed ¢y, and
so their group velocity is the same as their phase velocity. But the group
velocity of dispersive waves differs from the phase speed, so in a wave packet
like that shown in Fig. 2.7 the wave crests will move at a different speed
than the envelope. If ¢ > ¢, (which, as we shall see, is the case for deep
water waves), new wave crests appear at the rear of the wave packet, move
forward through the packet, and disappear at its leading edge. We shall see
some examples of this below.

In general, it is easy to get a feel for both phase and group propagation
graphically from the dispersion relation, as shown in Fig. 2.8.

Figure 2.8: The disperion relation w(k). The phase velocity at k = kg is
tan «, the group velocity tan (.

For any wavenumber k, the phase velocity is just given by the slope o of
a line joining the point (w, k) to the origin, while the group velocity is given
by the slope tan 3 of the tangent to the curve at (w, k).

2.3.3 Group velocity in multi-dimensional waves

For future reference, we note here that for 2- or 3-dimensional waves, the
general dispersion relation is of the form

w = w(k) (2.27)
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where k = (k, 1, m) is the (2-D or 3-D) vector wavenumber. The phase veloc-

.t 4 .
1y” 18 _(wg w) 038
T\ Tm) '
and the group velocity
Oow Ow Ow
===, - 2.29
9 (ak’ az’am> (229)

As we shall see later (and a comparison of (2.28) and (2.29) implies), not
only may ¢, and c be of different magnitudes, they may also be in different
directions.

2.4 Surface wave dispersion

T

00 2 4 6 8 10
kD

Figure 2.9: Phase speed c(slope of line A)and group velocity ¢, (slope of line
B)for surface waves.

Returning now to surface waves, and the dispersion relation (2.19) shown
in Fig. 2.4, we can see from Fig. 2.9 that ¢, < ¢ for all wavenumbers (the
slope of line B never being greater than that of line A. This is shown more
explicitly in Fig. 2.10.

4The phase velocity is in fact not a vector, even though it has magnitude and direction.
It does not transform like a vector under rotation—this stems from the fact that phase
propagation has no meaning along the phase lines.
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1
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Figure 2.10: Scaled phase and group velocities for surface waves.

In fact, both group and phase speeds are greatest and equal in the long
wave (shallow water) limit, when

¢, g —gD , kD —0. (2.30)

Note that in this limit ¢ becomes independent of k, ¢.e., the waves become
nondispersive, as we saw in the shallow water case. However, as Figs. 2.9
and 2.10 make clear, ¢ and ¢, differ significantly for £D > 1. In the short
wave (deep water) limit, in fact, from (2.21),

cchgH\/%, kD — oo . (2.31)

The difference between nondispersive long waves and dispersive short
waves is illustrated in the following. Consider an initial disturbance to the
water surface of the form

K (z,0) = exp <— (fﬁ)z> .

If A is large, this has a length scale long compared with D (so it projects
primarily onto waves with kD < 1) and, as shown in Fig. 2.11 for A = 4,
the waves emanating from the disturbance are essentially nondispersive.
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Figure 2.11: Dispersion of a large-scale initial disturbance

[exp (— (z/ 4D)2)on water of depth D. Behavior is symmetric about
z = 0; only = > 0 is shown. Numbers on curves are time in units of D/cy.

(There is just a hint of dispersion; note the negative tail at t = 20D /co.
Note also that there is, for ¢ > 0, an identical disturbance, not shown, in
z < 0.) When A is smaller however, the initial disturbance has a smaller
length scale and hence a greater projection onto the dispersive short waves.
This is illustrated in Fig. 2.12, for which the initial disturbance has A = 0.5.
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Figure 2.12: Same as the previous figure , but for a small-scale initial distur-
bance [exp(— (2z/D)%)].

The dispersion of the resulting waves is evident. Note especially that
(e.g., at t = 20D/cy) the leading edge of the wave train has the largest
wavenumber, consistent with our observation that the long waves have the
greatest group velocity and, in fact, should travel a distance z = 20D by
this time). Wavelength becomes progressively shorter in the tail of the wave
train.

Both examples can easily be reproduced in a container of water (one that
is large enough to allow the dispersion to develop) or outdoors in a river or
lake. If the water is sufficiently shallow, in response to a localized disturbance
(e.g., from a small object dropped into the water) you will see a localized
wave propagating away, with little or no apparent dispersion. If the water is
deep, however, you will see a dispersing wave train, with the longest waves
at the leading edge. If you look closely, you may be able to see the wave
crests appearing in the rear and propagating forward through the wave train
(since ¢ > ¢,)°. This effect can also be seen in a ship’s wake (Fig. 2.13):

5Though in this case they never overtake the front of the wave train, since this consists
of long waves for which ¢ = ¢,.
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Figure 2.13: Waves in the wake of a ship.

individual wave crests can be seen propagating to the outside of the wake
(changing wavenumber in the process), and disappearing there. (Incidentally,
in deep water the half-angle of the “wedge” made by the wake is arcsin(3) =
19.5°, independent of the speed of the ship. This can be shown to follow
from the fact that ¢;/c = % for deep water; we will not pursue that here but
the proof can be found in many texts, such as “Waves in Fluids”, Lighthill,
Cambridge U P, 1978; section 3.10.)

The results that ¢; < ¢ is made apparent in another common phenom-
enon, the wave train downstream of an obstacle in flowing water (e.g., a
river), as shown in Fig. 2.14.

\/\/\/\/
v

A

Figure 2.14: Disturbance produced by flow over an obstacle.

There are two key statements to be made:

(1) the wave train is stationary, and so has ¢ = 0;
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(i) it is located downstream—there is no disturbance ahead of the obstacle.

Since our analysis has been for waves on stationary water, let’s shift our frame
of reference to move with the flow. So now the obstacle and its wave train
are moving to the left with speed V. Since the wave crests are stationary
with respect to the obstacle, they are also moving to the left with phase
speed, in this frame of reference, ¢ = —V. Now, the energy is radiated
from the moving obstacle radiates away at the group velocity, which is never
greater than |c'| = V—so it must lag behind the moving obstacle. To put it
another way, in this moving frame of reference, ]c’g‘ <V (remember that ¢,
is negative in this case). So, in the frame in which the obstacle is stationary,
the group velocity is ¢, = ¢; +V > 0. Thus, wave energy can only radiate
downstream and there are no upstream effects®.

There is another aspect to this problem that is illustrative of the general
characteristics of waves in fluids. The obstacle is subject to a force associ-
ated with the flow across it. For a small, smooth obstacle, this force is not
primarily frictional (though there is a component of that) but is mostly the
result of form drag: the pressure on the upstream side of the obstacle is
greater than that on the downstream side, and so the obstacle is subjected to
a force to the right. (On Fig. 2.14, the free surface height is greater upstream
of the peak of the obstacle than at a comparable position downstream; there-
fore there is a positive pressure gradient on the obstacle.) Simultaneously, of
course, the water must be subjected to an equal force to the left (decelerating
the flow). However, this is felt, not at the obstacle but downstream, within
the wave train: this can happen because (like, e.g., electromagnetic waves)
the waves, which as we have seen are capable of transporting energy, can also
effect transport of momentum. Thus, the drag on the obstacle is relayed
to remote parts of the water. This has several ramifications for atmospheric
and oceanic dynamics.

5The fact that this result is not trivial is underlined by the observation that it does
not always apply. Capillary waves—those for which surface tension is crucial—can have
¢y > c and so can and do travel upstream. If the obstacle is small (< a few cm in size)
these waves are important though, as they have small wavelength, they dissipate quickly
and so may be hard to see.
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2.5 Particle motions within a wave

Consider now the motion of (neutrally buoyant) marked particles in the wa-
ter, which is of course the same thing as the motion of the water itself. Let
the instantaneous position of a particle be (z,z) = (X, Z) + (/,{’) where
(X, Z) is the undisturbed position (where the particle would be in the ab-
sence of the wave), and ' and ¢’ are the small perturbations in position
associated with the wave motion. From the definition of velocity as rate of
change of position, we have

dx B
a
dz _ )
a
or (since (X, Z) is fixed in time)
on ~,on  On /
ot Ve TV T
7 ! !
o 0L B

Linearizing, we have

o'
PR
o,
E-w

Now, suppose we have a single propagating wave (single wavenumber, single
frequency). Then, from (2.13), (2.14), and (2.18), we have

v\ B E 7 coshkz i(kz—wt)
( w' ) = Re { pQO ( sinh kz ) ¢ ‘ (2‘32)
Therefore
7\ i ﬁosh kz i(kz—wt)
( ¢ ) = Re |i on( i sinhkz | °© . (2:33)

Note:

1. The displacements are oscillatory, so there is no net drift of the parti-
cles. Thus, even though the wave pattern propagates, fluid parcels do
not: they merely oscillate about their mean position.
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Figure 2.15: Parcel orbits in a water wave. Direction of motion is reversed
for a wave traveling to the left.

2. Vertical and horizontal displacements are in quadrature (w/2 out of
phase). The marked particles perform elliptical orbits, with, for real
Qo > 0 (which we can insist on, by defining the time origin accordingly)
and k > 0,

( U ) kQo y { cosh kz cos(kz — wt)

Cwp sinh kz sin(kz — wt)

which implies that the parcels move clockwise around the orbit for
w > 0 (c > 0), and anticlockwise for w < 0 (¢ < 0). See Fig. 2.15.
Note that the ratio of vertical to horizontal axes of the ellipse is tanh kz,
which increases from zero at the bottom (where the boundary ensures
that ¢ — 0) to tanhkD < 1 at the top. For waves in deep water
(kD > 1), the orbits become circular.

2.6 Wave generation by wind

It is common experience that waves on the ocean and lakes are usually weak
on calm days, but strong on windy days, suggesting that much of the surface
wave activity is somehow produced by the action of wind. It seems unlikely,
though, that a wave of wavenumber k£ and frequency w is directly forced by
winds as this would require that the wind itself (or the pressure fluctua-
tions that accompany the wind) have a significant component at the same
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frequency and wavenumber. There will always be some such component—
especially in the turbulent atmospheric boundary layer, the winds have a rich
spectrum—but, at the short wavelengths and high frequencies characteristic
of surface water waves, these fluctuations are generally weak. Moreover, lab-
oratory studies show that waves can be generated by blowing a steady air
flow across a water surface. (Try blowing across a glass of water.)

The underlying process common to most wave generation is one of insta-
bility. That is, even though there may be no externally imposed “waviness”
in the wind, there is a tendency to amplify any small perturbation on the
water surface. Consider Fig. 2.16.

*/\/\
:/\/\

p4, - P4 -

Figure 2.16: Wave generation by wind (schematic). A wave on the ocean sur-
face disturbs the air flow in such a way a to produce a pressure perturbation
at the surface that reinforces the wave.

In the absence of a surface wave, the air flow is uniform and the pressure
on the water surface is uniform; there is thus no tendency to force waves in the
water. However, in the presence of a small wave on the surface, the air flow
is disturbed and, like the “rock-in-the-river” problem’, a perturbed pressure
gradient is produced at the water surface which has the same wavenumber
(and frequency) as the surface perturbation. Provided the water-air system
can get the phase relationships right (and it can) these perturbations rein-
force will each other and grow, thus producing, eventually, a finite-amplitude
surface wave from an initially infinitessimal perturbation.

"Except now the “rock” is the bump on the water surface and the “river” is the at-
mosphere.
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2.7 Wave breaking

All our discussion thus far has been based on our linear (small-amplitude)
approximation to the full problem. Using this approximation, we have been
able to explain many of the commonly observed properties of surface water
waves. There is, however, at least one familiar aspect of these waves that
cannot be explained by linear theory: breaking, which is most commonly
observed as waves run up a beach.

1 2 3 4

A 4

Figure 2.17: Steepening of a finite amplitude wave.

This happens for two reasons. First, as the waves run up the beach, the
energy in the wave becomes focused into a shallower layer (once D < k7!
or so), thus concentrating the energy and increasing the wave amplitude.
Second, when D < k7! or so, the phase speed becomes dependent on depth,
being greater where the water is deeper. In a finite amplitude wave, the
water is deeper at the wave crest than in the wave trough. Hence the crests
travel faster than the troughs; the crest therefore tend to catch up with and,
eventually, overtake the troughs, as shown in Fig. 2.17. This produces the
overturning of the wave that is familiar in breakers.

2.8 Further reading

See the suggestions given in Section 1.6.





