Chapter 3

Internal Gravity Waves

3.1 Interfacial waves

We have thus far considered the dynamics of the air-water interface. The sur-
face gravity wave motions that this interface permits owe their existence to
the restoring force associated with the density difference across the interface.
[Because we did not consider the effects of motions in the air—we neglected
variations in atmospheric pressure—we implicitly assumed that pe;r < pyater,
which is a very good assumption.] In fact, similar waves are also possible at
any internal interface in a fluid across which there is a density discontinuity,
such as shown in Fig. 3.1. Suppose the densities above and below the inter-
face are py, ps, respectively (where py > py). In general, further complexities
are introduced by the different depths of the fluid layers; if we concentrate
on layers of equal depth D, then the dispersion relation for the interfacial
waves is the same as for the surface wave case (2.20), except that the shallow
water wave speed, 1/gD) in the surface wave case, is replaced by
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[Note that this reduces to /gD in the case p; < py.] The origins of the
additional factor are not hard to see. The frequency of any oscillations on
the interface depend on the restoring force acting on any deviations of the
interface; this force is proportional to the density difference across the inter-
face, ps — p1. The frequency also depends on the inertia of the fluid, which is
proportional to p; + p;. If the density difference is small (p; — p1 < pa+ p1),
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Figure 3.1: Interfacial waves on the interface between two fluids of different
density.

the wave speed is much slower than that of surface waves®.

Consider now the behavior of a fluid with many such layers, as shown in
Fig. 3.2. Suppose something makes a disturbance on the surface. When
we considered surface waves on deep water, we saw that there are motions
within the water, extending a characteristic distance k~* below the surface. If
there is a density interface withint this distance, that will be affected by these
motions, and will become distorted by them. In turn, this will set up motions
in the layer beneath that interface, which will perturb the layer below, etc.,
etc.. Thus, in addition to propagating horizontally along the interfaces, the
disturbance will propagate vertically within the fluid. This is unlike the
case of surface waves on a fluid of constant density; such internal waves can
propagate vertically by virtue of the fluid’s internal density structure. This
is illustrative of the way fluids can often support three-dimensional wave
propagation.

1One way of experiencing this is to gently rock a jar of oil-vinegar dressing to set up
oscillations on the interface; when you find the resonance, the period will be much longer
than if you repeat the experiment with a jar of oil or vinegar alone.
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Figure 3.2: Interfacial (internal) waves in a fluid with many constant-density
layers.

3.2 Internal waves in a fluid with continuous
stratification

Most fluids—including the ocean and the atmosphere, do indeed have internal
variations of density. Sometimes these variations occur sharply, but there
is almost always a continuous variation of density, which supports internal
waves in much the same way. In fact, if (see Fig. 3.3) we compare two
fluids, one with many layers of slightly different density (which increases
monotonically with depth), and the other with a continuous but otherwise
similar density profile, it does not take much imagination to see that they
would both behave very similarly; each density profile will support internal
waves.

In fact, if p varies linearly with 2 in an incompressible fluid, the dispersion
relation for plane waves of the form w = Re {Woei(k“““mz_“’t)} is

k? +l2
wEEN e e (32)
N = ,/%3—2 (3.3)

is the “buoyancy frequency”. Note that as m — 0, w — +N (this actually
corresponds to the case where air motions are exactly vertical), and that, in

where
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Figure 3.3: Density stratification of a fluid with (left) density steps and
(right) continuous stratification.

general, |w| < N, so that the buoyancy frequency is the mazimum frequency
of these waves. The corresponding period, 27/N, may range from a few
minutes in the atmosphere to several minutes to hours or days in the ocean.

3.3 Vertical density structure of the ocean

A typical vertical profile of ocean density is shown in Fig. 3.4. The actual
profile at any place and time will vary but the main characteristics are the
same:

1. A “mixed layer” with the top few tens of meters, within which the
density is almost uniform;

2. A “thermocline” at depths of around 100m, with a sharp density con-
trast (but note that its magnitude is only a few percent);

3. Below the thermocline, weaker but persistent gradients of density.

Such a profile is capable of supporting fast surface waves, slower interfacial
waves on the thermocline, and much slower internal waves in the deep ocean.
Internal waves are ubiquitous in the ocean.



Image removed due to copyright considerations.

3.4 Gravity waves in the Atmosphere

3.4.1 The vertical structure of a compressible atmosphere

Unlike the ocean, of course, the atmospheric density varies dramatically with
height, primarily because of the compressibilty of air. We know that, in
most situations (i.e., unless vertical accelerations are significant, which only
usually happens for small-scale motions), hydrostatic balance is satisfied:

Op

— =—gp. 4
5, ~ 9P (3.4)
To determine how p and p vary with 2z, we need to invoke the equation of
state (the relationship between pressure, density and temperature). For air,
a good representation is the ideal gas law

pV = R'T (3.5)

where V' is the volume of one kilomole of air and R* = 8314.3 J deg~'kmol~!
is the universal gas constant. Since p = M/V, where M = 28.97 kg is the
mass of one kilomole of dry air (of mean molecular weight 28.97), eq. (3.5)
may be written
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where R = R*/M = 287 J deg™! kg~! is the gas constant for air.
Now, substituting from (3.6) into (3.4), we obtain

O _ gL P (3.7)
where
= — (3.8)

is the pressure scale height. If H is constant (isothermal atmosphere), for
example, pressure decays exponentially with height, with e-folding scale H:

p =p86 % ) (39)

where p; is the surface pressure (at z = 0), and density likewise:

_ P _ P
p = T RTe H (3.10)
If the atmosphere is not isothermal, but 7' = T'(z), H = H(z) and
4
D = Ds€xp <— A H(z’)) , (3.11)

so H is still the measure of the rate of decay of p, but in a local sense. For
a typical value of T' = 270K, H ~ 7.9 km.

An example of a typical atmospheric temperature vs. height profile (at
35°N in April) is shown in Fig. 3.5. Within the troposphere (z < 10km
at high latitudes, z < 16km in the tropics), temperature decreases with
altitude at a rate of about 7K km™!; in the stratosphere (up to z ~ 50km),
the temperature increases slowly with altitude.

3.5 Potential temperature and static stabil-
ity

Consider the vertical displacement of air parcel, as shown in Fig. 3.6. The
parcel P is displaced from z to z + dz, i.e., from p to p + dp, where, from
(34),

dp = —gp(2) dz .
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Figure 3.5: The observed, longitudinally averaged temperature distribution
in northern summer. [After Houghton, “The Physics of Atmospheres”, Cam-
bridge Univ. Press, 1977.]

Since the pressure acting on the parcel changes during displacement, its den-
sity will also change, and the two are related to one another and to temper-
ature through (3.6). In order to evaluate how density changes we need to
know how the temperature changes, which in turn requires knowledge of the
parcel’s heat budget during displacement.

3.5.1 Thermodynamics of dry air

The first law of thermodynamics? states that the change in energy, dq, per
unit mass of air undergoing temperature and density changes is

dq = ¢, dT + p dex (3.12)

where ¢, is the specific heat at constant volume and da the change in spe-
cific volume (the volume of the unit mass). Since o = 1/p, da = —dp/p?.

2CGood discussions of elementary atmospheric thermodynamics can be found in Chapter
2 of Wallace & Hobbs, Atmospheric Science: an Introductory Survey, (Academic Press,
1977) and Fleagle & Businger, An Introduction to Atmospheric Physics, (Academic Press,

1980).
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zo+dz \

________________

Figure 3.6: Vertical displacement of a compressible air parcel.

Therefore

1
)— —dp=RdT — —dp,
p’p

where we have used the ideal gas law (3.6). Therefore (3.12) can be written

1 D 1
pda=p d(-) =d(

1
dq = c, dT — —dp

where ¢, = ¢, + I is the specific heat at constant pressure. To convert this
into an equation for the change in heat content per unit volume, dQ, we just
multiply by p to give

dQ) = pcpdT —dp .

(3.13)
Hence, we can now write the first law in time derivative form (its customary
form for meteorological application):

ar  1dp J

A ed o

(3.14)

where J = d(@)/dt is the so-called diabatic heating rate per unit volume.
Consider now the quatity

GzT(@)m,
p

(3.15)
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where py is a constant (conventionally taken to be 100 kPa = 1000 mb) and
k= R/c, = 2/7 for air. Then

d
do = dT <@> k- KT (@) ,
p PP
)2l
p PC \ P
where we have used (3.6) to show «T'/p = RT /pc, = 1/pc,. Therefore (3.14)

can be written ” J
p
—=—|=]kK. 3.16

dt  pcp (p()) ( )
Eq. (3.16) has the obvious advantage of being more concise than (3.14), but
its great power—and the usefulness of the quantity 8, which is known as
potential temperature—becomes clearest under circumstances in which
the diabatic heating J can be neglected. The most important heating (or
cooling) processes are:

(1) latent heating or cooling associated with condensation or evaporation
of water. This is a very important process, which we will discuss in
detail later.

(i) radiation. On time scales of several days or longer, this is an important
process, but is usually weak on shorter time scales.

(ii1) conduction. This process is only important very close to the surface.

For dry motions, on sufficiently small time scales, and outside the boundary
layer, it is usually valid to neglect the diabatic heating, in which case the
motions are adiabatic and (3.16) becomes simply

do
— =0. 3.17
Potential temperature is thus conserved under adiabatic conditions®. Unlike
temperature, the potential temperature does not change as an air parcel

moves adiabatically to higher or lower pressure. Note that at p = py, 8 =

%0 is actually a measure of the specific entropy of air (which in fact is ¢,In6, to
within an arbitrary constant), which does not change under adiabatic processes.
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T: so, if a parcel at some location in the atmosphere has temperature T
and potential temperature 0 then, if p # pg, 6 and T will be different. If
we move the parcel adiabatically to the standard pressure, it will still have
potential temperature 8, but its temperature will now be T' = 4. Therefore,
the physical meaning of 0 is:

1. The potential temperature of an air parcel is the temperature it would
have if moved adiabatically to standard pressure (1000 mbar).

3.5.2 Static stability

Now let’s return to the vertically displaced air parcel of Fig. 3.6. If we
assume the displacement is rapid (hours or less) and that there is no moisture
condensation within the parcel, then we can assume the displacement to be
adiabatic, so that df = 0 as the parcel is displaced. Now, the parcel leaves
height z with initial density p; = pe(2) = p(2)/RT.(z),. where T, and p, are
the environmental temperature and density. At the final height, z + dz, the
parcel has density

p(z + dz)
pr="pr
RTy
and the environmental density is
p(z +dz)
e dz) = ————.
pelz +dz) = pr o a2

Now the parcel will be buoyant—and therefore the displacement will con-
tinue to grow—if py < pe(z+dz), t.e., U Ty > Te(z+dz). U Ty < Te(2z +dz),
however, the parcel will be negatively buoyant and will return toward its
original position: the environment will then be statically stable with re-
spect to displacement. Now, since df = 0 for the parcel, its temperature will
change according to

gr— % _ _9,4, (3.18)

PCp Cp
where we have used hydorstatic balance (3.4). Therefore its final temperature
is
T =T~ Ldz = Tu(2) — Ldz

Cp Cp



3.6. INTERNAL WAVES IN THE ATMOSPHERE 11

(assuming it left with environmental temperature). But the environmental
temperature at this location is

dT. dz

Tz +dz) =T(2) + 7 4%

therefore the environment will be

unstable 1if ij—j;f‘ <-Z % <0
tabl e 4T e [, 0 (3.19)
stable if >~ (&>
The critical value of temperature gradient
dTl. g
— Ty=-2 _
dz ad Cp (3:20)

is known as the adiabatic lapse rate. c, for air has a value of 1004 J
K 'kg™!, so ['yy = 9.8 K km™!. Usually (though not always), the actual
lapse rate of temperature is less than this (typically 6-7 K km™!) so the
atmosphere is usually stable to dry displacements of this kind.

3.6 Internal waves in the atmosphere

3.6.1 The buoyancy frequency in a compressible at-
mosphere

A statically stable atmosphere, like a stably stratifed ocean, will support
internal gravity waves. In fact, atmospheric internal waves are almost iden-
tical to those in the ocean—satisfying the same dispersion relation (3.2),
for example*—but there is one major modification to be made. The buoy-
ancy frequency for incompressible waves is proportional to vertical density
gradient; in the atmosphere, as we have seen, it is not this that determines
buoyancy, but the gradient of potential temperature. So, for the atmosphere,
the buoyancy frequency [cf., eq. (3.3)] is defined by

, gdf g (dT
-2 -2 = . 21
N Gdz T (dz + Fad (3 )

“There are some minor terms to be added to (3.2) in general, but in practice (3.2) is a
good approximation.
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Typically, in the troposphere, N ~ 0.01 s™!, corresponding to a period for
vertical displacements of about 10 minutes (remember that this is a lower
limit of the period of internal waves in general).

Like the ocean, the atmosphere is rich in internal waves (they can often
be seen in clouds) though under most circumstances, their amplitudes are
not very large in the lower atmosphere. One situation in which they are
commonly large 1s when air flows over mountains—we shall look at such
waves below.

Because of one other important effect of compressibility, these waves as-
sume much greater importance in the upper atmosphere (especially in the
mesosphere, above 50km altitude). As we have seen, such waves can prop-

-

Figure 3.7: Schematic of vertically propagating internal waves.

agate vertically as well as horizontally; as they do, they encounter reduced
environmental density. In order to conserve their energy (or something like
it), they must increase their amplitude (Fig. 3.7) as they propagate to higher
altitudes, rather like when ocean waves run up toward a beach into shallower
water. The amplitude grows as something like p~'/2. As a result, wave ampli-
tudes are much larger in the upper atmosphere than in the lower atmosphere,
even though it is in the latter that most of them originate.
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3.6.2 Mountain waves

Air flowing over mountains produces a stationary wave train, just as a rock
in a river produces a train of surface waves. In the former case, for mountains
less than about 100km in width (we shall discuss large mountain ranges later)
the wave train is comprised of internal waves which in this case are known
as lee waves. A typical situation is shown in Fig. 3.8.

> R

Figure 3.8: Schematic of air flow over a mountain range.
There are several noteworthy features of this flow:

(i) Like the rock-in-the-river problem, in situations where a wave train is
produced, it exists downstream of the mountain, and for the same rea-
sons. The wave train is stationary relative to the mountain. Consider
the two-dimensional case with y-wavenumber [ = 0. If the oncoming
wind (which we assume to be uniform) is U, then relative to the flow,
the mountain, and the wave train, have speed —U, whence, from (3.2),

N
vVk? +m?

(the minus sign has been chosen because the propagation is to the left).
The z-component of group velocity relative to the flow is

w— ——
- =

0w Nm? _ m? 3

cgm—-a—k——(k2+m2)% R ym? T
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and therefore the group velocity relative to the mountain, ¢, + U > 0:
there are no upstream effects®.

Immediately in the lee of the mountain, (A on Fig. 3.8) there may be
strong, warm, downslope winds. The air is warm because it has come
from above, and (since the stratification is stable) df/dz > 0, so air
from aloft is warmer than surface air if the former is brought down to
the surface. The air may also be warmed by latent heating associated
with condensation in the upslope flow (see point (v), below).

Further downstream, there may be strong surface winds where (B on
Fig. 3.8) the streamlines concentrate near the surface; these winds may
occasionally be extremely strong, but may exist only in a narrow band
parallel to the mountain range.

In regions above point A and above and just upstream of B, there is
downward flow. Occasionally, this flow may be manifested as strong
downdrafts that can be hazardous to aircraft operating out of or into
airports downwind of large mountains.

As the air is elevated over the mountain, condensation may occur, and
orographic clouds are common (C on Fig. 3.8).

Clouds also frequently form at one or more levels in the peaks of the
lee wave (D on Fig. 3.8). These lee-wave clouds are often seen with
banded structure downstream of long ranges, but may also occur with
less organization downstream of isolated mountains.

The lee waves propagate vertically, and so the form drag on the moun-
tain may be communicated by the waves’ momentum transport to high
levels in the atmosphere. This process is significant enough to be in-
cluded as an explicit parameterization in numerical weather prediction
models, and, at very high levels, also has a dramatic effect on the cir-
culation of the mesosphere.

Finally, we should note that our discussion of internal gravity waves has
(for simplicity) been confined to waves on uniform background states (con-
stant N and U). In fact, the most dramatic mountain waves are found where

5There may be upstream effects for small U, when no wave train is produced and the
flow cannot creep over the mountain, and when nonlinear effects we have not considered
may be important.
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N and/or U are very nonuniform, in which case wave trapping, and con-
sequent amplification, may occur.

3.7 Further reading

Internal gravity waves are covered to some extent in many texts of geophysical
fluid dynamics; a detailed but thorough treatment is given in Chapter 6 of
A K. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982.
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3.8 Appendix to Ch. 3: Theory of internal

gravity waves

fluid

3.8.1 Stable density stratification in an incompressible

Consider the situation depicted in Fig. 3.9.

zo+dz

Figure 3.9: Displacement of a water parcel P in stable stratification.

incompressible and to have density varying with depth only, p = p(z). (N.B.
Incompressibility means that density does not change in response to pressure
variations; but it does depend on temperature and salinity, p = p(T, S), so
is not spatially constant.) A water parcel P, initially located at z = zp, is
displaced upward to 2 = 29 + dz. The parcel initially had the same density
as its environment, pp = p(zp). Now, if we make the reasonable assumptions
that there are no sources or sinks of salt within the parcel, and that it moves

quickly enough to do so adiabatically (without loss or gain of heat), then

it preserves its T' and S, and thus its density. So, after displacement, its
density is still pp = p(2p).

The water is assumed to be
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Now, its environment at its new location has density

dp
pe = plao +d2) = p(z0) +dz—~(20) ,
for small displacement dz. Therefore the parcel will feel a buoyancy force
causing it to rise further, or to return toward its initial location, depending
on whether p, is greater than or less than pp. We will defer discussion of the
first possibility—the unstable case—until later; we now concentrate on the
case of stable stratification, viz.,
dp

— >0 3.22
dz ’ (3:22)
for which the buoyancy is negative and the associated restoring force tends
to make the parcel motion oscillatory about its location of neutral buoyancy.

3.8.2 Small amplitude motions in an incompressible
fluid with continuous stratification

So, we shall consider inviscid, adiabatic motions in an infinite, two-dimensional
(z — z) fluid, with density p(z, z,t). As in Chapter 2, the equations of motion
are

du ou du ou  10p

at ot Yer V8T poe

dw ow ow ow  16p

@ ot Y Ve T Tpar
where D is pressure. We note here that density variations in the ocean are
small, and so we can write p = pgy + p, where p is a small deviation from
the constant reference density pgg. To be consistent, we also have to allow a
reference pressure pgo(z), in hydrostatic balance with pgg, such that

dpoo
dz - _gp()() )

and so we write p = pgg + p. Then, relying on the smallness of p, we write

p0r  pooOx P3Oz |’
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Jlop 1 9(pw+p)

poz —  (pw+p) Oz
o _ 10wty p 5(pwtp)
~ po Oz plo 0z

10 a
poo 0z Poo Poo 0z
Note that the terms in curly brackets are quadratic in departures from the
reference state, so we neglect them, in which case the egs. of motion become

du ou ou Ju 1 Op

@t T o "o T8 T pedn
(3.23)
d_w_ = Qg+ua_w+w3_w__i§£4_ P
dt ot Ox 8z pwdz gp()() '
We also have our incompressible continuity eq.
ou  Ow
—+—=0. 3.24
ox + 0z (3-24)

To close the problem we need an equation for density. On the basis of our
assumption that the motions are adiabatic, and that there are no sources or
sinks of salt, it follows that parcels must conserve their density as they move
around, 7.€.,

do_0p 00, b _
a -  Yar TV, 0 (3-25)

Now, we consider a steady, motionless basic state, in which p = po(2) is
a linear function of z (for simplicity), such that dpg/dz = A. The second of
(3.23) tells us that the basic state pressure field py(2) must be in hydrostatic
balance with this density field:

dpo
— = — . 3.26
dz gpo(z) (3.26)
We now consider small amplitude perturbations to this state, such that
= ul(mi Z’ t) 3
= w'(z,z,1),

po(z) +pl($>z7t) ’
= po(Z) +p’(m,z,t) .

- = & e
I
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Since the perturbations are small, we may neglect nonlinear terms like v’ "‘;—1‘,‘0’

! . . . .
and w'’ %%; therefore, our linearized perturbation equations become, from

(3.23), (3.24), and (3.25),

v 10w
ot poo Oz
ow' 1 op 0

—— = —g— 3.27
Ot poo 02 gpoo ( )
@ n ow’
oz 0z

!

%) —w'A

With some juggling®, these can be reduced to a single equation for p':

82 a2p/ 82p/ ) 52])'
%(8:62—#822)4-]\75;—0. (3.28)

The quantity N in (3.28) has units of {1, and is defined by

A d
N2 9 (Q_P) ; (3.29)
Poo de 0

we will see its significance in a moment.
Clearly, (3.28) supports wavelike solutions of the form

p'(z,2,t) = Re P ¢!® ™) = Re P ¢ithatme—wt) (3.30)

where k is wavenumber and (k,m) its components in the (x,z) directions,

provided
Nk

W=t——. 3.31
k2 + m2 ( )
Eq. (3.31) is our dispersion relation for internal gravity waves. It tells
us that the wave frequency is independent of the magnitude of wavenumber,

only on its direction; specifically, that
w = *Nsind (3.32)

8Take 9/9z of the 1st of (3.27) plus 8/0z of the 2nd, and use the 3rd to give gdp'/ 0z =
8(8%p' /9x? + 8%p' /02%) /Ot; substitute this and the st equation into 62/828t of the 4th
equation.
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where ¥ = arctan(k/m) is the angle the wavenumber vector makes with the
vertical. For waves with wavenumber pointing horizontally (vertical wave
crests), w = £NV. So the quantity N defined in (3.29)—which is thus known
as the buoyancy frequency or the Brunt-Viisilé frequency—gives the
frequency of such waves; in general (when 9 is not 7/2) it provides the scale
for frequency, although it should be noted that in both ocean and atmosphere,
very slow waves with w < N (so ¥ « 1) are common. N is the upper
limit of frequency for propagating waves, for which both components of
wavenumber are real (if w < N, say because of external forcing at frequency
w, at least one of k¥ and m must be imaginary, and the disturbance will be
evanescent in at least one direction).
Note from the 3rd of egs. (3.27), together with (3.30) that

kv +muw =k-u' =0;
the motions are at right angles to the wavenumber, and thus along the phase

lines: the wave motion is transverse. This is illustrated in Fig. 3.10.
When 9 = 7/2, the phase lines and motions are aligned vertically—so the

?\*
. / /;: g
ki . =
» Q\X\
e

e

X

Figure 3.10: Phase lines and motions within a plane internal gravity wave.

oscillation of fluid parcels is just as we discussed at the beginning of this
chapter; thus N is the frequency of vertically-displaced parcels. For other
values of 19, the component of restoring force along the angle of displacement
is what matters—hence (3.32).





