Chapter 4
Tides

4.1 Tidal forcing

4.1.1 The “semi-diurnal” component

We need to consider how gravitational forces, due to the Sun or Moon, vary
along the surface of the Earth. For simplicity in the following derivation,
we shall focus on the Sun-Earth system (the Earth-Moon system produces
the same result, but the analysis is alittle more complicated). We shall also
neglect the inclination of the Earth’s axis to its orbit, and consider only how
the forcing varies along the equator; the geometry is shown in Fig. 4.1.

Figure 4.1: Gravitational tidal forcing.

Now, the gravitational potential at longitude A (measured relative to the
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moving sub-solar or sub-lunar point on the FEarth’s surface, due to the tide-
raising body (Sun or Moon) of mass M, is

GM GM
r  VREI—2aRcos\+ a2’

where R is the distance of the tide-raising body from the center of the Earth,
and a the Earth’s radius. Since a/R < 1, this can be approximated, correct
to O(a?/R?), as

2
b ~ —GTM <1+—;5cos/\——2% (1—3cos2/\)> .

Now, assuming that the center of the Earth’s orbit coincides with the center
of mass of M?, the centrifugal potential is

1 1 2
bo = —=wir? = —§w2R2 (1 — 2% cos A + %) ,

where w is the angular velocity of the Earth in its orbit. Since the two
components of force must balance at the Earth’s center,

GM
WiR = Tz

Therefore, the net variation of tidal potential around the equator is

3GM 3GMa?
2R 4R3

Or = Pg + ¢ = — (1 +cos2X) . (4.1)

The constant terms are, of course, irrelevant. The longitudinally-varying part
describes a potential with wavenumber 2 around the globe: this is because
the gravitational force decreases with distance, and the centrifugal force in-
creases, so the former dominates at the subsolar (sublunar) point P, and the
latter at @, the antipodes of P (see Fig. 4.2).

1This is clearly a very poor approximation for the Earth-Moon system; however, the
end result is the same.
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Figure 4.2: Tlustrating the “semidiurnal” (wave 2) nature of the tidal poten-
tial.

Note that (because it is a differential measure of the gravitational field)
the tidal forcing varies as R~3.

The corresponding tidal force (per unit mass) is —V®r; the horizontal
component, along the Earth’s surface, is the relevant one and this is just

109,  3GMa’

Fp=—= =
T a O\ 2R3

Sin2A . (4.2)

This is depicted in Fig. 4.3.
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Figure 4.3: Tidal forces. The ellipse depicts the “equilibrium tide”.

4.1.2 Lunar vs. solar forcing

Note that the magnitude of the tidal force depends on the properties of the
tide-raising body as M/R3. If the radius of the body is b, and its mean

density p, then
M 47 b\°
— == -] . 4.3
w(3) () =

Now, because of the happy coincidence that the sun and moon subtend almost
identical angles tan™(b/R) at the Earth, the ratio of their tidal forces is, by
(4.3), approximately equal to their mean densities. As the lunar density
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exceeds that of the sun (by a ratio of about 2:1), lunar tidal forces are
greater than solar, and the dominant tide in most places on the Earth is
lunar semidiurnal (period of about 12hr 25min). The solar forcing is by no
means negligible, however, which is why the tide goes through its monthly
modulation from the high “spring” tides, when lunar and solar forcings are
in phase, to the weaker “neap” tides, when they are out of phase.

4.1.3 The “diurnal” component

Since the inclination of the Earth’s axis to the Earth-moon and Earth-sun
lines is not zero, the tidal forces are not purely semidiurnal. As shown in
Fig. 4.4,
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Figure 4.4: Illustrating the diurnal tidal component. Because the inclination
of the Earth’s axis is not zero, the high tide experienced at point P is weaker
than that experienced 12 (lunar) hours later at point Q.

the tilt of the rotation axis relative to the potential surfaces introduces a
diurnal asymmetry: the tidal potential maximum at () is stronger than that
at P. Thus, the tidal forcing has a diurnal, as well as semidiurnal, component.
Note that the magnitude of this component will vary with period of a lunar
month, as the orientation of the poles with respect to the Earth-moon line
changes.
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{Elantity | value Tunits ]
G 6.67 x 1071 | Nm?kg~!
M 7.30 x 10 | kg
R 3.82 x 108 m
a 6.38 x 10° m
g 9.78 ms 2

Table 4.1: Data for the tidal calculation

4.2 Tides in the ocean

4.2.1 The “equilibrium tide”

The total gravitational potential around the Earth includes, of course, that
due to the Earth’s own gravity, ® = gz. If we consider the lunar forcing
only, then if the Farth were not rotating, the surface of the ocean would, in
equilibrium, coincide with a geopotential surface, on which, using (4.1),

B 3G Ma?
4R3

cos 2\ + gz = constant .

This surface is shown schematically (and much exaggerated!) in Fig. 4.3.
Since cos 2 varies from —1 to 1, the extreme range (low to high tide) for the
“equilibrium tide” is
_ 3GMa?
© 2R3

Using the values from Table 4.1, we obtain the value? Z, = 0.545m.

(4.4)

4.2.2 Tides in a global ocean

In reality, the tidal pattern remains fixed with respect to the Earth-moon
axis, and so, relative to a point on the Earth’s surface, it moves westward
at a speed of 449ms™! at the equator. Now, a typical ocean depth is about
D = 5km; since the wavelength of the tidal oscillation is 27a/2 ~ 2 x 10*km,
and this is very much larger than D, we can use shallow water theory to

2The actual value for the equilibrium ocean tide is about 0.7 of this. We have neglected
to allow for the fact that the solid earth itself is tidally distorted, and that the solid-earth
ocean system then produces a wave 2 modulation of the local gravity field.
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deduce that the phase speed of free waves is /gD ~ 220ms~'. Therefore,
we can hardly assume that the tide is steady, since it moves faster than free
waves in the ocean. So the tide is dynamic—we need to consider the dynamic,
rather than the static, response to the tidal forcing.

A complete analysis of tides on a global ocean (without interruption by
continents) is a classic (if unrealistic) problem. Apart from needing to take
account of the spherical geometry, we would also need to include the effects of
the Earth’s rotation, which is a significant factor for motions with periods of
about 12 hrs. To avoid these complications and to get some (limited) insight
into tidal motions, we consider the non-rotating problem of one-dimensional
(E-W) motions in a narrow channel around a latitude circle (see Fig. 4.5).

Figure 4.5: A narrow channel along a latitude circle, at latitude ¢.

Since the channel is narrow, we can neglect curvature, and so use Carte-
sian coordinates, with z the coordinate in the longitudinal direction. The
channel length is L = 2macosy. The relevant equations for this channel
for the long tidal motions are just the shallow water equations, modified to
include the tidal potential ®:

& Y5z oz
dh ou
@ - Ther

Since, from (4.4), we anticipate weak motions, we can reasonably linearize
these equations about a state of uniform depth D and no motion; we then
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have
Ou _ _ 0h 0%r
ot~ 9oz oz
(4.5)
oh ou
a - Pa

Now, we know that the forcing has zonal wavenumber 2 and period 0.5 lunar
day, so we write

@T = q>o COS (2)\) = Re [q)oeik(z—ct)}

where, from (4.1), & = 3GMa?/ (4R?), k = /L = 2/ (acos ) and kc =
27/ (0.57), where 7 is the lunar day. If we therefore seek solutions of the

form ( Z ) _ K g )eik(z—ct)} , (4.6)

cU = gH+ 9y,
cH = DU;

then (4.5) give

and so
D

(c? — cd)
where ¢y = /gD is the shallow water wave speed, as before.

In the limit ¢ — 0, this gives H — —D®,/c3 = —®y/g, i.e. the equilib-
rium tide, as we expect. Eq. (4.7) tells us:

H= 3 , (4.7)

(i) If 0 < ¢ < ¢g, the tidal response is in phase with the equilibrium tide,
and is larger;

(i) If ¢ = cp, the response is resonant, since the system is being forced at
its natural frequency;

(iil) If ¢o < ¢ < v/2cg, the tidal response is larger than, and out of phase
with, the equilibrium tide; and

(iv) If ¢ > v/2co, the response is smaller than, and out of phase with, the
equilibrium tide.
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Since, at the equator, the phase speed of the tidal forcing is 449ms™!, while
the wave speed is 220ms ™! for an ocean of 5km depth, resonance would occur
for a channel at latitude arccos (220/449) = 60.7°. We cannot of course take
these results literally latitude-by-latitude, as the whole spherical system is
coupled together. While this exercise gives us some idea of how the local
dynamics are tending to behave, it does not describe the actual tides very
well, as we shall now see.

4.2.3 Tides in ocean basins

Tidal observations are of course made in many locations, but most of these
are coastal. To get a picture of what we think the global structure of tides
looks like, we have to resort to output from numerical models. Such a picture
of tides is shown in 4.6.

Image removed due to copyright considerations.

The lines shown on Fig. 4.6 are of two types: co-range lines, which show
the peak-to-peak amplitude (shown here with a contour interval of 0.25m,
and labeled in meters), and co-tidal lines, which show the phase of the tide,
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expressed as the time of high water in “lunar hours” (about lhr 2min) after
the moon passes the Greenwich meridian. Several features stand out.

1. The amplitude of the tide is in most places between 0.25 and 1.5m,
i.e., between one-half and three times the amplitude of the equilibrium
tide.

2. The phase of the tide does not progress systematically eastward, as we
assumed in the above example, except in parts of the Southern Ocean,
which is the only part of the world where a disturbance can propagate
right around a latitude circle, unobstructed by continents.

3. The greatest amplitudes are along the coasts, especially near gulfs.
Correspondingly, there are regions of vanishingly small amplitude (so-
called amphidromic points) in the middle of the ocean basins. The
one exception to these statements is the maximum in the central equa-
torial Pacific Ocean.

4. The tide progresses systematically around each ocean basin (in fact,
around the amphidromic points). For the most part, the progression is
clockwise in the southern hemisphere and anticlockwise in the northern
hemisphere.

There are two effects that make the tides look so different from our simple
channel model. The most obvious is the presence of continents; the second
is the Earth’s rotation. One effect of the latter (we shall look at other effects
later) is to allow waves to become trapped at the coasts.

4.2.4 Kelvin waves

Consider (c¢f. Fig. 4.7) shallow water behavior near a straight coast, in a
rotating system.
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Figure 4.7: Schematic of the trapping of waves a coasts by the planetary
rotation. Top figure is in a plane parallel to the coast, which runs along the
z-axis; bottom figure normal to the coast.

The egs. of motion then become (with f the Coriolis parameter)

iiE _frU — _ @_ .
dt - g@x ’
dv L fu = dh .
dt o= gdy ’
dh ou Ov
e+ D — 4+ — = 0.
T (Bm * 8y>

Assuming small amplitude perturbations to a basic state with no motion,
and uniform depth D gives

o O
o 1Y T T80
o’ , on
3{+fu = —g(’)_y’ (4.8)

on' ou' o
N + D (33; + Fy) = 0.

These egs. have more than one kind of wavelike solution. One such solution—
the Kelvin wave—is a little strange. The boundary condition at the coast
y = 0 is v = 0: suppose there is a solution with v = 0 everywhere. Then
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(4.8) become

o On
ot g oz’
oh'
= - : 4.9
11e% ou’
E + D% = 0.

We have left ourselves with 3 egs in 2 unknowns, which would normally
suggest that we are on the wrong track. However, note that the 1st and
3rd of (4.9) are exactly the same two egs we get in the one-dimensional,
nonrotating case. So, just as in the nonrotating case, we get solutions of the

T () e{ (o)

where ¢ = /gD and where U = gH/c = cH/D. However, we have the
further constraint of the 2nd of (4.9), which gives

which, for constant f, gives®

H = const x exp (—f—y> . (4.10)
¢

The effects of rotation for these Kelvin waves is therefore to trap the waves
along the coastline, with an e-folding distance of ¢/ f. Otherwise, the motions
are entirely parallel to the coast everywhere, and the wave travel at the speed
of nonrotating shallow water gravity waves. However, there is one further
important implication of (4.10). Nonrotating gravity waves can propagate
in either direction. But a physically meaningful solution must decay away
from the coast (it cannot grow indefinitely as y — +00) so we must have
f/c¢ > 0. In the northern hemisphere (f > 0), then, ¢ > 0: the wave can
only propagate in one direction, with the coast to the right of the direction
of propagation (to the left, in the southern hemisphere where f < 0).

$We will later consider an important case for which f is not constant.
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Image removed due to copyright considerations.

In the presence of coasts, the tide takes on the characteristics of the
kelvin wave. Thus, the tide will tend to propagate anticlockwise around
amphidromic points in northern hemisphere ocean basins, and clockwise in
the northern hemisphere. Locally, this effect may be counteracted by the
tendency of the “open ocean” tide to follow the moon westward, and by
interaction between adjacent amphidromic points.

4.2.5 Tides in inlets and bays

Similar behavior is seen on a smaller scale in smaller bodies of water. Figure
4.8 shows the tide in the North Sea. Note the large amplitude, as compared
with typical open ocean values, and the similar anticlockwise propagation
around the coasts. The propagation is much slower here, consistent with the
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shallower water.

In such small bodies of water, the effects of gravitational forcing acting
directly on the water body are small compared to the indirect effects of
open ocean forcing. That is to say, tides in coastal seas and bays are driven
primarily by the open ocean tide at the mouth of the bay, rather like driving
an organ pipe at a specific frequency by externally playing a note at the
end of the pipe. In some cases, this can lead to large amplitudes, by at
least two processes. One is simply focusing: if the bay becomes progressively
narrower along its length, the tide will be confined to a narrower channel as
it propagates, thus concentrating its energy. There are suggestions of this in
Fig. 4.8, in the English Channel at the bottom of the figure.

Image removed due to copyright considerations.

The second processes is constructive interference between the incoming
tide and a component reflected from the coast. Fig 4.9 shows a more spec-
tacular example, the tide in the Gulf of Maine.

The tidal range in the Gulf of Maine is about 3ft at its entrance, but it
increases substantially towards the coast and most dramatically in the Bay
of Fundy at the NE corner of the Gulf, where the tide exceeds 30ftt. We

*The mean tide at Burntcoat Head, at the head of the Bay of Fundy, is 38.4ft (11.8m),
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Figure 4.10: Schematic of a quarter-wavelength resonance in a bay.

have seen that a simple reflection can amplify wave amplitude at the coast
by a factor of 2, but not 10 or more. What seems to be happening is that the
Gulf of Maine/Bay of Fundy system is resonating at the tidal period. This is
illustrated in Fig 4.10. Just as in the organ pipe problem, the bay is forced
by the tidal currents at its mouth; if the geometry of the bay is such that it
takes one-quarter period for a wave to propagate its length, it will support a
quarter-wavelength mode at the forcing period, leading to large tides at the

head of the bay.

the highest mean tide in the world.





