Chapter 5

Large-scale motions on a
rotating Earth

5.1 The equations of motion on a rotating
plane

In an inertial frame of reference, the equation of motion (momentum) is

du
Par
where u is the vector velocity, ® = gz the gravitational potential, and F
represents any applied external body force or frictional forces acting per unit
volume. For a tidal problem, F would represent the gravitational tidal force;
in the ionized upper atmosphere, it could include forces involved in moving
ions across the Farth’s magnetic field lines. In almost all cases, however,
such effects are negligible, and the only “force” acting is friction. Even this
is negligible, except very close to the Farth’s surface (for the atmosphere),

or in the surface and bottom (benthic) boundary layers of the ocean.
Expressed relative to a frame rotating with the planetary rotation rate

Q, equation (5.1) is

= —Vp-pVO+F (5.1)

d
p(d—ltl+2ﬂ><u+ﬂ><(ﬂ><r)> =—-Vp—-—pVI+F

the 2nd and 3rd terms on the LHS representing the Coriolis and centrifugal
terms, respectively, and r is the position vector measured from the plane-
tary center. It is conventional to simplify things a little by absorbing the
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Figure 5.1: Geometry of a spherical surface (solid) and the geoid (dashed)
through a point at location r.

centrifugal term into the gravitational potential. One can do this easily, since
1
Ox (2 xr)= V(§Q2r2) :

where ) = || and 7 = |r|; hence one can absorb this term into the definition
of @ (writing ® = @ — 302r?), leaving

d 5
p(d—‘;+2nxu):~vp—pV@+F. (5.2)

We now have to regard gravity (V&)) not as g, pointing downward relative
to the spherical surface through r, but as ¢’, pointing downward relative to
the geoid through r (see Fig. 5.1). So in order for gravity to remain vertical
we must, in principle, use slightly non-spherical coordinates; in practice, the
geoid is so close to being spherical that we can ignore this complexity without
introducing significant error. Thus, we ignore the “twiddle” on ® in (5.2).

5.2 Rapid rotation

The material time derivative on the LHS of (5.2) can be written

Cfi_‘:+29xu:%%+(u-V)u+2qu.
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If we assume that a typical magnitude for velocity is U, that the distance
on which velocity varies is typically L, and the time on which it changes is
typically T, the 3 terms on the RHS have typical magnitudes

U U?
T 2QU .
For motions that are nearly steady, in the sense that 2Q7 >> 1, and are slow
in the sense that Ro = U/(2QL) < 1, the third term (the Coriolis term) is
dominant. (The dimensionless number Ro is known as the Rossby number
of the flow.) Now, the rotation rate 2 = 27/(1lday) = 7.2722 10~%s™1. The
first condition requires 7' > 0.08day, an excellent approximation for large
scale motions in the atmosphere (T' > lday) and even better for large-scale
motions in the ocean. As for the second condition, for a synoptic system in
the atmosphere, U ~ 30ms ™!, while L ~ 1000km, so Ro ~ 0.2; for an oceanic
eddy, U ~ 0.1lms™!, L ~ 100km, so Ro =~ 0.01 (and for larger scale motions,
it is smaller than this). So the assumption Ro < 1 is quite good for large
scale motions in the atmosphere and excellent for the ocean.

If we assume the Coriolis term to dominate the LHS, therefore, and fur-
ther assume that the motions are inviscid (so that F = 0, an excellent
approximation outside boundary layers), eq. (5.2) becomes

2Qxpu=—-Vp—pVd.

Taking the curl (since V x Va = 0, for any a), we get

V x (22xpu) = =V x (pV D) .
Using the vector identity

Vx(AxB)=A(V-B)-B(V-A)-(AV)B+ (B -V)A,
and noting that € is constant, we get
V x (2Qxpu) =2Q(V - jpu]) —2(2- V) pu.

But continuity of mass gives

Op

- =0.
8t+v pu
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So, for steady flow, V - [pu] = 0. Thus, using the further vector identity
Vx(cA)=Vecx A+cVXxA,

we obtain

2(2-Vipu=Vpx V.

If the flow is hydrostatic, then dp/dz = —gp, or, since d® = g dz, Op/0P =
—p, whence V® = —p~'Vp, and then

1
2(9-V)pu=—;Vp><Vp.

Now, if the flow is also barotropic, by which we mean that density is a func-
tion of pressure only (i.e., no density variations along the almost-horizontal
pressure surfaces), p = p(p), whence Vp = %Vp, and so Vp x Vp =

%;3 (Vp x Vp) = 0. Thus we arrive at the Taylor-Proudmann theorem:
(Q-V)pu=0:

For slow, steady, inviscid, barotropic motions in a rotating system, the mo-
mentum density vector (pu) is constant along the direction parallel to
the axis of rotation.

Now, neither the atmosphere nor ocean are truly barotropic (they would
be much less interesting if they were) but, nevertheless, many aspects of their
dynamics can be captured in models that are barotropic (or nearly so), which
is where we start.

5.3 Two-dimensional rotating flow

5.3.1 The barotropic equations of motion

We now investigate the properties of two-dimensional flow. If the atmosphere
or ocean is assumed to be barotropic, the flow is independent of the direction
along the rotation axis; given that they are also thin, in the sense that
their depths are very much less than the Earth’s radius, it i1s a very good
approximation to assume that this implies that the flow is independent of z,
the coordinate vertical to the Earth’s surface (see Fig. 5.2). If we adopt
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Figure 5.2: Coordinates for a shallow atmosphere or ocean.

local Cartesian coordinates’ (z,y, 2) as shown on the Figure, the flow is in
the (z — y) plane, and w = 0. The z and y components of (5.2), are then

du 10p

E — JU = _;-8—13 +Gm
dv 10p
EE +fu = —;‘a—y +Gy (53)

where f = 2Qsinp,with ¢ being latitude, and G = (G,,G,) = F/p is
the applied (frictional) force expressed in units of acceleration. Note that
the coefficient f appearing in the Coriolis term is twice the vertical (z-)
component of the rotation rate. This coefficient is known as the Coriolis
parameter. Note that f is a function of latitude, the importance of which
we shall see later.

Eqgs. (5.3) give us 2 equations in the 3 unknowns u, v, and w (p is
assumed to be known as a function of p). We close the system with the
equation of continuity V -u =0, or

ou Ov
8_:E+8—y_0' (5.4)

5.3.2 Vorticity and the barotropic vorticity equation

One of the difficulties of working with momentum (or velocity) of a par-
cel in fluid mechanics stems from the pressure forces to which the parcel is

1We are assuming here that the region of interest is a small part of the whole globe,
otherwise it is necessary to use spherical coordinates (of course).
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subjected, which are continuously changing the parcel’s momentum in com-
plicated ways (since pressure is not fixed, but itself evolves with the flow).
However, while pressure gradients can change a parcel’s momentum, they
cannot change its spin, because, as we have seen, for barotropic flow for

which? p = p(p),
V x <1Vp> =0.
p

So, if we take the curl of the momentum equations, the pressure gradient
term disappears. If we do this for egs. (5.3), by taking 8/0z of the second
minus 8/0y of the first, we get

o (dv d (du ou  Ov af

— |- == — + = — =7 .
Oz (dt) Oy (dt>+f<8m+8y>+vdy ’ (5:5)
where Z = 8G,/0x — 8G, /Dy is the (vertical component of the) curl of the
frictional force per unit mass, and note that f = f(y), since it is a function

of latitude only. Now, from (5.4), the third term vanishes; moreover, a little
mathematical juggling [expand the total derivatives, and use (5.4)] shows

that
8 (a0 o (an)_d (o on
Ox \ dt oy \dt | dt\ox 0y

The term inside the bracket on the RHS is the vertical component of the
vorticity, defined by

£§=VXxu; (5.6)
its vertical component is 5
v u
=— - —. T
=% o (5.7)

Since the flow in this barotropic problem lies within horizontal planes, only
the vertical component is nontrivial®.

The vorticity is a local measure of the spin of the fluid motion. For
example if the fluid (relative to the rotating frame, remember) is in solid
body rotation about the origin with angular frequency w, then (see Fig. 5.3)

U= —WY;V = WT ;

2Note that this includes an fluid of constant density.
31n large-scale meterology and oceanography, the general term “vorticity” is often used
to mean the vertical component, unless specified otherwise.



5.3. TWO-DIMENSIONAL ROTATING FLOW 7

y

TN

wx Or
s
/ X

Figure 5.3: Rotation about the origin; the velocity at position r = (z,y) is
U =uwr.

so the vorticity is ( = 2w—twice the rotation rate (anticlockwise being pos-

itive).
To return to (5.5), then, we have
a¢ _ df

This equation states that the time derivative following the motion of the
vorticity is (in this barotropic case) given by two terms. The second repre-
sents the creation or destruction of vorticity by viscous torques (curl of the
frictional force per unit mass), while the first represents advection of f, the
Coriolis parameter. But we have already seen that f = 2Qsin @ is twice the
vertical component of the planetary rotation rate; so looking down on the
planet at latitude ¢, an observer in an inertial frame would say the rotation
rate of the fluid is not w, but Qsinp + w, and hence that the absolute
vorticity of the flow—that observed from a nonrotating frame—is not ¢ but

Ca=f+¢. (5.9)
Now, since f is a function of y only, its material derivative is
d 0
dt Ot or dy oy
and so the barotropic vorticity equation can be written

dCa
L. (5.10)



8 CHAPTER 5. LARGE-SCALE MOTIONS ON A ROTATING EARTH

Therefore:

In inviscid barotropic flow, the absolute vorticity is conserved following the
motion.

For most purposes away from boundary layers, the inviscid limit is a
relevant one, so this theorem is profoundly useful for barotropic flows. (As
we shall see, it needs modification for non-barotropic flows.) Put very simply,
it says that if a fluid parcel is at position x, and has absolute vorticity (,,
at time tp, and moves without viscous influence to position x; at time ¢y,
we know 1ts absolute vorticity is still {,o—and we know this without needing
to know anything about the path the parcel took in the intervening period.
(So absolute vorticity is a tracer, and behaves just like, say, a dye marker.)
Contrast this with velocity: to know how the velocity changed between tg
and t;, we would need to know its path, and the history of the pressure
gradient along this path.

Now, one might object that absolute vorticity is not as interesting as
velocity—that we may know what it is, but that that knowledge is not useful
in telling us about what we want to know. However, if we know the dis-
tribution of (, at any time, we know the distribution of { (since we know
f) and, from that, we can determine the flow. To see this, first note from
the continuity equation (5.4) that we can satisfy this by defining velocity in

terms of a stream function v, such that u= —z x Vi, or
o oY
Nk T 5.11
Oy’ YT b (5.11)

which guarantees that V - u = 0. Since u is normal to Vi, it is directed
along contours of 1, as shown in Fig. 5.4. Moreover, 1 is a measure of the
flux of fluid since the net amount of fluid passing per unit between the two
streamlines A and B, on which the streamfunction is (say) ¢ and ¢ + 8 is
|u| 61, where 8l is the distance AB between the streamlines. But, from (5.11),
lu| = |6¢| /61, so the flux (which in this 2-dimensional case has units of area
per unit time) between the streamlines is just |§y|. Note that this flux is
constant along the streamlines, so the velocity is large where the streamlines
are close together, and weak where they are far apart—as is obvious from

(5.11).
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Figure 5.4: Flow is along streamlines (lines of constant ).

Now, in terms of streamfunction, it is obvious from (5.7) and (5.11) that
the vorticity can be written

<=—7;~+—Z—zzv;¢ (5.12)

where V.2 is the two-dimensional (horizontal) Laplacian operator. So, if we
know the vorticity distribution at any time [and note that (5.12) is a di-
agnostic, not a predictive, equation] we can calculate the stream function—
and hence the velocities—from that knowledge. Note that since (5.12) is a
second-order, elliptic, equation, we need appropriate boundary conditions to
determine the solution. So all the information of dynamical importance is
implicit in the vorticity distribution; hence the importance of (5.10). In prin-
ciple, then, (5.10) can be used to predict how the absolute vorticity distribu-
tion changes, then (5.9) tells us the vorticity distribution; then, assuming we
know the boundary conditions, (5.12) can be solved for the stream function,
and hence the velocity.

Note the analogy between (5.12) and the equation for electric potential
V in the presence of a two-dimensional charge distribution ¢(z,y); stream
function v is analogous to potential V', vorticity ¢ to charge g.

A concept related to vorticity is circulation. The circulation C' around
a closed contour C (see Fig. 5.5) is simply defined as

Cz%udL (5.13)
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Figure 5.5: The contour C in the definition of circulation.

where the integral is around the contour and dl the linear increment along
C. But, from Stokes’ theorem,

C=fcu-d1:/A(V><u)-sz:/AgdA, (5.14)

where dA is the area element and A the area enclosed by C. Thus, the
circulation around a closed contour is equal to the integrated vorticity enclosed
by that contour.

Example —the flow around a point vortex.

Suppose there is a point vortex, for which {(z,y) = Zob(z — 20)6(y — wo)
[so ¢ = 0 everywhere except at (zg, 7)]. Since we can anticipate the problem
to have circular symmetry, we move into polar coordinates, with (o, 4o) as
the origin (see Fig, 5.6). In polar coordinates, the Laplacian is

o, 1 8%
2 P —_— ————
Ve = 7 Or (rﬁr) + 72 992

so that, if we look for symmetric solutions for which ¥ = 1 (r) then, every-
where except r = 0, V222/1 =0or

rdr dr |

Y =A+ Blnr

The general solution is
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Figure 5.6: Geometry of point vortex example.

where A and B are constants. The constant A is irrelevant (as only the
gradients of 1 have physical meaning); the velocity is

o (2w 10y\ (B
u——zwi—<5,—;%)—(T,0>.

To determine B, we note that this circulation around any contour enclosing
the point vortex is

C=/CdAz//Zoé(a:—xo)é(y—yo) drdy= 2.
But if we choose a circular contour at radius r, then
27
C=}{u-dl :/ u(r) rdd = 2nr u,
c 0

where u is the azimuthal velocity (see Fig 5.7), and so B = Z,/(27). So the
solution is

Y(r) = —lInr;
u = (%,0).

One important property of fluid flow—and rotating flow in particular—
that this example makes clear is that the circulation is nonlocal: even a
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Figure 5.7: Circulation around a cyclonic point vortex (northern hemi-
sphere).

localized vorticity will induce a remote circulation, just as electrical charges
induce a remote field. Amongst other things, this means that one cannot in
general think about fluid dynamics in terms of local, fluid parcel arguments,
since the flow at the location of the parcel depends on the behavior of all
other parcels.

5.4 Further reading

This material is covered in several geophysical fluid dynamics texts. The
most suitable is Chapters 1 and 4 of:

“An Introduction to Dynamic Meteorology”, J.R. Holton, Academic Press,
1979 (2nd edition).





