Chapter 6

Rossby waves and planetary
scale motions

6.1 Observed planetary scale waves in the at-
mosphere

Fig. 6.1 shows (solid contour; interval 4hPa) a typical northern hemisphere
surface pressure map. It shows a rich structure, mostly of “synoptic scale”
systems, especially small low-pressure storm systems. These have a range
of sizes and intensities; there is a particularly large and vigorous storm over
Iceland.

If we look, at the same time, at upper air charts, we see the influence
of these storm systems weakening in the analysis. Fig 6.2 shows the height
of the 500hPa pressure surface (solid contours; interval 60m) at the same
time.  The intense surface features are much less obvious here. Rather,
the midlatitude jet is apparent! in the belt of tight height gradient around
the hemisphere. However, there are strong wavy perturbations of the jet,
usually of larger scale than the features that dominated the surface analy-
sis (except over N America, where “synoptic” scale features are apparent at
500hPa also.) In terms of zonal wavenumber (the number of wavelengths
around a latitude circle), the large-scale upper level disturbances have typi-
cal wavenumbers 1-4. These scales are referred to as planetary, and the wave
motions on these scales as planetary waves. These waves migrate both east-

I Through geostrophic balance, the tight height gradient implies rapid flow along the
height contours.
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Figure 6.1: Surface pressure analysis (solid contours), 26 March 1997.
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Figure 6.2: 500hPa analysis (solid contours), 26 Mar 1997.
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ward and (sometimes) westward; they also include a substantial stationary
component. This latter fact is evident from Fig. 6.3, which shows the N
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Figure 6.3: Long-term January mean heights, 300 - 700hPa.

hemisphere geopotential height in the lower (700hPa), middle (500hPa), and
upper (300hPa) troposphere, averaged over 12 Januarys. The averaging has
suppressed any signal from the mobile, synoptic scale storm systems, as well
as from mobile planetary waves. What remains is the stationary component.
As can be seen from the figure, this component is substantial. Note:

1. The time-averaged flow (along the height contours) departs significantly
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from zonality;

2. in some regions, the mean flow departs greatly from being eastward,
e.g. near the east coast of N America, where storm systems will tend to
be steered by the mean wind to move up the coast, and to the west of
N America and FEurope, where a southwesterly fetch in the prevailing
winds is an ameliorating influence on wither climate;

3. the wave phase is stationary, despite the mean almost-westerly flow:
why are the waves not “blown away” by the wind?

4. these waves are vertically coherent, illustrating the Taylor-Proudmann
effect, and giving us some hope that a barotropic analysis will be ade-
quate to reveal the underlying dynamics.

6.2 Theory of Rossby waves

6.2.1 The (-plane

We saw in the derivation of the barotropic vorticity equation the potential
importance of the fact that the Coriolis parameter varies with latitude, a
consequence of spherical geometry. However, dealing with spherical geometry
is (a little) more complicated than with planar geometry, so it is common
to represent a strip of the sphere—limited in latitude but going all the way
around the world in longitude—as a plane, as in Fig. 6.4. We consider a
strip centered on longitude ¢o, and define a y coordinate y = a (¢ — ¢y), and
an z coordinate z = aA, where X\ is longitude. Since f = f(¢) = 2Qsin ¢,
in the (z,y) system it becomes f = f(y). Assuming that the width of the
strip is small enough, we can approximate f(¢) as a Taylor series about the
central latitude:

F(6) = £(o) + (6 — o) (%) o) + ...

where

f(¢0> = QQSind)o;
df . dgg = 2Qcosgy .
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Figure 6.4: The (-plane.

Substituting for y, we get

fy)=fo+ By, (6.1)

where fy = 2{)sin ¢y and

0= 2—Qcosgbo.
a

Note that, for a latitude of w/4, 8 = 1.617 x 107*'m~!s~!. Note that, though
the sign of f changes from N to S hemisphere, § is always positive (since
f always increases northward).

6.2.2 Small amplitude barotropic waves on a motion-
less basic state

Neglecting viscous effects, the barotropic vorticity equation (?7) becomes

dfa ¢ .
dt ——(9—t+uVCa~O,

absolute vorticity is conserved following the flow. Suppose now the motions
of interest are small amplitude disturbances to a motionless basic state on a
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B-plane, for which {, = f (relative motion is zero, hence relative vorticity is
zero) where f is given by (6.1). Since there is no perturbation to f, we have
(w,v) = (W),

Ca = f + gl 3

where the primes denote the perturbations. Neglecting terms quadratic in
the primed quantities, we have (since f is a function of y only)

6(’ ac’
ar TUVi= gAY =

Since ¢ = V%, ¢’ = V), and, with v/ = 0¢//0z (from the definition of
streamfunction), we can easily get a single equation for v’

82,¢I 1/)1 8wl
8t<8x2+82> 5y =0
If we look for solutions of the form

Y = Re[Wexpi(kx + ly — wt)] ,

we get the dispersion relation for Rossby waves:

Ok
This function is plotted in Fig. 6.5. [Note that wl/3 = —z/(z* + 1), where
z = k/l.] Note that:

1. w/k = —B/ (k* + 1) < 0: the phase speed is negative. So the phase of
Rossby waves (on a motionless state) always propagates westward;

2. since w is a nonlinear function of k, Rossby waves are dispersive.

3. From Fig. 6.5 it is clear that dw/0k > 0 for k/l > 1, and dw/0k < O
for /1 < 1: the group velocity of Rossby waves is eastward for zonally
short waves, westward for zonally long waves.

4. The magnitude of the group velocity (judge by the slope of Fig. 6.5)
is, typically, greater for the westward-propagating long waves than for
the eastward-propagating short waves.
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Figure 6.5: The function —z/(z? + 1).

6.2.3 Typical values
At 45 degN,
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So the typical periods and phase speeds (relative to a stationary atmosphere)
for these planetary scale Rossby waves are of order (days) and comparable
with wind velocities, and so are meteorologically significant.

6.2.4 Mechanism of Rossby wave propagation

From (6.2), it is clear that the propagation of Rossby waves (indeed, the
existence of the waves themselves) is dependent on the existence of the plan-
etary vorticity gradient, §. In fact, had we allowed the basic state to have
relative vorticity, it would have been the gradient of the mean absolute vor-
ticity, rather than just [, that appeared in (6.2). How does a basic state
vorticity gradient lead to waves? Consider Fig. 6.6. We assume that there

Figure 6.6:

are two regions of uniform vorticity, separated initially by a straight E-W
boundary. North of the boundary, the absolute vorticity is (2; to the south,
it is (3. Since the Coriolis parameter increases northward, we specify that
¢1 < (3. Now let’s perturb the interface as shown on the figure, locally and
northward. There is now a perturbation in the vorticity field, which is zero
everywhere except in the bulge in the interface, where the vorticity perturba-
tion is (1 —{» < 0: the anomaly is negative (and therefore clockwise). Just as
perturbing an array of electric charges would induce an anomalous electric
field, this vorticity perturbation will induce an anomalous circulation. In
fact, the streamfunction of the perturbed circulation is ¢/ where V2¢' = ('.
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So the problem of determining the circulation is essentially the same as that
for the circulation around a point vortex in Section ?7: hence the induced
circulation will be clockwise, decaying as 1/r from the vorticity anomaly,
much as depicted schematically in the figure.

Now, because absolute vorticity is conserved following the flow, it is sim-
ply advected by the circulation. The effect of the induced circulation on
the vorticity distribution will be to advect the interface as shown: north-
ward to the west, southward to the east. As the initial perturbation was
northward, the perturbation itself tends to move toward the west—this is
the westward phase propagation we noted from (6.2). The spreading, and
changing of shape of the perturbation—manifested, amongst other things,
by the developing southward perturbation to the east—is a manifestation of
the dispersion we also noted.

6.3 Rossby waves in westerly flow

6.3.1 Dispersion relation: stationary waves and dis-
persion

The planetary scale waves observed in the atmosphere do not always show
phase propagation westward, even though they are indeed Rossby waves.
Some propagate to the east, some to the west, and as we saw earlier, there is
substantial part of the planetary wave field that is stationary. The reason of
course is that, unlike the simple preceding theory, the midlatitude atmosphere
has mean westerly flow. In uniform flow, the preceding results for phase and
group velocity should be interpreted as applying relative to the background
flow, so the short waves (slow phase velocity relative to the flow) actually
propagate to the east; only for sufficiently long waves is the westward Rossby
wave propagation strong enough to overcome advection.

In a uniform background eastward flow U, the dispersion relation be-

2
Bk

comes
k2412

Just as for the “rock in the river” problem, it is possible to have stationary

w=Uk — (6.3)

?Relative to the moving flow, the phase velocity, from (6.2), is ¢ = —8/ (k* + (%); so
relative to the ground, ¢ = &+ U, whence w = ck = (¢ + U) k = Uk — Bk/ (K* + I?).
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waves for which the frequency is zero, provided U > 0. This happens when
K2+ 12 =k2, (6.4)

where k, = /8/U is known as the stationary wavenumber. For typical
midlatitude values U = 30ms™}, § = 1.5 x 107 m~1s71, k! ~ 1400km, so
such waves have typical wavelength 2m/ks ~ 9000km, which at 45° latitude
corresponds approximately to zonal wavenumber 3. From (6.3), the zonal
component of group velocity is

(k2 =17

e =0 e

given (6.4) and some manipulation, it follows that, for stationary waves with
B2 412 = k2= B/U,

U
Cgz(w =0) = ZkQE :

the zonal group velocity is eastward.

6.3.2 TForced stationary waves

We are now equipped to understand a simple representation of atmospheric
stationary waves. The fact that these waves have a rather special value of
phase velocity—zero—tells us that there is something special about forcing
them: the forcing itself must be stationary. In fact, there are many ways
such waves could be forced: by flow over very large-scale mountain ranges
(the Himalaya, the Rockies, Antarctica, primarily), by geographically fixed
regions of heating (which affect vorticity by ways we will discuss later), and
by other, more subtle, means. The details of the waves produced by localized,
stationary forcing depend on the nature of the forcing; however, in light of
the above, there are some general things we can say, specifically:

1. The stationary wave will be located to the east of the forcing (since the
group velocity has an eastward component), and

2. the length scale of the response will be determined by the inverse of
stationary wavenumber.

These features are apparent in explicit solutions such as illustrated in Fig.
6.7.
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EASTERN WESTERN

Figure 6.7: Flow over a localized mountain. Numerical solutions for the
perturbation streamfunction ' for flow over (left) mountains in the eastern
hemisphere (Tibet, mostly, with a small contribution from the Alps) and
(right) the western hemisphere (mostly the Rockies). ote the Rossby waves
propagating “downstream” (eastward) of the mountains.
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6.3.3 Vertical structure

The theory developed thus far has been based on the assumption that the
flow is barotropic. In reality, there are density variations in the atmosphere,
which allow the existence of baroclinic (i.e., non-barotropic) motions. The
vertical structure of the Rossby wave train produced by a localized mountain
is shown in Fig. 6.8. In this figure, we can see two components of
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Figure 6.8: Perturbation streamfunction as a function of longitude and height
for a 3D calculation of the response to flow over an isolated mountain (loca-
tion marked by an arrow).

the response: a surface wave, which is trapped near the surface, just like
an ocean surface wave is trapped at the ocean surface; and a wvertically-
propagating component. The former behaves very much like the barotropic
waves we have been discussing. The latter is a wave that propagates in
all three directions, including upward [cf. internal gravity waves, Chapter
3]. (In fact, the winds must be westerly aloft for vertical propagation, which
restricts this behavior to the winter half-year.) Waves that propagate to great
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heights reach large amplitude: because the atmospheric density decreases
with height, an upward propagating wave becomes “focussed” into less and
less mass the higher it goes, and thus must increase its velocity perturbations
to compensate. These planetary Rossby waves dominate the meteorology of
the winter stratosphere.

6.4 Rossby waves in the ocean

The ocean supports Rossby waves, just as the atmosphere does, obeying the
same dispersion relation, and for the same reasons. (In fact, for barotropic
motions, the theory does not discriminate between atmosphere and ocean.)
The coastal boundaries of the ocean prevent a sustained east-west circulation
(except in the Southern Ocean) and sustained east-west propagation of the
waves themselves, so in practice there are many differences. The presence of
coasts means that ocean basins can support trapped modes, for one thing.
However, much of the large-scale variability of the ocean can be described
as Rossby waves, albeit in a less organized way than for the atmosphere.
However, there is one central aspect of ocean dynamics that may not appear
to involve Rossby waves, but in fact does: the existence of western boundary
currents.

6.4.1 Western intensification

It is evident from (6.2) and the ensuing discussion that Rossby wave behavior
is zonally asymmetric. In particular, we saw that the group propagation of
long Rossby waves is fast and westward, while that of short waves is slow
and eastward. As illustrated in Fig. 6.9, this has dramatic consequences
for ocean dynamics. Any large-scale disturbance in mid-ocean will gener-
ate Rossby waves; the larger scale of these will propagate rapidly westward.
Before long, they will reach the western boundary of the ocean where they
will be reflected. Unlike gravity (or light) waves, the reflected waves will not
simply be a mirror image of the incident waves: the reflected waves must
have an eastward component of group velocity and so must be of short zonal
wavelength. Moreover, they will propagate relatively slowly, more so than
the incoming waves. Thus, there will be a kind of “traffic jam” at the west-
ern boundary—information can get in more readily that it gets out. The
information that accumulates there will involve motions of small zonal scale.
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Figure 6.9:

This is the underlying dynamical reason for the existence of strong bound-
ary currents on the western, rather than eastern, sides of the ocean. The
underlying reason for the east-west asymmetry is g, the northward gradient
of planetary vorticity.

6.5 Vorticity and potential vorticity in a fluid
of varying depth

Now consider pseudo-barotropic motion in a fluid of varying depth. By
“pseudo”-barotropic we mean that the horizontal flow is independent of the
vertical coordinate (thus satisfying the Taylor-Proudmann theorem) but, be-
cause of depth variations, cannot be exactly nondivergent. So the system
we will consider is an inviscid shallow water system, with a base that is not
necessarily flat, as shown in Fig. 6.10. The system is assumed to be rotating
with uniform Coriolis parameter f.
Our rotating shallow water equations are

du o on
dt vo= Ior
dv oh
gy fu = —ga—y (6.5)

dH ou Ov
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free surface z=h(x,y,t)

/’\“\\/\

X,y —»

rigid, non-flat base z=b(x,y)

Figure 6.10: Shallow water model with varying depth.

Here, H(x,y,t) = h — b is the total depth, where h(z,y,t) is the height of
the free surface and b(z,y) the height of the bottom boundary. Note that
the continuity equation involves H rather than h, because the total mass
convergence into the column is pHV - u, and the rate of change of column
mass (following the flow) is dH/dt, rather than dh/dt.

Now, let’s form our vorticity equation in the usual way, by taking 9/0z
of the 2nd eq. —0/0y of the 1st. As before,

O (4} _ B (dw) _ o (o) o (ou
Ox \ dt oy\dt] — Oz \ot Oy \ Ot

LD (o0 o\ _ 0 (o o
Ozr \ Oz Oy Oy \ Oz Oy

d (B0 o) Dudv Ovdy_oudu 0vou
oxr Oy Orxrdxr Oxdy Oydr Oydy

(v ou) (0u v\ (0 ou
- dt\dz Oy Or Oy) \O0r Oy

o dC ou Ov
B E+<55+8y>c'

d¢, ou Ov B
—+Ca<%+5§> =0,

Then we get
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where (, = f + ( is absolute vorticity, as before. So absolute vorticity is not
conserved in this system: it can change whenever the divergence is nonzero
(we'll see why). But using the 3rd equation of (6.5), the divergence is just

(au 81}) 1 dH

5z 3y H dt
Substituting,
da CudH d ()
i Ha @ <H> =0
and so

d [ Ca
£(S)0 -

What (6.6) tells us is that, although absolute vorticity is not conserved,
there is a quantity that is conserved following the flow: this quantity is

Ca
p=22
H

and is known as the potential vorticity. What it means can be seen in the
following. Suppose, as shown in Fig. 6.11, that a cylindrical column, initially
with absolute vorticity (, and length H, is stretched along its length. Mass
continuity demands that the column must contract laterally as it is stretched;
angular momentum conservation then dictates that the fluid must spin faster.
Eq. (6.6) tells us that {, increases in proportion to H: this process is known
as vortex stretching.

6.6 Rossby waves in a fluid of varying depth

Consider now perturbations to a otherwise motionless fluid (so ( = 0 in
the absence of perturbations) contained between sloping surfaces, as in Fig.
6.12. The column depth, H(y) is a linear function of y, and we assume the
perturbation velocities to be small, so that we can linearize. The potential
vorticity equation (6.6) is
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Figure 6.11: Illustrating vortex stretching.
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Figure 6.12:
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whence

1 (0. & 8 G (8 08 0\
ﬁ(a‘*‘ﬂ'g;‘*‘va_y)gz_m<5[§+uax+vay>H—o

Since H = H(y) and {, = f + {'(z,y,t), this linearizes to give

6CI rn o
E +v 5 =0,
where fdH

Thus, the vorticity equation becomes precisely equivalent to that in the ex-
actly barotropic case on a f-plane, with in this case /—a measure of the
gradient of fluid depth—replacing the gradient of f. Thus, e.g., a sloping
ocean bottom can give rise to Rossby waves, called “topographic Rossby
waves”’, just as can the curvature of the Earth.

In fact, in the case of the Earth’s curvature, the two effects are just
another way of saying the same thing. ¥ach is illustrated in Fig. 6.13. On
the left, we take a traditional view of the atmosphere (or ocean), which is
assumed to be contained within a spherical shell of depth D. The “vertical”
is defined to be the local upward normal to the surface, and the component of
planetary vorticity in this direction is 2{2sin ¢ = f, the Coriolis parameter.
Since the thickness of the fluid in the vertical direction is D, the potential
vorticity is

f 2Qsin¢
P:———:
D D
and its gradient is
1dP—2Qcos¢— Ldf
adp aD ~ Ddy D’

In this view, the depth of the fluid column, D, never changes, so conservation
of potential vorticity P implies conservation of absolute vorticity {,. If a fluid
column is moved northward to where f is greater, {, = f+( is conserved by {
decreasing as f increases—so a northward displacement induces anticyclonic
(negative) relative vorticity.

In the second view, we define the direction of the Earth’s rotation vector
to be the “vertical”. The component of planetary vorticity in this direction
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<|$Q <[ $Q =9
T h=D/sin®

Figure 6.13: Illustrating the equivalence between the two forms of beta in
spherical geometry.

is just 2€2, which is of course constant. But the thickness of the atmospheric
shell in this is not constant, but is h = D/ sin ¢. So the potential vorticity is

(. 2Q0sin¢
P: —_—=
h D

just the same! And its gradient is

1dP 2Qd 1\ 20d (sing\ @

adp ad¢<h>_ ad¢< D )AD'

So the PV gradient is (of course) exactly the same as in the first case, but we
see it differently. In this viewpoint, the planetary vorticity is everywhere 22,
but as fluid columns move north or south, their length changes. A northward
displacement produces a contraction of the column: in response (in order to
conserve P) the absolute vorticity 292 4+ ¢ must decrease, so { must become
anticyclonic (negative).
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6.7 GFD experiment: topographic Rossby waves
in the lee of a ridge

Tank rotation rate Q
< 1> | id rotation rate Q +®

-

A

conical narrow R
base ridge

Figure 6.14: Schematic of the tank experiment.

Fig 6.14 show the set-up. A cylindrical tank, on a turntable rotating at rate
Q, is fitted with a conical base; since the deepest water is at the outer rim,
that corresponds to the equator. The effective 3 in this setup is

204l _ 2080

Hdr R H'
A lid rotates cyclonically relative to the tank at rate w. This drives flow
(of angular velocity ~ w/2) in the tank, over a small, straight ridge on the
conical base. We expect this to produce a train of stationary Rossby waves
of total wavenumber

K~ A=

U
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where U = (R/2) (w/2) is the flow at radius R/2. So we expect the magnitude
of the wavelength to be

7 =on =T ) = o) ().

We will have w ~ 0.12, and 6 H ~ H/2, so we expect

2

L ~nRx03.

K
Since, at mid-channel, a wave of zonal wavenumber one has wavelength 7R,
this will give us something like zonal wavenumber 3. (We will update these

numbers when we do the experiment.)

6.8 Further reading

Observational and theoretical aspects of Rossby waves are covered in several
geophysical fluid dynamics texts, including

“An Introduction to Dynamic Meteorology”, J.R. Holton, Academic Press,
1979 (2nd edition).





