Chapter 7

Baroclinic instability and
midlatitude storms

7.1 Three-dimensional geostrophic flow

7.1.1 In geometric coordinates (z,y, z)

In Cartesian, geometric coordinates, the equations of motion and of hydro-
static balance are

du . 10p

Ez—fv = ”;’Eﬂ’*‘fz,

dv 10p

—+ fu = —=—+F,, 7.1
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where (F,, F,) are the (z,y) components of friction. The continuity equation
is

dp
— a=0. 2
0 +pVau=0 (7.2)

For small Rossby number (U/fL < 1, where U and L are magnitudes for
the flow and for spatial scales), the wind can be determined from geostrophic
balance:

1
u=—zx Vp, 7.3
7 p (7.3)
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or, in its components,

u —_— _L@ .
fooy’
1 Jp
= ——: 7.4
v 7 (7.4)
w = 0.
Note that
QH + @ — 0 .
ox Oy

the geostrophic wind is nondivergent!, which means the geostrophic flow is
quasi-2D, and has some parallels with barotropic (precisely 2D) flow.

Since u - Vp = 0, the flow is normal to the pressure gradient, along the
isobars. Thus, the isobars are streamlines of the geostrophic flow. In fact,
from (7.4) we can define a geostrophic streamfunction, ¥ = p/(fp), which
has the same properties as barotropic streamfunction.

7.1.2 In pressure coordinates (x,y,p)

In pressure coordinates (which are more useful for compressible atmospheres
than height coordinates) the equations become

du 0z

E?—fv - —95'3—3+Fm,

dv 0z
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where the z— and y— derivatives should be understood as applying at con-
stant pressure. One of the great simplifications of pressure coordinates is
that the continuity equation is

ou Ov Ow

where w = dp/dt is the pressure coordinate equivalent of vertical velocity.

'This is strictly true only if variations in f are negligible, which means that the length
scale of the motions must be much less than the Earth’s radius.
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Now geostrophic balance (7.3) becomes, in pressure coordinates,

uzﬁngﬂ, (7.7)

where 2z, is the upward unit vector in pressure coordinates and V, denotes
the gradient operator in pressure coordinates. In component form,

Note that, like p contours on surfaces of constant z, z contours on constant
p are streamlines of the geostrophic flow.

7.1.3 Thermal wind balance

. Taking the p-derivative of the z-component of (7.7) gives

@__Qyz__QCQPﬂ)_lﬁ(%
Op  fopdy  f\Oyl|dp|), foy\e/,

Since 1/p = RT/p, its derivative at constant pressure is
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whence 5 R /0T
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Similarly, for v we find
ov R [0T
— == . 7.9
or  fp <59«" >p (79)

Thus, horizontal gradients of temperature must be accompanied by vertical
gradients of wind.

7.1.4 Thermodynamic equation
In eq. (3.14), we had

dTl’ 1 dp J
dt  pc,dt  pey
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where J is the diabatic heating rate per unit volume. Now, just as in
geometric coordinates where the natural definition of vertical velocity is w =
dz/dt, in pressure coordinates “vertical velocity” becomes? w = dp/dt. Then
(3.14) can be written

dr 1 oT oT oT J

= puT v —wS = — 7.10
dt pcpw ot +uc9x+v(9y v pep (7.10)

where S = 0T/0p —1/pcp, < 0 for a stable atmosphere, and J is the diabatic
heating rate per unit volume. Note that J = 0 for adiabatic motions.
Equivalently, defining potential temperature 8 = T (pg/p)”~, as in (3.15),

(7.10) can be written
@ = (BQ) __J_ . (7.11)
dt P pCp

For adiabatic motions (J = 0), 6 is conserved following the flow.

7.2 Structure of synoptic storm systems

The typical midlatitude synoptic storm system, such as those seen in Fig.
6.1, are mobile systems of both low and high pressure (though only the
low pressure systems are usually associated with storms) that dominate the
meteorology of the lower atmosphere, especially in winter. A typical northern
hemisphere pattern may look like that shown in Fig. 7.1. Typical length

2Since p varies most strongly in the vertical,

dp _ Op p Op Op
i = ot Y3z TV T V5
Op
> wa- = —wgp,

assuming hydrostatic balance. So w and ware opposite in sign—e.g., w < 0 is upward
motion (toward lower pressure). Note also that

g = 9T _ L
dp  pey

(T,
- gp 0z ¢ )
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scales are a few hundred km (with high pressure systems being typically larger
than low pressure systems). From (7.4), it follows that the geostrophic flow,
along the pressure contours, is cyclonic (in the same sense as the Earth’s
rotation) around the low and anticyclonic around the high pressure center.

Surface pressure is always within 10% of 1000hPa; in middle latitudes,
typical storms may have pressure anomalies of 20hPa (cyclones) or 10hPa
(anticyclones). If we regard each eddy as circular, then we may represent,
crudely, the pressure structure (departure from 1000hPa) of a cyclonic eddy
as p’ ~ Pyexp(—r?/2L?), where r is the distance from the center, and L the
radius at which p’ falls off by 1/4/e from its central value. The azimuthal
component of wind is, from (7.4),

.o L0
- fpor
Py r
= _?%ﬁ exp(—7?/2L?)
The maximum wind is at » = L, where
e = e
max pre

Air has STP has density 1.293 kg m™3; at 45° latitude, f ~ 1.0 x 107471,
Hence, using Py = 2000Pa, and a size L = 500km, we find

lu| . ~20ms™ .

This is a typical maximum wind in the lower free troposphere. Within the
frictional boundary layer (where, of course, we live) surface friction slows the
flow, and makes it sub-geostrophic, spiraling into low pressure cyclones and
out of high pressure anticyclones, as in Fig. 7.2. The low-level inflow into
cyclones produces, through “Ekman pumping” in the Ekman boundary layer,
upwelling within the cyclones, which are therefore associated with clouds and
rain; in anticyclones, descending air makes for clear skies. But note that most
of the “weather” associated with cyclones is associated with thermal fronts
embedded within the cyclone; we shall discuss these later.

7.3 Cyclogenesis and energetics

Where do these synoptic systems come from? They are mobile, and thus
not, attached to any surface features, so it seems unlikely that they are pro-
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500km

Figure 7.1: Schematic of the surface isobars around synoptic systems.
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Figure 7.2: Schematic of Ekman inflow (in low pressure systems) and outflow
(in high pressure systems).
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Figure 7.3: The “wedge of instability.”

duced by external forcing. Rather, they are produced by a process known
as baroclinic instability. The presence of horizontal temperature gradients in
the atmosphere implies the existence of available potential energy, since the
isentropes (surface of constant 6) can be re-arranged to reduce the potential
energy, as shown in Fig. 7.3. Exchanging air in the direction of the ar-
row will reduce the potential energy by moving warm (light) air upward and
cold (heavy) air downward. The potential energy lost must appear as kinetic
energy of the motion.

We can formalize this by considering the development of eddies on a basic
state that is initially independent of z; for simplicity (in fact, to avoid some
unnecessary complications), we assume that the basic flow is in fact exactly
zonal, and that the flow is a function of p only. Note, of course, from thermal
wind balance (7.8), that the basic state temperature must then be a function
of y as well as p:

(uvv’w) - (U()(p),o,());
= Toly,p); (7.12)
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We now consider perturbations to this state. To keep things simple, we will
assume the perturbations to be small so that we can linearize in the usual way.
Of course, the real, fully developed weather systems we are interested in are
not of small amplitude. If they grow through a linear instability, they grow
from infinitesimal amplitude (when our linear assumptions are justifiable),
reaching finite amplitude only as they mature. Detailed calculations (which
are beyond the scope of what we are trying to do here) show that, for a typical
midlatitude atmospheric state, waves with wavelengths of around 1000km
will grow the fastest, with growth times (e-folding times) of typically 2-3
days.

The more limited question we are going to ask is where these systems get
their energy from in the first place, and what characteristics they must have
to allow them to extract energy from the basic state. Perturbing the state
(7.12), therefore, and taking the inviscid eqns. of motion (7.5),

ou’ ou’ oz
R an == g
ov' o’ 0z
8t Uo—a— + fu = -—ga—y ) (713)
0z _ _RT’
op  gp

Now, the kinetic energy of the perturbation motions per unit volume is
p (u? + v'?); therefore their globally integrated K.E. is

K:/// u—i—v da:dydz
= /// u'? 4 v ) dz dy dp . | (7.14)

Now, we can form an equation for dK/dt by taking v’ xthe first of (7.13)+v'x
the second:

9y N Ly -y (w4
<8t+U8x>2(u +0'?) =—g ua +Uay

Using the continuity equation, we can write
o ,02/ ‘o ,02 oV, ,02'
R e z _ w R
Ox By Op

= V, (u2) - wa—z.
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Using hydrostatic balance, 0z'/0p = RT’/gp, so

1 6 a 1 2 AN /( . R l2eald
g<8t+U8x) (%4 0%) = V- (w2 QPWT'

Integrating over the whole system,

/_/,/(('% 333) (u +U’2)dmdydp = ///V u'z') dz dy dp
- // —w'T" dz dy dp .
gp

But

L[S [3 2 +v?)] du dy dp = 4

2. fff Bz {2 (v +“/2)] dr dy dp = ff[ (u +1’2)}Z dy dp, where z1,
Tq, are the limits of integration. But, since the system is periodic (360°

is the same as 0°), [_]7? = 0. Hence fff 2 [2(W?+v?)] dz dy dp = 0.

3. [[[Vy-(WZ) dxdydp= [[u2 ndA, where the integral is over the
area boundlng the system (the entire atmosphere) and n is the unit
normal to the boundary. Since the only boundaries are the Earth’s
surface p = p; and the top of the atmosphere p = 0,

[ vwtwsy dwayap= [[ w2, away= [[ w21, doay.

But, at the top of the atmosphere, p = 0 and w' = 0; at the surface,
which is geometrically fixed 2’ = 0. So [V, (W'2') dz dy dp = 0.

—/// Eu/T’ dr dy dp . (7.15)
gp |

Hence, the disturbance kinetic energy can grow only if, on average w'T" < 0
(upward heat fluz). Since upward motion (toward| lower pressure) means
w < 0, this means that warm (light) air must rise and cold (dense) air sink
in a developing storm.

Therefore
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That much may seem obvious, but there is more. Consider now the
thermodynamic equation; assuming adiabatic motion®, df/dt = 0. The per-
turbed equation is therefore

o4 ol ,00, 000
E“*-anx +v By +w op =0.

Multiplying by ¢’ and integrating over the atmosphere:

0 0 2 _ 1p! //890
///<§+U08_m) —0” dx dy dp = ///{9 Qa}dmdydp.

Now, as above, it follows that

/// Uo(p)% EH’Z} dz dydp = // {/ ;x [ 9’2} dg:} Us(p) dy dp
= //B@'QJ; Uo(p) dy dp

= 0,

// 6% dz dy dp = /// { ’9' G 8890} dr dy dp  (7.16)

Note that, if the disturbance is to grow from infinitesimal amplitude, the
L.h.s must be positive (since 8’ is positive definite).

Thus, from the two constraints (7.15) and (7.16), we have that, on aver-
age, w'’ < 0and u'd' - V,0, < 0: so the vertical component must be upward
BUT the vector component must be downgradient, toward lower basic state
fy. In order to achieve this—see Fig. 7.4)—we need the vector (v'¢’, w'¢') to
lie within the “wedge of instability” between the horizontal and mean isen-
tropic surfaces, as previously depicted in Fig. 7.3. Fig. 7.4 has been drawn
on the easily defensible assumptions that the atmosphere is statically stable
against convection—so that 0y increases upward—and that the basic state

3In fact, of course, rain—consequent on condensation and on release of latent heat—is
a feature of intense storms, and thus the motions will not be adiabatic. However, this
effect is not essential to the mechanism of storm development.
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Figure 7.4: The “wedge of instability.” The heat flux (v'6', w'§') must be
both upward (region a) and downgradient (region b) and thus must lie within
the overlap of the two regions, as shown by the arrow.

temperature decreases toward the pole—so that 8y does the same. Hence the
gradient vector V#é, is as drawn.

As depicted in Fig. 7.4, the average of the poleward heat fluz, v'¢’, must
be poleward. This follows from egs. (7.15) and (7.16):

1. 80y/0p < 0 (6 increases upward) in a stable atmosphere; and

2. 6 =T'(po/p)"*, whence w'6 = w'T"(py/p)", and we saw above that the
integral of the latter must be negative; so

3. the second term on the r.h.s. of (7.16) must be negative (allowing for
the minus sign).

4. So the wave can grow only if the first term on the r.h.s. is sufficiently
positive.

5. Since 009/0y < 0 (temperature decreases poleward), growing distur-
bances must have v'8' > 0.
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Therefore, growing disturbances must transport heat poleward in order
to extract energy from the basic state. Since the reason the basic state
has available potential energy (APE) for the disturbance to extract is the
presence of a horizontal temperature gradient, it is not surprising that the
disturbances must transport heat down this gradient. By transporting heat
poleward, the disturbances tend to warm the higher latitudes, thus reducing
the APE. The lost APE appears, of course, as KE of the disturbances.

7.4 Vertical structure of growing disturbances

The simplest growing disturbances can be represented as being wavelike in
the longitudinal direction, with height perturbation something like

ZI(ZE,p) — Re F(p) ei(kz—wt)

(remember w is now complex when the wave is growing). We have neglected
any y-variation here; this is not particularly realistic, but it suffices to illus-
trate the point.

Suppose first that there is no vertical phase tilt of the disturbance, as
depicted in Fig. 7.5. The ‘L’ and ‘H’ denote the locations of low and high
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Figure 7.5:

height (2) perturbations, respectively. The dotted lines show where 2/ = 0 at
all heights—since we have specified no phase tilt. Then from the hydrostatic
eq., (7.5), it follows that 7" = 0 there (where 2’ = 0) also. But, geostrophic
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balance, eq. (7.7), tells us that v' = (g/f)07'/0x is an extremum at this
location. Therefore v' and 7" are out of phase (in quadrature, in fact) so
that, on average, v"T" = 0. This clearly cannot be the structure of a growing
disturbance.

Consider now a disturbance whose phase slopes westward with height;
see Fig. 7.6. The maximum northward (/southward) flow is still to the
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Figure 7.6:

east of the low (/high) height perturbation (northern hemisphere), but now
there is a temperature anomaly there. Where v > 0, 2’ increases with z
(decreases with p), so the temperature perturbation is warm there; so warm
air is moving north. Similarly, 180° further east, cold air is moving south.
Hence v'T" > 0 for this configuration, showing that this wave structure will
lead to growth.

If the disturbance is tilted eastward with height, one finds v"1” < 0, so
there is no growth in this case.

An example of this is shown in Fig. 7.7. On 19 Dec 1964, a weak surface
low lies to the east of an upper level (500hPa) trough (marked ‘A’ on the
figure)—so the low tilts westward with height. This is favorable for growth,
as illustrated by the explosive development that followed over the next 12
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Images removed due to copyright considerations.



7.5. FRONTS 141

hrs.

7.5 Fronts

Even though baroclinic systems get their energy by reducing the overall tem-
perature gradient, it is common experience that they often have fronts—
bands of strong near-surface temperature gradient—embedded within them.
These are usually marked on surface synoptic charts by thick lines barbed
with symbols: triangles for cold fronts, semicircles for warm fronts, and both
for occluded fronts (g.v.). The barbs are put on the side towards which the
front is moving. We saw some examples in Fig. 7.7; more typical structures
are evident 12 hrs later, shown in Fig. 7.8. Notice how the surface pressure

Image removed due to copyright considerations.

field is distorted by the presence of the fronts: there is usually strong cur-
vature in the surface isobars (contours of constant pressure) in conjunction
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with a pressure trough at the frontal position.

7.5.1 Frontogenesis

How do fronts form in the first place? We know that baroclinic systems must
develop where there is a temperature gradient (and therefore available poten-
tial energy), but why do tight gradients form? the answer is that gradient-
tightening is inevitable, in the presence of flow deformation. Since w = 0 at
the surface, we can think about the effects of the flow on surface temperature
purely in terms of horizontal advection (neglecting non-adiabatic effects, for
now). In general, we can characterize the horizontal shear in flow by the four

terms
du  Bu
( oz Oy >
v o )
or dy

Alternatively, we can express these by the four independent linear combina-

tions

bu v u_ v

oz dy Oz oy

ov 04 du_ou | -

oz oy Oz oy
We have already encountered two of these combinations: the divergence gi;- +
dv : : : s ov Ju
5y (which is zero for geostrophlc flow), an.d the vorticity 5= — 5y the other
two terms are expressions of the deformation.

Consider what the flow does to a material box of surface air, of dimension
oz x 6y. First, consider the evolution of the area of the box. The area evolves

TV(y+ oy)

5 u(x) u(x+0x)
Y > —>
Av(y)

OX

Figure 7.9:
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as (see Fig. 7.9)

9 6z by) = b (vz,y+8y) - v(z,y)) + by (u(e +62,y) — u(z,y))

dt
Oou Ov
= oz by (-(%-l-@) .

So the area is preserved in a nondivergent flow.

We know that the vorticity does—it rotates the fluid elements. This
leaves the deformation. Consider the “pure deformation” flow described by
the streamfunction ¢ = — Kzy, where K is a constant, shown in Fig. 7.10.
Such a flow is nondivergent, and irrotational (zero vorticity). However, it

X
Figure 7.10:
has deformation, since
ou Ov v Ou 5%
I = 42 _—_9 — 9K -
Oz Oy Ox + Ay 8z0y ’
2 2
v Ou _ 0W oW
dx 0Oy ox?  Oy?

Consider (Fig. 7.10) what happens to a material element such as the solid
rectangle on the figure. With the given flow configuration, the box will be
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stretched in the z-direction (the azis of dilation), as shown; since area is
conserved, it must simultaneously contract in the y-direction (the azis of
contraction). Thus, in this flow, any temperature gradient in the y-direction
will be intensified by the flow, thus forming a temperature front.

Now consider a developing baroclinic wave. If the temperature gradient

Figure 7.11:

is initially N-S (top of Fig. 7.11), it will be deformed (by the deformation
between low and high) and twisted (by the cyclonic vorticity around the low),
much as shown in the bottom of Fig. 7.11. Thus, it will form a warm front
ahead of the low, and a trailing cold front behind.

7.5.2 Frontal evolution

The “textbook” picture of frontal evolution is as depicted in Fig. 7.12, The
fronts form a “warm sector”, usually to the south of the low pressure center
(in the northern hemisphere). The warm sector moves around the storm a
little, and contracts; sometimes the fronts merge near the storm center to
form an “occlusion.” A secondary low pressure center may from at the point
of occlusion.
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7.5.3 Frontal structure and weather

Fronts may be most intense near the ground, but they do extend vertically.
As shown in Fig. 7.13, they slope with height, with the warm air overlying

WARM
SECTOR

N

showers clearing heavy rain

cold warm
W front front E

light to

passibly light rain moderate rain

Figure 7.13: A schematic cross-section through the warm sector of a mid-
latitude cyclone, running approximately west-east. Frontal motion is to the
east; arrows denote air movement.

the denser cold air. At the leading warm front, the warm air rides up over
the front. If the air is moist, this will produce clouds and, if the system
is energetic enough, rain (or perhaps snow); note that the precipitation at
the front, though it may be formed in the warm air, will fall through cold
air—the precipitation is formed aloft, and so will be ahead of the surface
front. Within the warm sector, there is weak upwelling, so this sector will
often be completely cloud covered and there may be extensive rain or drizzle.
At the cold front, the cold air undercuts the warm air, pushing the latter
upward. At the front itself, there may be heavy rain or snow; some time
later, there is a clearing in the subsiding air behind the front. Later still,
convection may occur, which in some systems can be intense: cold air is
moving over ground that is warm, following passage of the warm sector, and
so the temperature structure is often convectively unstable. Immediately
behind the front, convection may be suppressed by the subsidence. Once
this abates, convection may set in. (Intense thunderstorms often follow the
passage of summertime cold fronts.)

At the apex of the warm sector, the fronts may occlude. Often, this
takes the form of the cold/warm front intersection leaving the ground, as
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the warm sector gets squeezed aloft. Then air at the ground is everywhere
cold, as in Fig. 7.14. The warm air slides up the occlusion, from the warm

WARM

} AIRK

7/
7
COLD 7/ COLD
AIR 7/ AIR
7/
7
W E

Figure 7.14: Cross-section (nominally W-E) through an occlusion.

sector. Precipitation is frequent in such situations; in winter it is frequently
snow (in New England, this is the classic snowstorm), as the precipitation
falls through a deep layer of cold air.

7.6 Climatology of synoptic systems: storm
tracks

Synoptic-scale storm systems are not uniformly distributed over the globe;
they concentrate in middle latitudes of the winter hemisphere and, even
there, are more common in some longitudes than others. Fig. 7.15 shows
the average distribution of eddy kinetic energy density 3 (v + v'*) and r.m.s.
geopotential variance v/z/2 for northern winter. There are two main “storm
tracks” where these quantities are large: across the N Pacific and N Atlantic
Oceans.

The reason for this structure is the planetary scale structure of the back-
ground state. Storms tend to be generated in the regions of strongest baro-
clinicity—temperature gradient—off the E coasts of Asia and North America.
Once formed, the storm motion is steered by the planetary scale flow which,
as we saw in Fig. 6.3, is southwesterly (northeastward) across these oceans.
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Thus, the synoptic scale systems are controlled by the planetary wave flow;
in turn, the synoptic systems influence the planetary scale flow also. Even-
tually, the storms dissipate, though Pacific storms may propagate across the
Atlantic and beyond before they die.

The situation in southern hemisphere winter is shown in Fig. 7.16; the
main southern storm track extends across the southern Atlantic and Indian
oceans.
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