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Lecture times: TR 11-1230

In this course, we will look at many important aspects of the circulation
of the atmosphere and ocean, from length scales of meters to thousands of
km and time scales ranging from seconds to years. We will assume familiarity
with concepts covered in course 12.003 (Physics of the Fluid Earth). In the
early stages of the present course, we will make somewhat greater use of math
than did 12.003, but the math we will use is no more than that encountered
in elementary electromagnetic field theory, for example. The focus of the
course is on the physics of the phenomena we will discuss.

The assessment will be in three parts (with weight toward final grade):

1. Homework—five homework assignments, handed out approximately
every two weeks and on material covered in the previous 2 weeks (40%).

2. Two mid-term quizzes (10% each)

3. A final, closed book, exam (40%)

There is no set text—notes will be handed out at each class and references
for background or further reading will be pointed out wherever I think they
will be useful.



Chapter 1

Shallow water gravity waves

1.1 Surface motions on shallow water

Consider two-dimensional (2-z) motions on a nonrotating, shallow body of
water, of uniform density p, as shown in Fig. 1.1 below.

h+dh
h_~"] p=po
P=Py
U u+du
o e 2
ZT A B
=0
z X x+dx
o 4
X

Figure 1.1: The shallow water system.

The flow is assumed to be inviscid and independent of the spatial dimen-
sion y (into the paper). We shall assume that the water is so shallow that
the flow velocity u(z,t) is constant with depth. (We’ll see later under what
conditions this is reasonable; for now, let’s just assume it to be true.) At the
free surface, located at height z = h(z,t), pressure is equal to atmospheric
pressure py, assumed constant and uniform.

1



2 CHAPTER 1. SHALLOW WATER GRAVITY WAVES

Consider the volume of water bounded by the vertical surfaces A and B in
the figure. These surfaces are located at  and x + dz respectively. The mass
of this volume, per unit length in y, is just dm = ph dz. Now, mass cannot
be created or destroyed within the volume, so the only way it can change is
because of the fluxes of mass across the interfaces A and B. Consider Fig.

1.2.
dx=u dt

A’ A

Figure 1.2: Hlustrating the flux of mass across the interface A.

Since the velocity at A is u, in a time interval dt all the fluid between A’
and A passes across A, where the distance between A’ and A is dz = u dt.
Thus, the area (i.e., the volume per unit length in y) passing across A in this
time is hu dt, and so the mass (per unit length in y) is phu dt. Therefore
the mass flux—the mass crossing A per unit time, per unit length in y—is
pu{z)h(z). The mass flux across interface B is pu(z + dz)h(z +dz) (directed
toward positive z, out of the volume). Therefore the rate of accumulation of
mass (per unit length in y) within the volume defined by AB is

88—? = pu(z)h(z) — pu(z + dz)h(z + dzx)
O(uh)
= - d
p Oz v
Since m = ph dz, the factors of p dz cancel, leaving us with
Oh  0O(uh)
ot Oz

Differentiating the RHS by parts and rearranging, we arrive at the equation
of continuity:

dh oh o
E +’LL‘8-£ = —h({‘)_.’lj— . (11)



1.1. SURFACE MOTIONS ON SHALLOW WATER 3

This equation expresses the local rate of change of surface height in terms of
two contributions:

(i) by advection of height —udh/0z

(ii) by volume convergence —hdu/dz .

These two effects are depicted (both in a sense to increase h locally) in Fig.

1.3.
/\\_ —
...}

> €

advection convergence

Figure 1.3: Contributions to 0h/dt.

Now, in a similar way, consider the momentum balance of the water in
the volume. We shall need to know the distribution of pressure p within
the water. To do this, we use the principle of hydrostatic balance, which
states that the pressure increases with depth according to the overhead mass
per unit area. Specifically (see Fig. 1.1), the pressure at any depth h — 2
below the surface is related to surface pressure by

h

p(z,t) =po+ | pgdz=1po+pglh—2z), (1.2)

z

where g is the acceleration due to gravity (and both p and g are constants).
The second term on the RHS of (1.2) simply represents the mass of water
per unit area above level z. Newton’s law of motion applied to the volume
gives

du

mes — [
T

b



4 CHAPTER 1. SHALLOW WATER GRAVITY WAVES

where F' is the net force (per unit length in ) applied to the volume. Since
we are assuming friction to be negligible, the only such forces acting are
pressure forces, which are as depicted in Fig. 1.4%.

N
A F
/ F1 F2
-
A B
X X+dx

Figure 1.4: Forces acting on the fluid volume.

That acting on the volume across interface A (tending to accelerate the
volume in the positive z direction) is equal to a force, per unit length in y, of
n=7 g p(x, z) dz; that acting across interface B (tending to accelerate the
volume in the negative x direction) is /%y = [ p(z+dx, 2) dz. However, there
is a third component of the net force acting on the free surface, represented
in the figure as F,. Atmospheric pressure exerts a force ppd! per unit length
in 1y, where dl is the volume’s width along the surface. Because the surface
is tilted, this has a nonzero component pydlsin a acting in the positive z-
direction, where « is the angle of the interface. Since dl = dz/ cos e, this
contribution to the z-force is

F, = po%da:
(since tana = 0h/Ozx). Therefore the net force on the volume, per unit
length in vy, is

F ahd N /h, ( ) 4 /h. ( N J ) p
T = Do—dAdT X, 2 ~ = € xr.,Z AR
Poos 0 PAT, 0 p ’

We are in fact neglecting here one contribution to the force felt at the surface, that
due to surface tension. Surface tension eflects are negligible for motions of large horizontal
scale (typically a few cm.), so this analysis is restricted to these large scales. Small-scale
motions for which surface tension effects are important are known as capillary waves.
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1.1. SURFACE MOTIONS ON SHALLOW WATER 3

But, from (1.2), we have
h h
/0 pdz = f podz+pJf
= poh+ ‘ZPJh
So

A h
fplz,2)dz— [p(x+dz,z)dz = poh(z) — poh(z + dz)
0 0

1 1
+3pgh*(z) — 5 pgh’(z + dz)
I oh
= —pn?d.:. — pghg—d:r:
Therefore the acceleration of the volume is given hy
d.
.md_: =I"'= —p_qh%dm .

Note that this is independent of surface pressure py (the terms involving it
have cancelled): the net force on the volume is entirely due to the pressure
gradients within the water which, because of hydrostatic balance, are entirely
due to gradients in surface height. Now, using our expression m = ph dz,
the preceding equalion gives us (cancelling the factors ph dx)

du  Oh

@ oz
Here the derivative d/dt is the mnaterial derivative—this tells us how the
velocity of the marked volume changes es it moves around. We need to

convert this into a form that tells us how u changes in fixed coordinates.
Since u = u(z,t) = dz/dt, we simply apply the chain rule to write

du  Ou N dx du (')u @
PTIR TERPTE S T/
and thus Lo write omr equation of motion in final torm
Au o du ik
) ar . Yo

Like (1.1), this links the loeal rate of change of velocity to two terms:

(1.3)
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(1) the pressure gradient term and

(ii) the advection of momentum.

The two equations (1.1) and (1.3) give us two predictive equations in the
two unknowns u(z,t) and i(z,t), and so in principle tell us all we need to
know to determine how this system will evolve, given initial and boundary
conditions. The equations are nonlinear (through the advective terms) and
have complex properties in general, but they become quite simple under
circumstances where they can be linearized.

1.2 Small-amplitude shallow-water surface waves

Suppose now our shallow water system is motionless (v = 0), with uniform
depth D; this state trivially satisfies eqs. (1.1) and (1.3). Now suppose we
perturb this state, such that u(z,t) = «'(z,t) and h(z,t) = D + h'(z,t),
where the perturbation is small in the sense that

(i) || <« D, and

(i) || < L/T,

where L and T are respectively length and time scales for the motion. Now,

eq. (1.1) becomes

ol OO0 ,\ ou'

ox ’

since the derivatives of [ are zero. We now replace (D + h') by D (using
assumption (1)) and neglect the second term compared to the first (since
On' /8t ~ |W'| /T and w'OK [Ox ~ || |k'] /L, so the ratio of the latter to the
former is |u'| /LT, which is small by assumption (ii)), leaving the linearized
equation

on' o

ot~ oz

(1.4)
Similarly, (1.3) becomes

o' ou on'

o " Mor T a
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again we can use assumption (ii) to neglect the second term, leaving

o' on’'

We can now combine the two equations (1.4) and (1.5) to get a single
equation for h, by combining 0/8t of (1.4):

O%h! 0%y
g = Pauan
with 9/0z of (1.5):
ou 9N
ozot Y o2
to give
K o2%n’
oz 9P =0 (1.6)

This is a wave equation, which describes how small-amplitude surface
height perturbations evolve.

1.3 Background theory—nondispersive waves

1.3.1 Oscillations

Oscillations (e.g., small amplitude oscillations of a simple pendulum) are
often described by an equation of the form
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X
£
e
X /\
3
/ ot
Gy
oT=2n (T=2n/)

Figure 1.5: Characteristics of a simple oscillation.

d?x

where t is time and x is some system variable (angular displacement in the
case of the simple pendulum). (1.7) has solutions of the form

x(t) = Re (Y ei“’t) = Yy cos(wt — ¢€) (1.8)

where [requency w = %), amplitude Y, and phase ¢ are real constants, and
Y = Yye % is a complex amplitude. Thus, as shown in Fig. 1.5, an oscillation
is characterized by three constants: amplitude, frequency, and phase.

1.3.2 Nondispersive waves

Unlike such simple oscillations, waves are functions of both time and space.
The simplest wave equation, of which (1.6) is an example, is of the form

Oy ,0%

[ hamme =
ot? 092

0 (1.9)

where ¢g is some constant. (In our case, x represents surface height perturba-
tions on shallow water of depth D and ¢y = \/gD. However, it could equally
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well represent the electric or magnetic field in vacuo, with ¢y the speed of
light; or pressure perturbations in a compressible fluid, with ¢y the sound
speed.)

We can find solutions to (1.9) by separating the variables, writing

x(z,t) = Re[A(t)B(z)] -

More specifically, if we look for “wave-like” solutions for which B(z) = e*,
where k is a real wavenumber (so 27/k is wavelength)?, then d?B/dz? =

—k?B, SO

g% = Re [A(t)%(a;)} — —k’Re[A(t)B(z)] ,
and (1.9) becomes
% + k*cEA=0.
This has solutions like
A=x e A=y ™

where x, and x_ are constant (complex) amplitudes and the frequency w
satisfies

w? = kch . (1.10)
The full solution is
X(:Ev t) — Re [X—Fei(km_wt) + X_ei(l,ﬁmﬁ'wt):I ) (111)

Each of the two terms in (1.11) describes a progressive wave (Fig. 1.6):

’In general, any function of x can be expressed as a Fourier integral of such waves.
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s =~ - === =%

[P

Figure 1.6: Characteristics of a progressive wave.

e at any instant, 1t is just a sinusoidal wave disturbance, of wavelength

2r/k

e at any fixed location x = x, it is just an oscillation of the form Det™?,

where D = x, €% is its complex amplitude, of period T = 27 /w

e it propagates with phase speed ¢ = w/k = Fc¢y. Note from (1.11)
that y 1s constant along characteristics with kx + wt =constant, i.e.,
r = F%i+constant.

Eq. (1.10) is the dispersion relation for the wave: for a given wavenum-
ber k, it tells us the wave’s frequency. This form is particularly simple, as
shown in Fig. 1.7.
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w= kco

Figure 1.7: The dispersion relation for 1-D shallow water waves.

[Note that this is drawn for positive k& only—we may define k positive,
without loss of generality, as long as we do not try to constrain the sign of w.]
The phase speed ¢ = w/k = *£c¢p; the waves can propagate in either direction.

These waves are nondispersive, 7.c., their phase speed is independent
of wavenumber. Thus, all waves, of any wavenumber, propagate at the same
speed (in either direction), which means that non-sinusoidal disturbances
propagate without change of shape. In fact, any function

x(z,t) = F(z £ cot) (1.12)
is a solution to (1.9)°. Eq. (1.12) just describes any shape of disturbance,

including a localized one, that propagates at speed ¢ without changing its
shape (Fig. 1.8).

3To see this, note that if X = 2 4 cot, then F = F(X) and the chain rule gives us

Oy  OF dFOX dr

8z~ Oz dX 9z  dX '

&x 9 (dF\ 90X d*F _ d’F

ozt 55(&)-5;@—'@(—2’

ox _ OF _dFoX _ dr,

ot ot~ dX ot dx’

#x 0 dF\ | OX d*F  ,d’F
oz = a(fcoaz-)— O axt - OgxT -

So, (1.9) is satisfied by (1.12}.
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C

X

Figure 1.8: Nondispersive waves: arbitrary disturbances propagate without
change of shape.

1.3.3 Two-dimensional waves

In two dimensions (z,y), (1.9) is replaced by

?x

W - CgVQX =0 (1‘13)
where V? = 5@;—2 + % We can now look for plane wave solutions of the
form

x(z,y,t) = Re [Ao ei(k“ly“"t)] . (1.14)
Then

V2¥ — _x2Re [Ao ei(kw-Hy—wt)]

where k = Vk? + (% is the total wavenumber. Therefore, substituting into
(1.13) gives the dispersion relation for this case

w? = kil . (1.15)

[Note that the one-dimensional case we discussed above is just a special case
of the two-dimensional problem, with [ = 0.]

Eq. (1.14) describes a plane wave because x is constant along lines of
constant phase kx + [y — wt = constant, so at any instant in time, kz +ly =
constant; see Fig. 1.9.



1.3. BACKGROUND THEORY-—NONDISPERSIVE WAVES 13

Figure 1.9:

The wave pattern moves at right angles to the phase lines, with speed c.

Plane waves are a special, and particularly simple, form of 2-D waves.
Exactly what shape the wavefronts have will in general depend on the geom-
etry of the system and of the process that generated the wave. If the source
is very localized (e.g., a stone dropped into water), the wavefronts will be
circular, as shown in Fig. 1.10. Note that, far from the source (in the dashed
rectangle), the wavefronts will look almost plane.

Figure 1.10: Circular wave fronts radiating from a localized source.
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1.4 Motions within a wave

Returning to the 1-D problem, we can write the general solution, for a given
wavenumber k, to (1.6) as

R(2,t) = Re [Hye™@ 000 4 H_eihlrtean) | (1.16)

the first term representing a sinusoidal wave propagating to the right, the
second one propagating to the left. Now, from (1.5),

C ik(x— G k(z
u'(z,t) = Re [-l—gHJ,e k(@=cot) _ BOHWe k(z+cot) (1.17)

So, for that mode propagating to the right (left), velocity and height pertur-
bations are in phase (in antiphase), as shown in Fig. 1.11.

p—  —

\/\/ A4

— > & by e

Figure 1.11: The relation between height and velocity perturbations for sur-
face waves propagating to the right and left.

This means that convergence is occuiring to the right of the height max-
imum for the wave propagating to the right, and to the left of the height
maximum for one propagating to the left, which of course is consistent with
the sense of propagation. (Note that the advective term in (1.1) vanished
when we linearized.)

1.5 Surface wave reflection and modes

1.5.1 1-D reflection

In general, H; in eq. (1.16) are arbitrary constants, to be determined by
initial and boundary conditions. Of course, if the waves are propagating
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boundary itself, therefore, while both waves are present there, the two waves
[see eq. (1.16)] interfere constructively in the h field while they interfere
destructively in u. So the height field perturbation actually amplifies while
the wave packet is close to the boundary (Fig. 1.12(b)). (If you think this is
getting something for nothing, note that the wave packet becomes laterally
compressed during this time.) Subsequently, the entire incoming wave has
been reflected and the wave packet propagates away to the left (c).

1.5.2 Modes in a bounded 1-D domain

Consider now a bounded domain, with coasts at * = 0 and x = L, at each
of which v’ = 0. The solutions (1.16) and (1.17) that satisfy these boundary
conditions are

h'(xz,t) = H coskxcos(kcgt — €) ;
(1.18)

u(z,t) = %H sin kz sin(kcot — €) ;

where H is a real constant amplitude and € is an arbitrary constant phase
(which could be eliminated by a choice of origin for ¢). This is a solution pro-
vided u'(L,t) = 0, which requires the modal condition that the wavenumber
satisfy k = k,, where

(1.19)

s
kn = nf )
where n 1s a nonzero integer; the wave has n half-wavelengths across the

domain. Thus, the allowable wavenumber spectrum is quantized, as is the
allowable frequency spectrum:

TCo
Wn = /CnCo == nT .
u'(O,t) — QDQRG []_1+e—i/ccol — H;e-*-i/ccul.)]
— QDQRE [(H+e——~ilcco!.) _ ([_]+c~i/\‘col,)*] =0,

*

since Re (a —a*) = 0 for any a.
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in an unbounded domain, the location of the sources will tell us which is
nonzero (e.g., if the only source for the wave is to the left, H_ = 0).

If, however, the domain is bounded, the wave may be reflected from the
boundaries. Consider the semi-infinite domain bounded at its eastern side
by a vertical coast at z = 0 (Fig. 1.12).

JRUUESV. Y

—

Figure 1.12; A shallow water wave reflecting from an eastern boundary.

A wave packet! generated at large negative r propagates in toward the
boundary (a). According to I'ig. 1.11, it has a nonzero % component in the
peaks and troughs. After the wave has reached the boundary (b), it has
to meet the boundary condition of zero motion normal to the coast (i.e.,
u = 0 for all ¢t), which a single wave component cannot do. The only way
for the boundary condition to be met is for a second wave to be radiated
from the boundary; in order for the u component of this wave to cancel that
of the incoming wave at the boundary at all times, it must have the same
magnitude of frequency and therefore, from (1.10), the same wavenumber.
In short, it must be the mirror-image wave, propagating to the left, with
equal and opposite amplitude to that of the incoming wave. In terms of
(1.17), H_ = HZ, where the asterisk denotes complex conjugate®. At the

4By "wave packet”, I mean a wave with a finite number of, but many, wavelengths.
>This guarantees v = 0 at the boundary 2 = 0, since then
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x=0 x=L

Figure 1.13: The n=5 1-D mode in a bounded domain.

So a finite 1-D domain of width L supports a countably infinite number
of discrete modes, the lowest frequency of which is 7cg/L, or a maximum
period of 2L/cqg. Fig. 1.13 shows the u and h structure of the n = 5 mode;
the patterns oscillate without propagation.

Of course, these standing wave modes can, in terms of (1.16) and (1.17),
simply be regarded as sums of two equal and opposite propagating waves,
continuously being reflected from the boundaries.

1.5.3 Reflection of plane waves

Reflection of plane waves is only slightly less straightforward than that of 1-D
waves. At a straight boundary they suffer specular reflection (equal angles
of incidence and reflection), as shown in Fig. 1.14.

a) b) c)
\ \

\

Vg
s

el
VRV

o

s

Figure 1.14: Reflection of plane waves.
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[Note the interference between incident and reflected waves in (b). It is
easy to generate almost-plane waves in a container (or a bathtub) and to see

this effect.]

Modes also exist in 2-D containers with simple geometry (e.g., rectangular
or circular). In a rectangular basin of dimensions (L;, L), modes are found
with wavenumber components

(where either m or n, but not both, can be zero) with corresponding allowable

frequencies
Winn = CorJ k2, + 12 .

Fig, 1.15 shows a (3,2) mode, which has period
2m 2L,L,

way coy/9L2 4+ 4L2 ‘

—— F , pus ; :
N % N 4 N T
\\ . . l /
y + - + -
/
"/,/ N e s N B
~~~~~~ ‘\_\ "/”"m-—‘\\\\ /__,—‘-----m__.\\ ) /’__——«»«
— hY + = s

Figure 1.15: The structure of surface height displacement in a (3,2) mode in

a rectangular basin.
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1.6 Further reading

Elementary but brief descriptions of water waves (not confined to those on
shallow water) can be found in:

Waves, tides and shallow-water processes, by the Open University Course
Team, The Open University, Pergamon Press, 1989 (Chapter 1).
FElementary Fluid Dynamics, by D.J. Acheson, Clarendon Press, Oxford,
1990.

Other treatments can be found in many fluid dynamics texts, but are
usually much more advanced and more mathematical than these two. One
particularly thorough treatment is in
Waves in Fluids, by James Lighthill, Cambridge University Press, 1978
(Chapter 3).



Chapter 2

Deep water gravity waves

2.1 Surface motions on water of finite depth

We now move on to consider motions in water that is not shallow, i.e., we
will allow the flow to vary with z within the water:

h+dh

— p=p0

z —t
T u(z)

z+dz

z=0
X x+dx

Figure 2.1: Configuration of deep water system.

As before, the system is nonrotating and inviscid, and the water density
p is assumed constant. Basically, we follow the same procedures as for the
shallow water case. However, rather than consider balances for columns of
water we must do so separately for elemental volumes dz dz, such as the box

31
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in the figure. The horizontal and vertical momentum equations are!

du Ju ou ou dp
i T P TP TP T e
(2.1)
dw ow ow ow Op
R rRar =it Pt

Thus, the processes tending to accelerate the flow in the z-direction are: the
z-gradient of pressure and advection of z-momentum; in the z-direction: the
z-gradient of pressure, gravity, and advection of z-momentum.

We now consider conservation of mass within the marked volume; its
mass, per unit length in y, is m = p dz dz, which for this incompressible
medium is constant with time.

(x,2) I

N
v

dx

Figure 2.2: Mass continuity.

However, there are fluxes of mass across the volume, as shown in Fig.
2.2. Across the left face, into the box, is a mass flux, per unit length in y,
of p u(z, z) dz; there is an outward flux of p u(z + dz, z) dz across the right
face. Similarly, there is a flux p w(z,2) dz in through the lower face and

Since the varaibles are now functions of (z,z,t), the substantive derivative is now

d_08  dzd ,dod
4 — 9t T dtvs T dtos-
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a flux p w(z, z + dz) dr out through the upper face. Altogether, the net
convergence of the mass fluxes into the box is

C = pdzu(z,2) —ulz+dz,2)] + pdz[w(z, z) — w(z, z + dz)]
Ou Ow

= —pdzxdz (a—+—(9——>:—pdxdzv-u
z z

where u is the vector velocity (u, w). Continuity of mass demands, since there
is no change of mass within the box, that C' be zero, whence our continuity
equation
Ou Ow
9z 0z

This tells us that incompressible flow is nondivergent.

0. (2.2)

So we have 3 equations, the 2 momentum egs. (2.1) and the continuity
eq. (2.2), in three unknowns u, w, and p. We also have boundary conditions.
At the lower boundary z = 0, there can be no normal motion, whence w = 0
there?. The motion will in general be nonzero at the free surface, since this
can move. However, fluid on the surface (which is a material surface) must
remain there——it cannot pass through, which tells us that a fluid parcel on
the surface must move with the local fluid speed along the surface, or

% = w|,_, . (2.3)
Finally, we also know that the pressure in the air immediately above the
surface is atmospheric pressure p, which, as before, we assume constant.
Since pressure must be continuous across the surface (to be otherwise would
imply an infinite pressure gradient and therefore infinite acceleration, which
would be unphysical®). So our final boundary condition is

Pl,—p = Do - (2.4)

?Note that we can impose no similar condition on u at the lower boundary, since we
have assumed inviscid flow and so cannot include viscous boundary effects.

3We are in fact neglecting surface tension here. If the surface is curved, as it will be
in the presence of the wave, surface tension will exert an effective pressure on the fluid
beneath. Such effects are significant only for waves of wavelength a few cm or less {and
such waves are known as capillary waves).
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2.2 Small-amplitude deep-water surface waves

As before, we investigate the properties of small-amplitude disturbances to
a stationary basic state, described by

u = w=0,
h = D, (2.5)
p = po+gp(D—z).

Introducing small perturbations v/, w’, h’, and p’, the momentum egs. (2.1)
can then be written as

ou' 10y ,0u’ ,0u’

5 Tpos T “an Y
ow' 10 0w’ 0w’
ot To0: = “es Yaro

Now, the terms in the RHS are nonlinear, in fact quadratic in the perturba-
tion quantities; we neglect these on the grounds that the perturbations are
small, leaving

o 1oy
at  pozx

ow' 10y
5 " poz

-0, (2.6)

= 0. (2.7)

The continuity eq. (2.2) becomes simply

ou  ouw
— =0. 2.8
0x + 0z (28)
We now proceed to derive a single equation in a single unknown from
these three. In fact, it is very simple to do so: taking the z-derivative of
(2.6), the z-derivative of (2.7), and adding gives

0 [ou N ow'’ N 1 /0% N %’ _0
ot \ oz Oz p\0z2  922)
But, from (2.8), the term in the first parenthesis is zero, so

62p/ 82}7/
Oz + 0z?

=0. (2.9)
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As before, we focus attention on wave-like disturbances, for which
p'(z,2,t) = Re [ﬁ(z,t)ei’“} : (2.10)

substitution into (2.9) then gives

P,
—— —k*P=
022 0,
which has solutions of the form
P(z,t) = Pi(t)e" + Py(t)e ** . (2.11)

(Note that this tells us that the vertical scale of the motion is k~!, which is
formally the same as the horizontal length scale.) Now, the lower boundary
condition tells us that w’ = 0 at z = 0; therefore, from (2.7), 8p'/0z = 0
there. So, using (2.10), we have

OP

whence, in (2.11), P, = P, = P(t)/2, say, and so (2.10) becomes
p'(z, z,t) = Re [P(t) coshkz e**] . (2.12)

It is now straightforward, from (2.6) and (2.7), to obtain the form: of the
velocity perturbations

u(z,2,t) = Re {—z’%@(t) cosh kz e““} , (2.13)
w'(z,2,t) = Re {—%Q(t) sinh kz eik”} , (2.14)

where dQ/dt = P.

Notice that, at this stage we have defined the spatial structure of the
motions, but not the time dependence. To define the latter, we have to
include consideration of the surface dynamics.
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Figure 2.3: Near-surface details.

Consider the level z = D — d, where d is just greater than |A'|, so the
level lies just beneath the wave troughs, as shown in Fig. 2.3. (Since our
equations are valid only within the water, we cannot choose z = D.) Now,
since [eq. {2.4)] the surface pressure is po, the total pressure (background +
perturbation) is, using hydrostatic balance,

p(z, D —d,t) =po+ gp(d+ 1) .
But, since the basic state pressure is, from (2.5), po + gpd, the perturbation

is p'(z, D — d,t) = gph’; taking the limit d — 0 (recall that b’ is arbitrarily
small), we have

p'(z, D,t) = gph', (2.15)
so, from (2.12),
1 ‘
h(z,t) = —Re [P(t) coshkD ™| . (2.16)
gp

(Note that p/(x, D, t) is nonzero—it is the pressure perturbation at the surface
z = D + R’ that is zero.) The material surface condition (2.3), neglecting
nonlinear terms, is

on ,

— =w(z, D,t).

= = w(z,D,1)
Using (2.15),

op'

E{(I,D,t) = gpuw'(z, D, t) .
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Substituting from (2.12) and (2.14), we get

ffg(t) cosh kD = —gk Q(t) sinh kD

or, since P = d@Q/dt,

d2Q
—— 4+ gk tanh kD Q =0. (2.17)
dt?
This has solutions ' _
Q — Q+e—zwt + Q_ezwt (218)

provided w satisfies the dispersion relation

w? = gk tanh kD . (2.19)

Eq. (2.19) can be rewritten as
W= :t%\/kD tanh kD | (2.20)

where ¢ = /gD is the shallow water wave speed. (2.20) is plotted in Fig.
24.

. .
2 4 6 8 kD 10

-2

4 \

Figure 2.4: Dispersion relation for deep water gravity waves. Dashed lines
show the shallow water relation.
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Note the departure from shallow water behavior for kD > 1. In gen-
eral, the most important difference is that, for deep water waves, the phase
speed ¢ = w/k is not independent of wavenumber—such waves are known as
dispersive waves.

2.2.1 The long wave (shallow water) limit

Note from (2.20) that, in the limit kD — 0, w? — gDk?, so we recover the
shallow water dispersion relation (and, in fact, shallow water dynamics) in
this limit when the wavelength is much greater than the depth. However,
kD in fact has to be very small for this approximation to be valid: the
wavelength 27 /k must be greater than 14 times the depth before the shallow
water result for ¢ becomes within 3% of the correct value.

From (2.13), since coshkz — 1 as kD — 0 (note that z < D) the
horizontal velocity becomes independent of z in this limit, as we assumed in
our shallow water analysis.

2.2.2 The short wave (deep water) limit
For kD — oo, tanh kD — 1, so (2.19) becomes

w=++/gk (2.21)

which is independent of D. In fact, the whole problem becomes insensitive to
the background depth in this limit, as the waves do not feel the bottom. The
vertical structure functions cosh kz and sinh kz appearing in (2.13), (2.14)
and (2.12) are

coshkz =

sinhkz =

both of which can be approximated as %ekz (except close to the bottom) as
kD — oo. This means that the solutions decay downwards from the surface
as exp (—k (D — z)), and becoming vanishingly small at depth, as shown in
Fig. 2.5. Thus, though the waves can propagate great distances horizontally,
they remain trapped near the surface and do not penetrate deep into the
water. So, the water depth becomes irrelevant. This is because all the
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Figure 2.5: Surface waves on deep water.

dynamics of the waves—the effective elasticity that allows their existence—
is tied up with the density discontinuity at the water surface. Thus, the
surface acts as a wave guide, channeling the wave propagation.

2.3 Background theory—dispersive waves

2.3.1 Dispersion

The general dispersion relation for the frequency w of 1-D waves of wavenum-
ber k can be written

w = w(k) (2.22)
and the phase speed is
. # | (2.23)

Clearly, ¢ is independent of & for all & only if w(k) =constant x k—this is the
nondispersive case we discussed earlier and, as we saw, it implies that all
disturbances, including localized ones, propagate without change of shape.
This can be thought of in terms of Fourier components. Any non-sinusoidal
disturbance can be described a sum of components of different wavenumber;
if all these waves propagate at the same speed, so will the disturbance itself,
and its shape will not change.

For many kinds of wave motion, however (including surface waves on
deep water), ¢ varies with k, in which case the different wavenumber compo-
nents will have different speeds, a phenomenon known as wave dispersion.
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Therefore the way they interfere with one another will change with time—so
the shape of the disturbance will change.

2.3.2 Group velocity

There is one particularly important aspect of dispersion, which concerns the
way that modulations propagate on a wave train.
A monochromatic wave of the form

X(z,t) = Re [A eikor—w(ko)t]

with single wavenumber kg has the simple spectrum of a é-function Aé(k— ko)
[Fig. 2.6(a)], and behaves in the way we have discussed, propagating with a
speed ¢ = w(ko)/ko.

a) b)

Ak)

Figure 2.6: Wavenumber spectra for (a) a monochromatic wave, and (b) an
almost-monochromatic wave.

Consider now an almost monochromatic wave, with a narrow spectrum
[Fig. 2.6(b)]. This can be written

x(z,t) = Re / A(k) etz @ g (2.24)
0

where A(k) is nonzero only for wavenumbers in the vicinity of ky. Writing
k = ko + Ok, we can rewrite this as

x(z,t) = Re/ Alko + 6k) gitkoz—wlko)t] oildk z—bw ] g
0
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where 6w = w(ko + 6k) — w(ko) ~ (Ow/0k)bk. At t =0, this is simply
x(z,t) = F(z) ™

where

F(z) = Re/ Alkg + 6k) ' %= dk
0

is the modulating envelope of the wave train, which has carrier wavenumber
ko, as illustrated in Fig. 2.7.

/6K

Figure 2.7: An almost-monochromatic wave packet, comprising many wave-
lengths. The phase of the carrier wave propagates at the phase speed, but
the modulation envelope propagates at the group velocity.

Now, for ¢ > 0, the wave packet behaves as

X(l’,t) = {Re/ A(k0~|—(5k) e'i[&k(z“cgt)]dk.} ei[ko(.’tﬁct)]
0

= F(z — c,t) e'lfole—etll (2.25)
where 5
w
9 Bk k—ko

is the group velocity. Thus, while the carrier wave propagates at the phase
speed, the modulation envelope propagates at the group velocity. This is an
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important concept, as it is the latter velocity that governs the propagation
of information, as we shall see.

Nondispersive waves have w = cok, with constant phase speed ¢y, and
so their group velocity is the same as their phase velocity. But the group
velocity of dispersive waves differs from the phase speed, so in a wave packet
like that shown in Fig. 2.7 the wave crests will move at a different speed
than the envelope. If ¢ > ¢, (which, as we shall see, is the case for deep
water waves), new wave crests appear at the rear of the wave packet, move
forward through the packet, and disappear at its leading edge. We shall see
some examples of this below.

In general, it is easy to get a feel for both phase and group propagation
graphically from the dispersion relation, as shown in Fig. 2.8.

Figure 2.8: The disperion relation w(k). The phase velocity at k = kg is
tan o, the group velocity tan (.

For any wavenumber k, the phase velocity is just given by the slope a of
a line joining the point (w, k) to the origin, while the group velocity is given
by the slope tan 8 of the tangent to the curve at (w, k).

2.3.3 Group velocity in multi-dimensional waves

For future reference, we note here that for 2- or 3-dimensional waves, the
general dispersion relation is of the form

w = w(k) (2.27)
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where k = (k, 1, m) is the (2-D or 3-D) vector wavenumber. The phase veloc-
ity* is

W ow w
c= <75’7’?n_) , (2.28)
and the group velocity
Ow Ow Ow
= =,—,— ) . 2.2
K <6k’ az’am) (2.29)

As we shall see later (and a comparison of (2.28) and (2.29) implies), not
only may ¢, and ¢ be of different magnitudes, they may also be in different
directions.

2.4 Surface wave dispersion

Figure 2.9: Phase speed c(slope of line A)and group velocity ¢, (slope of line
B)for surface waves.

Returning now to surface waves, and the dispersion relation (2.19) shown
in Fig. 2.4, we can see from Fig. 2.9 that ¢, < ¢ for all wavenumbers (the
slope of line B never being greater than that of line A. This is shown more
explicitly in Fig. 2.10.

4The phase velocity is in fact not a vector, even though it has magnitude and direction.
It does not transform like a vector under rotation—this stems from the fact that phase
propagation has no meaning along the phase lines.
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1
(c,cg)/c 0
0.8

0.4

Figure 2.10: Scaled phase and group velocities for surface waves.

In fact, both group and phase speeds are greatest and equal in the long
wave (shallow water) limit, when

¢, cg — gD, kD—0. (2.30)

Note that in this limit ¢ becomes independent of &, i.e., the waves become
nondispersive, as we saw in the shallow water case. However, as Figs. 2.9
and 2.10 make clear, ¢ and ¢, differ significantly for kD > 1. In the short
wave (deep water) limit, in fact, from (2.21),

cchgH\/%, kD — oo . (2.31)

The difference between nondispersive long waves and dispersive short
waves is illustrated in the following. Consider an initial disturbance to the
water surface of the form

K (z,0) = exp (— (KIE>2> |

If A is large, this has a length scale long compared with D (so it projects
primarily onto waves with kD < 1) and, as shown in Fig. 2.11 for A = 4,
the waves emanating from the disturbance are essentially nondispersive.
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{0 ./"*'\\20
7 \\
. 2N . S~ §
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<025
-0.50
075
-1.00 -
Figure 2.11: Dispersion of a large-scale initial disturbance

[exp (— (z/ 4D)2)on water of depth D. Behavior is symmetric about
z = 0; only = > 0 is shown. Numbers on curves are time in units of D/cy.

(There is just a hint of dispersion; note the negative tail at ¢ = 20D /c.
Note also that there is, for t > 0, an identical disturbance, not shown, in
z < 0.) When A is smaller however, the initial disturbance has a smaller
length scale and hence a greater projection onto the dispersive short waves.
This is illustrated in Fig. 2.12, for which the initial disturbance has A = 0.5.
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Figure 2.12: Same as the previous figure , but for a small-scale initial distur-
bance [exp(— (2z/D)%)].

The dispersion of the resulting waves is evident. Note especially that
(e.g., at t = 20D/cy) the leading edge of the wave train has the largest
wavenumber, consistent with our observation that the long waves have the
greatest group velocity and, in fact, should travel a distance z = 20D by
this time). Wavelength becomes progressively shorter in the tail of the wave
train.

Both examples can easily be reproduced in a container of water (one that
is large enough to allow the dispersion to develop) or outdoors in a river or
lake. If the water is sufficiently shallow, in response to a localized disturbance
(e.g., from a small object dropped into the water) you will see a localized
wave propagating away, with little or no apparent dispersion. If the water is
deep, however, you will see a dispersing wave train, with the longest waves
at the leading edge. If you look closely, you may be able to see the wave
crests appearing in the rear and propagating forward through the wave train
(since ¢ > ¢,)°. This effect can also be seen in a ship’s wake (Fig. 2.13):

5Though in this case they never overtake the front of the wave train, since this consists
of long waves for which ¢ = c,.
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Figure 2.13: Waves in the wake of a ship.

individual wave crests can be seen propagating to the outside of the wake
(changing wavenumber in the process), and disappearing there. (Incidentally,
in deep water the half-angle of the “wedge” made by the wake is arcsin(3) =
19.5°, independent of the speed of the ship. This can be shown to follow
from the fact that ¢;/c = 3 for deep water; we will not pursue that here but
the proof can be found in many texts, such as “Waves in Fluids”, Lighthill,
Cambridge U P, 1978; section 3.10.)

The results that ¢, < c is made apparent in another common phenom-
enon, the wave train downstream of an obstacle in flowing water (e.g., a
river), as shown in Fig. 2.14.

\/\/\/\/
v

_ A

Figure 2.14: Disturbance produced by flow over an obstacle.

There are two key statements to be made:

(1) the wave train is stationary, and so has ¢ = 0;
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(i) it is located downstream—there is no disturbance ahead of the obstacle.

Since our analysis has been for waves on stationary water, let’s shift our frame
of reference to move with the flow. So now the obstacle and its wave train
are moving to the left with speed V. Since the wave crests are stationary
with respect to the obstacle, they are also moving to the left with phase
speed, in this frame of reference, ¢ = —V. Now, the energy is radiated
from the moving obstacle radiates away at the group velocity, which ts never
greater than |c/| = V—so0 it must lag behind the moving obstacle. To put it
another way, in this moving frame of reference, [c’g’ <V (remember that c,
is negative in this case). So, in the frame in which the obstacle is stationary,
the group velocity is ¢; = ¢; +V > 0. Thus, wave energy can only radiate
downstream and there are no upstream effects®.

There is another aspect to this problem that is illustrative of the general
characteristics of waves in fluids. The obstacle is subject to a force associ-
ated with the flow across it. For a small, smooth obstacle, this force is not
primarily frictional (though there is a component of that) but is mostly the
result of form drag: the pressure on the upstream side of the obstacle is
greater than that on the downstream side, and so the obstacle is subjected to
a force to the right. (On Fig. 2.14, the free surface height is greater upstream
of the peak of the obstacle than at a comparable position downstream; there-
fore there is a positive pressure gradient on the obstacle.) Simultaneously, of
course, the water must be subjected to an equal force to the left (decelerating
the flow). However, this is felt, not at the obstacle but downstream, within
the wave train: this can happen because (like, e.g., electromagnetic waves)
the waves, which as we have seen are capable of transporting energy, can also
effect transport of momentum. Thus, the drag on the obstacle is relayed
to remote parts of the water. This has several ramifications for atmospheric
and oceanic dynamics.

5The fact that this result is not trivial is underlined by the observation that it does
not always apply. Capillary waves—those for which surface tension is crucial—can have
¢y > ¢ and so can and do travel upstream. If the obstacle is small (< a few cm in size)
these waves are important though, as they have small wavelength, they dissipate quickly
and so may be hard to see.
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2.5 Particle motions within a wave

Consider now the motion of (neutrally buoyant) marked particles in the wa-
ter, which is of course the same thing as the motion of the water itself. Let
the instantaneous position of a particle be (z,z) = (X, Z) + (7,¢’) where
(X, Z) is the undisturbed position (where the particle would be in the ab-
sence of the wave), and ' and ¢’ are the small perturbations in position
associated with the wave motion. From the definition of velocity as rate of
change of position, we have

dx B

a
dz _ )
a

or (since (X, Z) is fixed in time)

o o on
ot tu z tw dz “
o¢  o¢ 8¢
ot T 63: tw dz W

Linearizing, we have

on
P
o

E-w.

Now, suppose we have a single propagating wave (single wavenumber, single
frequency). Then, from (2.13), (2.14), and (2.18), we have

u\ B E 1 coshkz i(kz—wt)
( w' ) = Re { pQO ( sinh kz ) ¢ ' (232
Therefore
7\ k rosh kz \ itkz—ot)
( ¢ ) = Re liprO( 1 sinh kz ) . (233

Note:

1. The displacements are oscillatory, so there is no net drift of the parti-
cles. Thus, even though the wave pattern propagates, fluid parcels do
not: they merely oscillate about their mean position.
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Figure 2.15: Parcel orbits in a water wave. Direction of motion is reversed
for a wave traveling to the left.

2. Vertical and horizontal displacements are in quadrature (/2 out of
phase). The marked particles perform elliptical orbits, with, for real
Qo > 0 (which we can insist on, by defining the time origin accordingly)
and k£ > 0,

( n' > kQo y [ cosh kz cos(kz — wt)

T wp sinh kz sin(kz — wt)

which implies that the parcels move clockwise around the orbit for
w >0 (c > 0), and anticlockwise for w < 0 (¢ < 0). See Fig. 2.15.
Note that the ratio of vertical to horizontal axes of the ellipse is tanh kz,
which increases from zero at the bottom (where the boundary ensures
that ¢ — 0) to tanhkD < 1 at the top. For waves in deep water
(kD > 1), the orbits become circular.

2.6 Wave generation by wind

It is common experience that waves on the ocean and lakes are usually weak
on calm days, but strong on windy days, suggesting that much of the surface
wave activity is somehow produced by the action of wind. It seems unlikely,
though, that a wave of wavenumber £ and frequency w is directly forced by
winds as this would require that the wind itself (or the pressure fluctua-
tions that accompany the wind) have a significant component at the same
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frequency and wavenumber. There will always be some such component—
especially in the turbulent atmospheric boundary layer, the winds have a rich
spectrum-—but, at the short wavelengths and high frequencies characteristic
of surface water waves, these fluctuations are generally weak. Moreover, lab-
oratory studies show that waves can be generated by blowing a steady air
flow across a water surface. (Try blowing across a glass of water.)

The underlying process common to most wave generation is one of insta-
bility. That is, even though there may be no externally imposed “waviness”
in the wind, there is a tendency to amplify any small perturbation on the
water surface. Consider Fig. 2.16.

_)/\/\
:/\/\

p+ - pt, -

Figure 2.16: Wave generation by wind (schematic). A wave on the ocean sur-
face disturbs the air flow in such a way a to produce a pressure perturbation
at the surface that reinforces the wave.

In the absence of a surface wave, the air flow is uniform and the pressure
on the water surface is uniform; there is thus no tendency to force waves in the
water. However, in the presence of a small wave on the surface, the air flow
is disturbed and, like the “rock-in-the-river” problem’, a perturbed pressure
gradient is produced at the water surface which has the same wavenumber
(and frequency) as the surface perturbation. Provided the water-air system
can get the phase relationships right (and it can) these perturbations rein-
force will each other and grow, thus producing, eventually, a finite-amplitude
surface wave from an initially infinitessimal perturbation.

"Except now the “rock” is the bump on the water surface and the “river” is the at-
mosphere.
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2.7 Wave breaking

All our discussion thus far has been based on our linear (small-amplitude)
approximation to the full problem. Using this approximation, we have been
able to explain many of the commonly observed properties of surface water
waves. There is, however, at least one familiar aspect of these waves that
cannot be explained by linear theory: breaking, which is most commonly
observed as waves run up a beach.

1 2 3 4

\ 4

Figure 2.17: Steepening of a finite amplitude wave.

This happens for two reasons. First, as the waves run up the beach, the
energy in the wave becomes focused into a shallower layer (once D < k7!
or so), thus concentrating the energy and increasing the wave amplitude.
Second, when D < k™! or so, the phase speed becomes dependent on depth,
being greater where the water is deeper. In a finite amplitude wave, the
water is deeper at the wave crest than in the wave trough. Hence the crests
travel faster than the troughs; the crest therefore tend to catch up with and,
eventually, overtake the troughs, as shown in Fig. 2.17. This produces the
overturning of the wave that is familiar in breakers.

2.8 Further reading

See the suggestions given in Section 1.6.



Chapter 3

Internal Gravity Waves

3.1 Interfacial waves

We have thus far considered the dynamics of the air-water interface. The sur-
face gravity wave motions that this interface permits owe their existence to
the restoring force associated with the density difference across the interface.
[Because we did not consider the effects of motions in the air—we neglected
variations in atmospheric pressure—we implicitly assumed that pr <€ pyater,
which is a very good assumption.] In fact, similar waves are also possible at
any internal interface in a fluid across which there is a density discontinuity,
such as shown in Fig. 3.1. Suppose the densities above and below the inter-
face are py, pa, respectively (where py > p;). In general, further complexities
are introduced by the different depths of the fluid layers; if we concentrate
on layers of equal depth D, then the dispersion relation for the interfacial
waves is the same as for the surface wave case (2.20), except that the shallow
water wave speed, 1/¢gD in the surface wave case, is replaced by

P2— M
co=/g——D . 3.1
0 gP2+Pl (3:1)

[Note that this reduces to /gD in the case p; < p;.] The origins of the
additional factor are not hard to see. The frequency of any oscillations on
the interface depend on the restoring force acting on any deviations of the
interface; this force is proportional to the density difference across the inter-
face, py — p1. The frequency also depends on the inertia of the fluid, which is
proportional to p; + p;. If the density difference is small (py — p1 < p2+p1),

1
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Figure 3.1: Interfacial waves on the interface between two fluids of different
density.

the wave speed is much slower than that of surface waves!.

Consider now the behavior of a fluid with many such layers, as shown in
Fig. 3.2. Suppose something makes a disturbance on the surface. When
we considered surface waves on deep water, we saw that there are motions
within the water, extending a characteristic distance k~* below the surface. If
there is a density interface withint this distance, that will be affected by these
motions, and will become distorted by them. In turn, this will set up motions
in the layer beneath that interface, which will perturb the layer below, etc.,
etc.. Thus, in addition to propagating horizontally along the interfaces, the
disturbance will propagate vertically within the fluid. This is unlike the
case of surface waves on a fluid of constant density; such internal waves can
propagate vertically by virtue of the fluid’s internal density structure. This
is illustrative of the way fluids can often support three-dimensional wave
propagation.

10One way of experiencing this is to gently rock a jar of oil-vinegar dressing to set up
oscillations on the interface; when you find the resonance, the period will be much longer
than if you repeat the experiment with a jar of oil or vinegar alone.
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Figure 3.2: Interfacial (internal) waves in a fluid with many constant-density
layers.

3.2 Internal waves in a fluid with continuous
stratification

Most fluids—including the ocean and the atmosphere, do indeed have internal
variations of density. Sometimes these variations occur sharply, but there
is almost always a continuous variation of density, which supports internal
waves in much the same way. In fact, if (see Fig. 3.3) we compare two
fluids, one with many layers of slightly different density (which increases
monotonically with depth), and the other with a continuous but otherwise
similar density profile, it does not take much imagination to see that they
would both behave very similarly; each density profile will support internal
waves.

In fact, if p varies linearly with 2 in an incompressible fluid, the dispersion
relation for plane waves of the form w = Re [Woei(km““mz_“’t)} is

k2 1 ]2
v (3-2)
/g dp

is the “buoyancy frequency”. Note that as m — 0, w — £N (this actually
corresponds to the case where air motions are exactly vertical), and that, in

where
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1111 \

Figure 3.3: Deunsity stratification of a fluid with (left) density steps and
(right) continuous stratification.

general, |w| < N, so that the buoyancy frequency is the mazimum frequency
of these waves. The corresponding period, 27/N, may range from a few
minutes in the atmosphere to several minutes to hours or days in the ocean.

3.3 Vertical density structure of the ocean

A typical vertical profile of ocean density is shown in Fig. 3.4. The actual
profile at any place and time will vary but the main characteristics are the
same:

1. A “mixed layer” with the top few tens of meters, within which the
density is almost uniform;

2. A “thermocline” at depths of around 100m, with a sharp density con-
trast (but note that its magnitude is only a few percent);

3. Below the thermocline, weaker but persistent gradients of density.

Such a profile is capable of supporting fast surface waves, slower interfacial
waves on the thermocline, and much slower internal waves in the deep ocean.
Internal waves are ubiquitous in the ocean.



Image removed due to copyright considerations.

3.4 Gravity waves in the Atmosphere

3.4.1 The vertical structure of a compressible atmosphere

Unlike the ocean, of course, the atmospheric density varies dramatically with
height, primarily because of the compressibilty of air. We know that, in
most situations (i.e., unless vertical accelerations are significant, which only
usually happens for small-scale motions), hydrostatic balance is satisfied:

Op

— =—gp. 4
5, = 9P (3.4)
To determine how p and p vary with 2z, we need to invoke the equation of
state (the relationship between pressure, density and temperature). For air,
a good representation is the ideal gas law

pV = R'T (3.5)

where V' is the volume of one kilomole of air and R* = 8314.3 J deg~'kmol~!
is the universal gas constant. Since p = M/V, where M = 28.97 kg is the
mass of one kilomole of dry air (of mean molecular weight 28.97), eq. (3.5)
may be written
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where R = R*/M = 287 J deg™ ! kg™ is the gas constant for air.
Now, substituting from (3.6) into (3.4), we obtain

O  p _p
5z JRT T H’ (3.7)

where RT

is the pressure scale height. If H is constant (isothermal atmosphere), for
example, pressure decays exponentially with height, with e-folding scale H:

e

p = pse— ) (39)

where p; is the surface pressure (at z = 0), and density likewise:

. ﬁ_ _ Ps _=z
p = T RTe H (3.10)
If the atmosphere is not isothermal, but T' = T'(z), H = H(z) and
z d7
P = Psexp (— A H(z’)) , (3.11)

so H is still the measure of the rate of decay of p, but in a local sense. For
a typical value of T' = 270K, H ~ 7.9 km.

An example of a typical atmospheric temperature vs. height profile (at
35°N in April) is shown in Fig. 3.5. Within the troposphere (z < 10km
at high latitudes, z < 16km in the tropics), temperature decreases with
altitude at a rate of about 7K km™!; in the stratosphere (up to z ~ 50km),
the temperature increases slowly with altitude.

3.5 Potential temperature and static stabil-
ity

Consider the vertical displacement of air parcel, as shown in Fig. 3.6. The
parcel P is displaced from z to z 4 dz, i.e., from p to p + dp, where, from
(34),

dp = —gp(z) dz .
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Figure 3.5: The observed, longitudinally averaged temperature distribution
in northern summer. [After Houghton, “The Physics of Atmospheres”, Cam-
bridge Univ. Press, 1977.]

Since the pressure acting on the parcel changes during displacement, its den-
sity will also change, and the two are related to one another and to temper-
ature through (3.6). In order to evaluate how density changes we need to
know how the temperature changes, which in turn requires knowledge of the
parcel’s heat budget during displacement.

3.5.1 Thermodynamics of dry air

The first law of thermodynamics? states that the change in energy, dq, per
unit mass of air undergoing temperature and density changes is

dg =c,dT +pda, (3.12)

where ¢, is the specific heat at constant volume and da the change i spe-
cific volume (the volume of the unit mass). Since @ = 1/p, da = —dp/p?.

2CGood discussions of elementary atmospheric thermodynamics can be found in Chapter
2 of Wallace & Hobbs, Atmospheric Science: an Introductory Survey, (Academic Press,
1977) and Fleagle & Businger, An Introduction to Atmospheric Physics, (Academic Press,

1980).
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zo+dz \

________________

Figure 3.6: Vertical displacement of a compressible air parcel.

Therefore

pdo—p d(3) = d() -

1
— —dp=RdT — —dp,
p

where we have used the ideal gas law (3.6). Therefore (3.12) can be written
1
dq = cp, dT — ;dp ,

where ¢, = ¢, + R is the specific heat at constant pressure. To convert this
into an equation for the change in heat content per unit volume, dQ, we just
multiply by p to give

dQ) = pcpdT —dp .

(3.13)
Hence, we can now write the first law in time derivative form (its customary
form for meteorological application):

= — 3.14
= (3.14)

where J = d(@Q)/dt is the so-called diabatic heating rate per unit volume.
Consider now the quatity

BzT(@)m,
p

(3.15)
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where pg is a constant (conventionally taken to be 100 kPa = 1000 mb) and
k= R/c, = 2/7 for air. Then

)
do = dT (22) k- KT L (1@) K
p P\P
)2 (-
p PCp \ P
where we have used (3.6) to show xT'/p = RT'/pc, = 1/pc,. Therefore (3.14)

can be written ” J
p
—=— || k. 3.16
dt PCp (p()) ( )

Eq. (3.16) has the obvious advantage of being more concise than (3.14), but
its great power—and the usefulness of the quantity 6, which is known as
potential temperature—becomes clearest under circumstances in which
the diabatic heating J can be neglected. The most important heating (or
cooling) processes are:

(1) latent heating or cooling associated with condensation or evaporation
of water. This 1s a very important process, which we will discuss in
detail later.

(il) radiation. On time scales of several days or longer, this is an important
process, but is usually weak on shorter time scales.

(iii) conduction. This process is only important very close to the surface.

For dry motions, on sufficiently small time scales, and outside the boundary
layer, it 1s usually valid to neglect the diabatic heating, in which case the
motions are adiabatic and (3.16) becomes simply

do

—=0. 3.17
o (3.17)
Potential temperature is thus conserved under adiabatic conditions?. Unlike
temperature, the potential temperature does not change as an air parcel

moves adiabatically to higher or lower pressure. Note that at p = pg, § =

30 is actually a measure of the specific entropy of air (which in fact is ¢,In#8, to
within an arbitrary constant), which does not change under adiabatic processes.
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T: so, if a parcel at some location in the atmosphere has temperature T
and potential temperature 0 then, if p # pg, 6 and T will be different. If
we move the parcel adiabatically to the standard pressure, it will still have
potential temperature 8, but its temperature will now be T' = 4. Therefore,
the physical meaning of 0 is:

1. The potential temperature of an air parcel is the temperature it would
have if moved adiabatically to standard pressure (1000 mbar).

3.5.2 Static stability

Now let’s return to the vertically displaced air parcel of Fig. 3.6. If we
assume the displacement is rapid (hours or less) and that there is no moisture
condensation within the parcel, then we can assume the displacement to be
adiabatic, so that df = 0 as the parcel 1s displaced. Now, the parcel leaves
height z with initial density p; = pe(2) = p(2)/RT.(z),. where T, and p, are
the environmental temperature and density. At the final height, z + dz, the
parcel has density

p(z + dz)
Pr="pHpm
RTy
and the environmental density is
p(z + dz)
e dz) = ————.
pelz +dz) = pr o a2

Now the parcel will be buoyant—and therefore the displacement will con-
tinue to grow—if py < pe(z+dz), t.e., U Ty > Te(z+dz). U Ty < Te(2z +dz),
however, the parcel will be negatively buoyant and will return toward its
original position: the environment will then be statically stable with re-
spect to displacement. Now, since df = 0 for the parcel, its temperature will
change according to

gr— % _ _9,4, (3.18)

PCp Cp
where we have used hydorstatic balance (3.4). Therefore its final temperature
is
T =T~ Ldz = Tu(2) — Ldz

Cp Cp
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(assuming it left with environmental temperature). But the environmental
temperature at this location is

dT,

Tu(z +d2) = Tu(2) + =

dz ;

therefore the environment will be

unstable 1if ij—j;f‘ <-Z % <0
tabl e 4T e [, 0 (3.19)
stable if >~ (&>
The critical value of temperature gradient
dTl. g
— Ty=-2 _
dz ad Cp (3:20)

is known as the adiabatic lapse rate. c, for air has a value of 1004 J
K 'kg™!, so ['yy = 9.8 K km™!. Usually (though not always), the actual
lapse rate of temperature is less than this (typically 6-7 K km™!) so the
atmosphere is usually stable to dry displacements of this kind.

3.6 Internal waves in the atmosphere

3.6.1 The buoyancy frequency in a compressible at-
mosphere

A statically stable atmosphere, like a stably stratifed ocean, will support
internal gravity waves. In fact, atmospheric internal waves are almost iden-
tical to those in the ocean—satisfying the same dispersion relation (3.2),
for example*—but there is one major modification to be made. The buoy-
ancy frequency for incompressible waves is proportional to vertical density
gradient; in the atmosphere, as we have seen, it is not this that determines
buoyancy, but the gradient of potential temperature. So, for the atmosphere,
the buoyancy frequency [cf., eq. (3.3)] is defined by

, gdf g (dT
-2 -2 = . 21
N Gdz T (dz + Fad (3 )

“There are some minor terms to be added to (3.2) in general, but in practice (3.2) is a
good approximation.
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Typically, in the troposphere, N ~ 0.01 s™1, corresponding to a period for
vertical displacements of about 10 minutes (remember that this is a lower
limit of the period of internal waves in general).

Like the ocean, the atmosphere is rich in internal waves (they can often
be seen in clouds) though under most circumstances, their amplitudes are
not very large in the lower atmosphere. One situation in which they are
commonly large 1s when air flows over mountains—we shall look at such

waves below.

Because of one other important effect of compressibility, these waves as-
sume much greater importance in the upper atmosphere (especially in the
mesosphere, above 50km altitude). As we have seen, such waves can prop-

Figure 3.7: Schematic of vertically propagating internal waves.

agate vertically as well as horizontally; as they do, they encounter reduced
environmental density. In order to conserve their energy (or something like
it), they must increase their amplitude (Fig. 3.7) as they propagate to higher
altitudes, rather like when ocean waves run up toward a beach into shallower
water. The amplitude grows as something like p~1/2. As a result, wave ampli-
tudes are much larger in the upper atmosphere than in the lower atmosphere,
even though it is in the latter that most of them originate.
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3.6.2 Mountain waves

Air flowing over mountains produces a stationary wave train, just as a rock
in a river produces a train of surface waves. In the former case, for mountains
less than about 100km in width (we shall discuss large mountain ranges later)
the wave train is comprised of internal waves which in this case are known
as lee waves. A typical situation is shown in Fig. 3.8.

> R

Figure 3.8: Schematic of air flow over a mountain range.
There are several noteworthy features of this flow:

(i) Like the rock-in-the-river problem, in situations where a wave train is
produced, it exists downstream of the mountain, and for the same rea-
sons. The wave train is stationary relative to the mountain. Consider
the two-dimensional case with y-wavenumber [ = 0. If the oncoming
wind (which we assume to be uniform) is U, then relative to the flow,
the mountain, and the wave train, have speed —U, whence, from (3.2),

N
vVk? +m?

(the minus sign has been chosen because the propagation is to the left).
The z-component of group velocity relative to the flow is

w— ——
- =

_ Ow Nm? m?

cgm—-a—k——(k2+m2)% R ym? T
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(i)

(iv)
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and therefore the group velocity relative to the mountain, ¢y, +U > 0:
there are no upstream effects®.

Immediately in the lee of the mountain, (A on Fig. 3.8) there may be
strong, warm, downslope winds. The air is warm because it has come
from above, and (since the stratification is stable) df/dz > 0, so air
from aloft is warmer than surface air if the former is brought down to
the surface. The air may also be warmed by latent heating associated
with condensation in the upslope flow (see point (v), below).

Further downstream, there may be strong surface winds where (B on
Fig. 3.8) the streamlines concentrate near the surface; these winds may
occasionally be extremely strong, but may exist only in a narrow band
parallel to the mountain range.

In regions above point A and above and just upstream of B, there is
downward flow. Occasionally, this flow may be manifested as strong
downdrafts that can be hazardous to aircraft operating out of or into
airports downwind of large mountains.

As the air is elevated over the mountain, condensation may occur, and
orographic clouds are common (C on Fig. 3.8).

Clouds also frequently form at one or more levels in the peaks of the
lee wave (D on Fig. 3.8). These lee-wave clouds are often seen with
banded structure downstream of long ranges, but may also occur with
less organization downstream of isolated mountains.

The lee waves propagate vertically, and so the form drag on the moun-
tain may be communicated by the waves’ momentum transport to high
levels in the atmosphere. This process is significant enough to be in-
cluded as an explicit parameterization in numerical weather prediction
models, and, at very high levels, also has a dramatic effect on the cir-
culation of the mesosphere.

Finally, we should note that our discussion of internal gravity waves has
(for simplicity) been confined to waves on uniform background states (con-
stant N and U). In fact, the most dramatic mountain waves are found where

5There may be upstream effects for small U, when no wave train is produced and the
flow cannot creep over the mountain, and when nonlinear effects we have not considered
may be important.
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N and/or U are very nonuniform, in which case wave trapping, and con-
sequent amplification, may occur.

3.7 Further reading

Internal gravity waves are covered to some extent in many texts of geophysical
fluid dynamics; a detailed but thorough treatment is given in Chapter 6 of
A.E. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982.
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3.8 Appendix to Ch. 3: Theory of internal

gravity waves

3.8.1 Stable density stratification in an incompressible

fluid

Consider the situation depicted in Fig. 3.9. The water is assumed to be

zo+dz

Figure 3.9: Displacement of a water parcel P in stable stratification.

incompressible and to have density varying with depth only, p = p(z). (N.B.
Incompressibility means that density does not change in response to pressure
variations; but it does depend on temperature and salinity, p = p(7T', S), so
is not spatially constant.) A water parcel P, initially located at z = zq, is
displaced upward to z = 2y 4+ dz. The parcel initially had the same density
as its environment, pp = p(2p). Now, if we make the reasonable assumptions
that there are no sources or sinks of salt within the parcel, and that it moves
quickly enough to do so adiabatically (without loss or gain of heat), then

it preserves its 1" and S, and thus its density. So, after displacement, its
density is still pp = p(20).
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Now, its environment at its new location has density

dp
pe = pl20 + d2) > p(z0) + dz—"(20) ,
for small displacement dz. Therefore the parcel will feel a buoyancy force
causing it to rise further, or to return toward its initial location, depending
on whether p, is greater than or less than pp. We will defer discussion of the
first possibility—the unstable case—until later; we now concentrate on the
case of stable stratification, viz.,
dp

— >0 3.22
dz ) ( )
for which the buoyancy is negative and the associated restoring force tends
to make the parcel motion oscillatory about its location of neutral buoyancy.

3.8.2 Small amplitude motions in an incompressible
fluid with continuous stratification

So, we shall consider inviscid, adiabatic motions in an infinite, two-dimensional
(z— z) fluid, with density p(z, z,t). As in Chapter 2, the equations of motion
are

G _ 0w, 0w, ou_ 10
dt ot ar oz pox’
dw ow ow ow 1@

@ T Ve T e U

where D is pressure. We note here that density variations in the ocean are
small, and so we can write p = pgy + p, where p is a small deviation from
the constant reference density pgy. To be consistent, we also have to allow a
reference pressure pgo(2), in hydrostatic balance with pgo, such that

dp()g
dz - _gp()() )

and so we write p = pgg + p. Then, relying on the smallness of p, we write

10p 18_p+{p@}

PO pedz | | pd 0z
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_1op ~ 1 9(pw+p)
p Oz (poo +p) 02
o _ 10wty p O(pwtp)
 pw Oz po Oz
10p p p Bp}
il A B R
Poo 0z Poo { P2, 0z

Note that the terms in curly brackets are quadratic in departures from the
reference state, so we neglect them, in which case the egs. of motion become

du Ju ou ou 1 Op

ETR T T M
(3.23)
dw 8w+ 8w+ ow 18p+ p
— = —4u—tw—=——"+g—.
dt ot ox 0z poo Oz gp()()
We also have our incompressible continuity eq.
ou  Ow
—+—5=0. 24
ox + 0z (3-24)

To close the problem we need an equation for density. On the basis of our
assumption that the motions are adiabatic, and that there are no sources or
sinks of salt, it follows that parcels must conserve their density as they move
around, 7.€.,

—tu—+w—=0. (3.25)
Now, we consider a steady, motionless basic state, in which p = po(z) is
a linear function of z (for simplicity), such that dpy/dz = A. The second of

(3.23) tells us that the basic state pressure field py(z) must be in hydrostatic
balance with this density field:

Ccli_}:() = —gpo(z). (3.26)
We now consider small amplitude perturbations to this state, such that
= u'(z,2,t),

= w'(z,z,1),

po(2) +P'(z,2,1)

= po(Z) + p/(m, 2 t) :

- = & e
I
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Since the perturbations are small, we may neglect nonlinear terms like u’ %

! . . . N
and w' %ﬁ; therefore, our linearized perturbation equations become, from

(3.23), (3.24), and (3.25),

o, 1o
Ot poo Ox
ow' 1 op 0
—_—t—— = —g— 3.27
ot poo Oz gpoo (3-27)
o o
ox 0z
!
%) —w'A

With some juggling®, these can be reduced to a single equation for p':

82 (8229' a2p/> . N2 52p’

92 \ 922 T B2 e

=0. (3.28)

The quantity N in (3.28) has units of t7!, and is defined by

w2 =90 _ (Sd_f’> ; (3.20)
Poo pdz 0

we will see its significance in a moment.
Clearly, (3.28) supports wavelike solutions of the form

P (z,2,t) = Re P ™™ = Re P gilhotme—ut) (3.30)

where k is wavenumber and (k,m) its components in the (z,2) directions,

provided
Nk

VK2 + m2 ’

Eq. (3.31) is our dispersion relation for internal gravity waves. It tells
us that the wave frequency is independent of the magnitude of wavenumber,
only on its direction; specifically, that

w =+ (3.31)

w = +Nsind (3.32)

8Take 8/8z of the 1st of (3.27) plus 8/0z of the 2nd, and use the 3rd to give gop'/dz =
8(8%p' /8z? + 8%p' /02%) /Ot; substitute this and the st equation into 52/828t of the 4th

equation.
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where ¥ = arctan(k/m) is the angle the wavenumber vector makes with the
vertical. For waves with wavenumber pointing horizontally (vertical wave
crests), w = +=N. So the quantity N defined in (3.29)—which is thus known
as the buoyancy frequency or the Brunt-Viisila frequency—gives the
frequency of such waves; in general (when 9 is not 7/2) it provides the scale
for frequency, although it should be noted that in both ocean and atmosphere,
very slow waves with w < N (so ¥ < 1) are common. N is the upper
limit of frequency for propagating waves, for which both components of
wavenumber are real (if w < N, say because of external forcing at frequency
w, at least one of k¥ and m must be imaginary, and the disturbance will be
evanescent in at least one direction).
Note from the 3rd of egs. (3.27), together with (3.30) that

kv +muw' =k-u =0
the motions are at right angles to the wavenumber, and thus along the phase

lines: the wave motion is transverse. This is illustrated in Fig. 3.10.
When 9 = 7/2, the phase lines and motions are aligned vertically—so the
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Figure 3.10: Phase lines and motions within a plane internal gravity wave.

oscillation of fluid parcels is just as we discussed at the beginning of this
chapter; thus N is the frequency of vertically-displaced parcels. For other
values of 9, the component of restoring force along the angle of displacement
is what matters—hence (3.32).



Chapter 4
Tides

4.1 Tidal forcing

4.1.1 The “semi-diurnal” component

We need to consider how gravitational forces, due to the Sun or Moon, vary
along the surface of the Earth. For simplicity in the following derivation,
we shall focus on the Sun-Earth system (the Earth-Moon system produces
the same result, but the analysis is alittle more complicated). We shall also
neglect the inclination of the Earth’s axis to its orbit, and consider only how
the forcing varies along the equator; the geometry is shown in Fig. 4.1.

Figure 4.1: Gravitational tidal forcing.

Now, the gravitational potential at longitude A (measured relative to the

7
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moving sub-solar or sub-lunar point on the FEarth’s surface, due to the tide-
raising body (Sun or Moon) of mass M, is

GM GM
r  VREI—2aRcos\+ a2’

where R is the distance of the tide-raising body from the center of the Earth,
and a the Earth’s radius. Since a/R < 1, this can be approximated, correct
to O(a?/R?), as

2
b ~ —GTM <1+—;5cos/\——2% (1—3cos2/\)> .

Now, assuming that the center of the Earth’s orbit coincides with the center
of mass of M?, the centrifugal potential is

1 1 2
bo = —=wir? = —§w2R2 (1 — 2% cos A + %) ,

where w is the angular velocity of the Earth in its orbit. Since the two
components of force must balance at the Earth’s center,

GM
WiR = Tz

Therefore, the net variation of tidal potential around the equator is

3GM 3GMa?
2R 4R3

Or = Pg + ¢ = — (1 +cos2X) . (4.1)

The constant terms are, of course, irrelevant. The longitudinally-varying part
describes a potential with wavenumber 2 around the globe: this is because
the gravitational force decreases with distance, and the centrifugal force in-
creases, so the former dominates at the subsolar (sublunar) point P, and the
latter at @, the antipodes of P (see Fig. 4.2).

1This is clearly a very poor approximation for the Earth-Moon system; however, the
end result is the same.
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To tide-
producing body
é——_

Figure 4.2: Tlustrating the “semidiurnal” (wave 2) nature of the tidal poten-
tial.

Note that (because it is a differential measure of the gravitational field)
the tidal forcing varies as R~3.

The corresponding tidal force (per unit mass) is —V®r; the horizontal
component, along the Earth’s surface, is the relevant one and this is just

109,  3GMa’

Fp=—= =
T a O\ 2R3

Sin2A . (4.2)

This is depicted in Fig. 4.3.

To tide-
producing body

- K

Figure 4.3: Tidal forces. The ellipse depicts the “equilibrium tide”.

4.1.2 Lunar vs. solar forcing

Note that the magnitude of the tidal force depends on the properties of the
tide-raising body as M/R3. If the radius of the body is b, and its mean

density p, then
M 47 b\°
— == -] . 4.3
w(3) () =

Now, because of the happy coincidence that the sun and moon subtend almost
identical angles tan™(b/R) at the Earth, the ratio of their tidal forces is, by
(4.3), approximately equal to their mean densities. As the lunar density



80 CHAPTER 4. TIDES

exceeds that of the sun (by a ratio of about 2:1), lunar tidal forces are
greater than solar, and the dominant tide in most places on the Earth is
lunar semidiurnal (period of about 12hr 25min). The solar forcing is by no
means negligible, however, which is why the tide goes through its monthly
modulation from the high “spring” tides, when lunar and solar forcings are
in phase, to the weaker “neap” tides, when they are out of phase.

4.1.3 The “diurnal” component

Since the inclination of the Earth’s axis to the Earth-moon and Earth-sun
lines is not zero, the tidal forces are not purely semidiurnal. As shown in
Fig. 4.4,

To tide-
producing body
(——._..._.

Figure 4.4: Illustrating the diurnal tidal component. Because the inclination
of the Earth’s axis is not zero, the high tide experienced at point P is weaker
than that experienced 12 (lunar) hours later at point Q.

the tilt of the rotation axis relative to the potential surfaces introduces a
diurnal asymmetry: the tidal potential maximum at () is stronger than that
at P. Thus, the tidal forcing has a diurnal, as well as semidiurnal, component.
Note that the magnitude of this component will vary with period of a lunar
month, as the orientation of the poles with respect to the Earth-moon line
changes.
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{Elantity | value Tunits ]
G 6.67 x 1071 | Nm?kg~!
M 7.30 x 10 | kg
R 3.82 x 108 m
a 6.38 x 10° m
g 9.78 ms 2

Table 4.1: Data for the tidal calculation

4.2 Tides in the ocean

4.2.1 The “equilibrium tide”

The total gravitational potential around the Earth includes, of course, that
due to the Earth’s own gravity, ® = gz. If we consider the lunar forcing
only, then if the Farth were not rotating, the surface of the ocean would, in
equilibrium, coincide with a geopotential surface, on which, using (4.1),

B 3G Ma?
4R3

cos 2\ + gz = constant .

This surface is shown schematically (and much exaggerated!) in Fig. 4.3.
Since cos 2 varies from —1 to 1, the extreme range (low to high tide) for the
“equilibrium tide” is
_ 3GMa?
© 2R3

Using the values from Table 4.1, we obtain the value? Z, = 0.545m.

(4.4)

4.2.2 Tides in a global ocean

In reality, the tidal pattern remains fixed with respect to the Earth-moon
axis, and so, relative to a point on the Earth’s surface, it moves westward
at a speed of 449ms™! at the equator. Now, a typical ocean depth is about
D = 5km; since the wavelength of the tidal oscillation is 27a/2 ~ 2 x 10*km,
and this is very much larger than D, we can use shallow water theory to

2The actual value for the equilibrium ocean tide is about 0.7 of this. We have neglected
to allow for the fact that the solid earth itself is tidally distorted, and that the solid-earth
ocean system then produces a wave 2 modulation of the local gravity field.
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deduce that the phase speed of free waves is /gD ~ 220ms~'. Therefore,
we can hardly assume that the tide is steady, since it moves faster than free
waves in the ocean. So the tide is dynamic—we need to consider the dynamic,
rather than the static, response to the tidal forcing.

A complete analysis of tides on a global ocean (without interruption by
continents) is a classic (if unrealistic) problem. Apart from needing to take
account of the spherical geometry, we would also need to include the effects of
the Earth’s rotation, which is a significant factor for motions with periods of
about 12 hrs. To avoid these complications and to get some (limited) insight
into tidal motions, we consider the non-rotating problem of one-dimensional
(E-W) motions in a narrow channel around a latitude circle (see Fig. 4.5).

Figure 4.5: A narrow channel along a latitude circle, at latitude ¢.

Since the channel is narrow, we can neglect curvature, and so use Carte-
sian coordinates, with z the coordinate in the longitudinal direction. The
channel length is L = 2macosy. The relevant equations for this channel
for the long tidal motions are just the shallow water equations, modified to
include the tidal potential ®:

& Y5z oz
dh ou
@ - Ther

Since, from (4.4), we anticipate weak motions, we can reasonably linearize
these equations about a state of uniform depth D and no motion; we then
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have
Ou _ _ 0h 0%r
ot~ 9oz oz
(4.5)
oh ou
a - Pa

Now, we know that the forcing has zonal wavenumber 2 and period 0.5 lunar
day, so we write

@T = q>o COS (2)\) = Re [q)oeik(z—ct)}

where, from (4.1), & = 3GMa?/ (4R?), k = /L = 2/ (acos ) and kc =
27/ (0.57), where 7 is the lunar day. If we therefore seek solutions of the

form ( Z ) _ K g )eik(z—ct)} , (4.6)

cU = gH+ 9y,
cH = DU;

then (4.5) give

and so
D

(c? — cd)
where ¢y = /gD is the shallow water wave speed, as before.

In the limit ¢ — 0, this gives H — —D®,/c3 = —®y/g, i.e. the equilib-
rium tide, as we expect. Eq. (4.7) tells us:

H= 3 , (4.7)

(i) If 0 < ¢ < ¢g, the tidal response is in phase with the equilibrium tide,
and is larger;

(i) If ¢ = cp, the response is resonant, since the system is being forced at
its natural frequency;

(iil) If ¢o < ¢ < v/2cg, the tidal response is larger than, and out of phase
with, the equilibrium tide; and

(iv) If ¢ > v/2co, the response is smaller than, and out of phase with, the
equilibrium tide.
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Since, at the equator, the phase speed of the tidal forcing is 449ms™!, while
the wave speed is 220ms ™! for an ocean of 5km depth, resonance would occur
for a channel at latitude arccos (220/449) = 60.7°. We cannot of course take
these results literally latitude-by-latitude, as the whole spherical system is
coupled together. While this exercise gives us some idea of how the local
dynamics are tending to behave, it does not describe the actual tides very
well, as we shall now see.

4.2.3 Tides in ocean basins

Tidal observations are of course made in many locations, but most of these
are coastal. To get a picture of what we think the global structure of tides
looks like, we have to resort to output from numerical models. Such a picture
of tides is shown in 4.6.

Image removed due to copyright considerations.

The lines shown on Fig. 4.6 are of two types: co-range lines, which show
the peak-to-peak amplitude (shown here with a contour interval of 0.25m,
and labeled in meters), and co-tidal lines, which show the phase of the tide,
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expressed as the time of high water in “lunar hours” (about lhr 2min) after
the moon passes the Greenwich meridian. Several features stand out.

1. The amplitude of the tide is in most places between 0.25 and 1.5m,
i.e., between one-half and three times the amplitude of the equilibrium
tide.

2. The phase of the tide does not progress systematically eastward, as we
assumed in the above example, except in parts of the Southern Ocean,
which is the only part of the world where a disturbance can propagate
right around a latitude circle, unobstructed by continents.

3. The greatest amplitudes are along the coasts, especially near gulfs.
Correspondingly, there are regions of vanishingly small amplitude (so-
called amphidromic points) in the middle of the ocean basins. The
one exception to these statements is the maximum in the central equa-
torial Pacific Ocean.

4. The tide progresses systematically around each ocean basin (in fact,
around the amphidromic points). For the most part, the progression is
clockwise in the southern hemisphere and anticlockwise in the northern
hemisphere.

There are two effects that make the tides look so different from our simple
channel model. The most obvious is the presence of continents; the second
is the Earth’s rotation. One effect of the latter (we shall look at other effects
later) is to allow waves to become trapped at the coasts.

4.2.4 Kelvin waves

Consider (c¢f. Fig. 4.7) shallow water behavior near a straight coast, in a
rotating system.
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x

/\ z%\

Figure 4.7: Schematic of the trapping of waves a coasts by the planetary
rotation. Top figure is in a plane parallel to the coast, which runs along the
z-axis; bottom figure normal to the coast.

The egs. of motion then become (with f the Coriolis parameter)

iiE _frU — _ @_ .
dt - g@x ’
dv L fu = dh .
dt o= gdy ’
dh ou Ov
e+ D — 4+ — = 0.
T (Bm * 8y>

Assuming small amplitude perturbations to a basic state with no motion,
and uniform depth D gives

o O
o 1Y T T80
o’ , on
3{+fu = —g(’)_y’ (4.8)

on' ou' o
N + D (33; + Fy) = 0.

These egs. have more than one kind of wavelike solution. One such solution—
the Kelvin wave—is a little strange. The boundary condition at the coast
y = 0 is v = 0: suppose there is a solution with v = 0 everywhere. Then
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(4.8) become

o On
ot g oz’
oh'
= - : 4.9
11e% ou’
E + D% = 0.

We have left ourselves with 3 egs in 2 unknowns, which would normally
suggest that we are on the wrong track. However, note that the 1st and
3rd of (4.9) are exactly the same two egs we get in the one-dimensional,
nonrotating case. So, just as in the nonrotating case, we get solutions of the

T () e{ (o)

where ¢ = /gD and where U = gH/c = cH/D. However, we have the
further constraint of the 2nd of (4.9), which gives

which, for constant f, gives®

H = const x exp (—f—y> . (4.10)
¢

The effects of rotation for these Kelvin waves is therefore to trap the waves
along the coastline, with an e-folding distance of ¢/ f. Otherwise, the motions
are entirely parallel to the coast everywhere, and the wave travel at the speed
of nonrotating shallow water gravity waves. However, there is one further
important implication of (4.10). Nonrotating gravity waves can propagate
in either direction. But a physically meaningful solution must decay away
from the coast (it cannot grow indefinitely as y — +00) so we must have
f/c¢ > 0. In the northern hemisphere (f > 0), then, ¢ > 0: the wave can
only propagate in one direction, with the coast to the right of the direction
of propagation (to the left, in the southern hemisphere where f < 0).

$We will later consider an important case for which f is not constant.
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Image removed due to copyright considerations.

In the presence of coasts, the tide takes on the characteristics of the
kelvin wave. Thus, the tide will tend to propagate anticlockwise around
amphidromic points in northern hemisphere ocean basins, and clockwise in
the northern hemisphere. Locally, this effect may be counteracted by the
tendency of the “open ocean” tide to follow the moon westward, and by
interaction between adjacent amphidromic points.

4.2.5 Tides in inlets and bays

Similar behavior is seen on a smaller scale in smaller bodies of water. Figure
4.8 shows the tide in the North Sea. Note the large amplitude, as compared
with typical open ocean values, and the similar anticlockwise propagation
around the coasts. The propagation is much slower here, consistent with the



4.2. TIDES IN THE OCEAN 89

shallower water.

In such small bodies of water, the effects of gravitational forcing acting
directly on the water body are small compared to the indirect effects of
open ocean forcing. That is to say, tides in coastal seas and bays are driven
primarily by the open ocean tide at the mouth of the bay, rather like driving
an organ pipe at a specific frequency by externally playing a note at the
end of the pipe. In some cases, this can lead to large amplitudes, by at
least two processes. One is simply focusing: if the bay becomes progressively
narrower along its length, the tide will be confined to a narrower channel as
it propagates, thus concentrating its energy. There are suggestions of this in
Fig. 4.8, in the English Channel at the bottom of the figure.

Image removed due to copyright considerations.

The second processes is constructive interference between the incoming
tide and a component reflected from the coast. Fig 4.9 shows a more spec-
tacular example, the tide in the Gulf of Maine.

The tidal range in the Gulf of Maine is about 3ft at its entrance, but it
increases substantially towards the coast and most dramatically in the Bay
of Fundy at the NE corner of the Gulf, where the tide exceeds 30ft*. We

4The mean tide at Burntcoat Head, at the head of the Bay of Fundy, is 38.4ft (11.8m),
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tidal
range

open
ocean

Figure 4.10: Schematic of a quarter-wavelength resonance in a bay.

have seen that a simple reflection can amplify wave amplitude at the coast
by a factor of 2, but not 10 or more. What seems to be happening is that the
Gulf of Maine/Bay of Fundy system is resonating at the tidal period. This is
illustrated in Fig 4.10. Just as in the organ pipe problem, the bay is forced
by the tidal currents at its mouth; if the geometry of the bay is such that it
takes one-quarter period for a wave to propagate its length, it will support a
quarter-wavelength mode at the forcing period, leading to large tides at the

head of the bay.

the highest mean tide in the world.
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4.3 Atmospheric tides

The atmosphere also has tides, if by “tides” one means motions that fluctuate
with diurnal, semidiurnal (terdiurnal, ...) period. Fig. 4.11 shows surface

Image removed due to copyright considerations.

pressure at a tropical location and a northern midlatitude location. There is
little evidence for a diurnal and semidiurnal component in middle latitudes,
for two reasons: the signal (which can, in fact, be extracted by analysis of
long time series) is weak there, and there is a large “synoptic” variability of
pressure associated with day-to-day weather events, which masks the tidal
signal. In the tropics, conversely, the day-to-day variability is small (for
reasons we shall see later), and the tidal signal is stronger. Fig. 4.11 shows
a tidal range of about 5mm Hg (~ 7hPa) at Batavia. This rather small
amplitude makes the atmospheric tide a curiosity, rather than an important
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phenomenon, at the surface, though its amplitude is much larger in the upper
atmosphere.

Like the ocean tide, the atmospheric tidal signal (at the surface) is pre-
dominantly semidiurnal but, unlike the ocean tide, it is solar semidiurnal:
its phase remains fixed with respect to the (solar) clock. [This is just evident
in Fig. 4.11, and more clear with a longer time series.] Since we deduced
from eq. (4.3) that the lunar gravitational forcing dominates the solar, this
seems curious. Moreover, calculations show that the atmospheric tide to be
expected from gravitational forcing—lunar or solar—is much weaker than
observed. Something else must be forcing the “tide.”

That “something else” is heating. The atmosphere is of course subject to
diurnally-varying solar heating, whose effects in driving large-scale motions
far outweigh gravitational forcing. Even though the thermal forcing is “diur-
nal” it is not a single harmonic (since, for example, nighttime cooling via IR
radiation varies much less through the night than does solar forcing during
the day). The diurnal variation of net heating is shown schematically in Fig.
4.12. We could expand the heating J(A — Q) (the whole heating pattern, to

heating

7 (U

sunrise sunset
midnight noon midnight

Figure 4.12:

a first approximation, it propagates around the world at the angular speed
Q2 of the subsolar point) as a series

JA=Qet) = Jncos[n(A— Q)] ,
n=1
where n = 1,2,3,... corresponds to the diurnal, semidiurnal, terdiurnal,

components, all of which will be nonzero. Nevertheless, this does not



4.3. ATMOSPHERIC TIDES 93

solve our problem as, with any reasonable representation of J, the diurnal
component is the largest. So why is the observed tide semidiurnal?

For many decades, it was thought that the answer had to lie in the reso-
nance of the atmosphere at the semidiurnal period®. This was hard to prove,
as in order to calculate the atmosphere’s resonant frequencies, it is necessary
to know its thermal structure, and little was known above altitudes of about
15km until the 1940s. Calculations then showed the resonance hypothesis to
be untenable.

So what is happening? It turns out that the most important region of
forcing of the thermal tide is in the stratosphere, at altitudes above around
30km, through absorption of insolation by ozone. At these altitudes, the
diurnal component is larger than the semidiurnal. However, in order to
reach the surface, the tide must propagate there—the tide is a wave motion,
albeit a forced one. Now, we saw from (3.2) that internal gravity waves must
satisfy
s N 22

k2 m?
from which we deduced that w? cannot exceed N2. In the tidal case, w and &
are given by the forcing; the only free parameter is the vertical wavenumber

m, which satisfies:
N2 2

w

So we can now be more specific and state, not that w cannot exceed N, but
that the vertical wavenumber is real—and hence vertical propagation can
occur—only if w? < N2. Otherwise, the wave is trapped in the vertical.
Now, this criterion is no problem for tides—their frequencies are very
much less than N. However, we noted earlier that the effects of the Earth’s
rotation are important for tides; when rotation is included, (4.11) becomes

N? — ?
2 _ 12
where f = 2Qsinp (2 =Earth rotation rate, ¢ =latitude) is the Coriolis
parameter. Thus, vertical propagation requires

fP<w?< N?. (4.13)

5 Atmospheric tides have, in fact, aroused the interest of some powerful minds. It
was Laplace who suggested that they are thermally forced; Lord Kelvin put forward the
resonance hypothesis.
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Since w = nf) (with an error of 1/365, because of the Earth’s orbit of the
sun), and since f reaches its maximum value of 20 at the poles, f? < N?
everywhere for the semidiurnal and higher components. For the diurnal com-
ponent, however, f < N only within 30° of the equator; at higher latitudes,
the tide cannot propagate downward. For this reason, much of diurnal forcing
is extremely ineflicient at producing a surface response, and the semidiurnal
component dominates there.

4.4 Further reading

An elementary discussion of ocean tides is given in:
Waves, tides and shallow-water processes, by the Open University Course
Team, The Open University, Pergamon Press, 1989.

A comprehensive discussion of the mathematical theory of tides on a
global ocean is given in the classical text:
Hydrodynamics, H. Lamb, Cambridge U.P., 1916.

For a discussion of atmospheric tides (including an historical account of
the resonance theory) see Chapter 9 of:
Dynamics in Atmospheric Physics, R.S. Lindzen, Cambridge U.P., 1990.



Chapter 5

Large-scale motions on a
rotating Earth

5.1 The equations of motion on a rotating
plane

In an inertial frame of reference, the equation of motion (momentum) is

du

Pat

where u i1s the vector velocity, ® = gz the gravitational potential, and F
represents any applied external body force or frictional forces acting per unit
volume. For a tidal problem, F would represent the gravitational tidal force;

=—-Vp-pVI+F (5.1)

in the ionized upper atmosphere, 1t could include forces involved in moving
ions across the Earth’s magnetic field lines. In almost all cases, however,
such effects are negligible, and the only “force” acting is friction. Even this
is negligible, except very close to the FEarth’s surface (for the atmosphere),
or in the surface and bottom (benthic) boundary layers of the ocean.

Expressed relative to a frame rotating with the planetary rotation rate
Q, equation (5.1) is

d
p(d—ltl+29><u+ﬂ><(ﬂ><r)> = -Vp—pVd+F,

the 2nd and 3rd terms on the LHS representing the Coriolis and centrifugal
terms, respectively, and r is the position vector measured from the plane-
tary center. It is conventional to simplify things a little by absorbing the

1
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Figure 5.1: Geometry of a spherical surface (solid) and the geoid (dashed)
through a point at location r.

centrifugal term into the gravitational potential. One can do this easily, since
1
Ax (2 xr)= V(§Q2r2) ,

where (2 = |Q|~and r = |r|; hence one can absorb this term into the definition
of & (writing ® = ® — ;Q%r?), leaving

p(fi—l;+2QXU>:~Vp—pV&>+F. (5.2)
We now have to regard gravity (V&)) not as g, pointing downward relative
to the spherical surface through r, but as ¢’, pointing downward relative to
the geoid through r (see Fig. 5.1). So in order for gravity to remain vertical
we must, in principle, use slightly non-spherical coordinates; in practice, the
geoid is so close to being spherical that we can ignore this complexity without
introducing significant error. Thus, we ignore the “twiddle” on @ in (5.2).

5.2 Rapid rotation

The material time derivative on the LHS of (5.2) can be written

du Ou
E+29xu:§+(u-V)u+2qu.
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If we assume that a typical magnitude for velocity is U, that the distance
on which velocity varies is typically L, and the time on which it changes is
typically T, the 3 terms on the RHS have typical magnitudes

U U?
T T 2QU .
For motions that are nearly steady, in the sense that 2Q7 > 1, and are slow
in the sense that Ro = U/(2QL) < 1, the third term (the Coriolis term) is
dominant. (The dimensionless number Ro is known as the Rossby number
of the flow.) Now, the rotation rate Q = 27/(1day) = 7.2722 10~%s™!. The
first condition requires 7' > 0.08day, an excellent approximation for large
scale motions in the atmosphere (T > lday) and even better for large-scale
motions in the ocean. As for the second condition, for a synoptic system in
the atmosphere, U =~ 30ms !, while L ~ 1000km, so Ro ~ 0.2; for an oceanic
eddy, U ~ 0.1ms™!, L ~ 100km, so Ro ~ 0.01 (and for larger scale motions,
it is smaller than this). So the assumption Ro < 1 is quite good for large
scale motions in the atmosphere and excellent for the ocean.

If we assume the Coriolis term to dominate the LHS, therefore, and fur-
ther assume that the motions are inviscid (so that F = 0, an excellent
approximation outside boundary layers), eq. (5.2) becomes

2xpu=—-Vp—pV3.

Taking the curl (since V x Va = 0, for any a), we get

V x (2Q2xpu) = -V x (pVD) .
Using the vector identity

Vx(AxB)=A(V-B)-B(V-A)-(AV)B+(B:-V)A,
and noting that €2 is constant, we get
V x (2€2xpu) = 2Q(V - [pu]) —2(22- V) pu..

But continuity of mass gives

Op

- =0.
8t+v pu
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So, for steady flow, V « [pu] = 0. Thus, using the further vector identity
VX (cA)=Vex A+cVx A,

we obtain

2(2-Vipu=Vpx V.

If the flow is hydrostatic, then dp/0z = —gp, or, since d® = g dz, Ip/0P =
—p, whence V& = —p~'Vp, and then

1
2(9-V)pu=—;Vp><Vp.

Now, if the flow is also barotropic, by which we mean that density is a func-
tion of pressure only (i.e., no density variations along the almost-horizontal
pressure surfaces), p = p(p), whence Vp = %Vp, and so Vp x Vp =

%ﬁ (Vp x Vp) = 0. Thus we arrive at the Taylor-Proudmann theorem:
(Q-V)pu=20:

For slow, steady, inviscid, barotropic motions in a rotating system, the mo-
mentum density vector (pu) is constant along the direction parallel to
the azis of rotation.

Now, neither the atmosphere nor ocean are truly barotropic (they would
be much less interesting if they were) but, nevertheless, many aspects of their
dynamics can be captured in models that are barotropic (or nearly so), which
is where we start.

5.3 Two-dimensional rotating flow

5.3.1 The barotropic equations of motion

We now investigate the properties of two-dimensional flow. If the atmosphere
or ocean is assumed to be barotropic, the flow is independent of the direction
along the rotation axis; given that they are also thin, in the sense that
their depths are very much less than the Earth’s radius, it is a very good
approximation to assume that this implies that the flow is independent of z,
the coordinate vertical to the Farth’s surface (see Fig. 5.2). If we adopt
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< 1>

Figure 5.2: Coordinates for a shallow atmosphere or ocean.

local Cartesian coordinates’ (z,y,2) as shown on the Figure, the flow is in
the (z — y) plane, and w = 0. The z and y components of (5.2), are then

du _ 10p
—dt — fv = _;_813 +Gm
dv 10p

where f = 2Qsinp,with ¢ being latitude, and G = (G,,G,) = F/p is
the applied (frictional) force expressed in units of acceleration. Note that
the coefficient f appearing in the Corlolis term is twice the vertical (z-)
component of the rotation rate. This coefficient is known as the Coriolis
parameter. Note that f is a function of latitude, the importance of which
we shall see later.

Egs. (5.3) give us 2 equations in the 3 unknowns u, v, and w (p is
assumed to be known as a function of p). We close the system with the
equation of contimuity V -u =0, or

ou Ov
R wial (5.4)

5.3.2 Vorticity and the barotropic vorticity equation

One of the difficulties of working with momentum (or velocity) of a par-
cel in fluid mechanics stems from the pressure forces to which the parcel is

1We are assuming here that the region of interest is a small part of the whole globe,
otherwise it is necessary to use spherical coordinates (of course).
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subjected, which are continuously changing the parcel’s momentum in com-
plicated ways (since pressure is not fixed, but itself evolves with the flow).
However, while pressure gradients can change a parcel’s momentum, they
cannot change its spin, because, as we have seen, for barotropic flow for

which® p = p(p),
V X <1Vp> =0.
p

So, if we take the curl of the momentum equations, the pressure gradient
term disappears. If we do this for egs. (5.3), by taking 8/9z of the second
minus 8/0y of the first, we get

o (dv 0 (du ou Qv df

aw(a)_a—g/(E)_Ff(%-}—b—y)_{_v@—Z’ (5.5)
where Z = 8G,/0x — 0G,/dy is the (vertical component of the) curl of the
frictional force per unit mass, and note that f = f(y), since it is a function

of latitude only. Now, from (5.4), the third term vanishes; moreover, a little
mathematical juggling [expand the total derivatives, and use (5.4)] shows

that

0 (dv 0 [du\ d (Ov Ou

Ox \ dt oy \dt) dt\ox Oy
The term inside the bracket on the RHS is the vertical component of the
vorticity, defined by

£=Vxu; (5.6)
its vertical component is 5 5
v U
=, 5.7

Since the flow in this barotropic problem lies within horizontal planes, only
the vertical component is nontrivial®.

The vorticity is a local measure of the spin of the fluid motion. For
example if the fluid (relative to the rotating frame, remember) is in solid
body rotation about the origin with angular frequency w, then (see Fig. 5.3)

U= —WY, VU = W

2Note that this includes an fluid of constant density.
31n large-scale meterology and oceanography, the general term “vorticity” is often used
to mean the vertical component, unless specified otherwise.
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Figure 5.3: Rotation about the origin; the velocity at position 7 = (z,y) is
U=uwr.

so the vorticity is ( = 2w—twice the rotation rate (anticlockwise being pos-

itive).
To return to (5.5), then, we have
a¢c _ df
pri vdy+Z. (5.8)

This equation states that the time derivative following the motion of the
vorticity is (in this barotropic case) given by two terms. The second repre-
sents the creation or destruction of vorticity by viscous torques (curl of the
frictional force per unit mass), while the first represents advection of f, the
Coriolis parameter. But we have already seen that f = 2Q2siny is twice the
vertical component of the planetary rotation rate; so looking down on the
planet at latitude ¢, an observer in an inertial frame would say the rotation
rate of the fluid is not w, but Qsinp + w, and hence that the absolute
vorticity of the flow—that observed from a nonrotating frame—is not ¢ but

Ca = f + C . (59)
Now, since f is a function of y only, its material derivative is

aof _of of oOf  oOf
— = +tu;—tv— =
dt Ot ox Jy Oy
and so the barotropic vorticity equation can be written

da
Z-z. (5.10)
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Therefore:

In inviscid barotropic flow, the absolute vorticity is conserved following the
motion.

For most purposes away from boundary layers, the inviscid limit is a
relevant one, so this theorem is profoundly useful for barotropic flows. (As
we shall see, it needs modification for non-barotropic flows.) Put very simply,
it says that if a fluid parcel is at position x, and has absolute vorticity (,,
at time ty, and moves without viscous influence to position x; at time ¢y,
we know its absolute vorticity is still {,o—and we know this without needing
to know anything about the path the parcel took in the intervening period.
(So absolute vorticity is a tracer, and behaves just like, say, a dye marker.)
Contrast this with velocity: to know how the velocity changed between tg
and t;, we would need to know its path, and the history of the pressure
gradient along this path.

Now, one might object that absolute vorticity is not as interesting as
velocity—that we may know what it is, but that that knowledge is not useful
in telling us about what we want to know. However, if we know the dis-
tribution of (, at any time, we know the distribution of { (since we know
f) and, from that, we can determine the flow. To see this, first note from
the contimuity equation (5.4) that we can satisfy this by defining velocity in

terms of a stream function v, such that u = —z x V¢, or
o oY
=T y=2L 5.11
v Oy YT s (5.11)

which guarantees that V - u = 0. Since u is normal to Vv, it is directed
along contours of v, as shown in Fig. 5.4. Moreover, 1 is a measure of the
flux of fluid since the net amount of fluid passing per unit between the two
streamlines A and B, on which the streamfunction is (say) 1 and ¢ + 8 is
|u| 61, where 6l is the distance AB between the streamlines. But, from (5.11),
lu| = |6%] /81, so the flux (which in this 2-dimensional case has units of area
per unit time) between the streamlines is just |61)|. Note that this flux is
constant along the streamlines, so the velocity is large where the streamlines
are close together, and weak where they are far apart—as is obvious from

(5.11).
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Figure 5.4: Flow is along streamlines (lines of constant ).

Now, in terms of streamfunction, it is obvious from (5.7) and (5.11) that
the vorticity can be written

_ Y T _ g2
Q= ol = V5 (5.12)

where V. is the two-dimensional (horizontal) Laplacian operator. So, if we
know the vorticity distribution at any time [and note that (5.12) is a di-
agnostic, not a predictive, equation] we can calculate the stream function—
and hence the velocities—from that knowledge. Note that since (5.12) is a
second-order, elliptic, equation, we need appropriate boundary conditions to
determine the solution. So all the information of dynamical importance is
implicit in the vorticity distribution; hence the importance of (5.10). In prin-
ciple, then, (5.10) can be used to predict how the absolute vorticity distribu-
tion changes, then (5.9) tells us the vorticity distribution; then, assuming we
know the boundary conditions, (5.12) can be solved for the stream function,
and hence the velocity.

Note the analogy between (5.12) and the equation for electric potential
V in the presence of a two-dimensional charge distribution ¢(z,y); stream
function 9 is analogous to potential V', vorticity ( to charge q.

A concept related to vorticity is circulation. The circulation C around
a closed contour C (see Fig. 5.5) is simply defined as

CziudL (5.13)
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Figure 5.5: The contour C' in the definition of circulation.

where the integral is around the contour and dl the linear increment along
C. But, from Stokes’ theorem,

C=fcu-d1:/A(V><u)-sz:/AgdA, (5.14)

where dA is the area element and A the area enclosed by C. Thus, the
circulation around a closed contour 1s equal to the integrated vorticity enclosed
by that contour.

Example—the flow around a point vortex.

Suppose there is a point vortex, for which {(z,y) = Zob(z — 20)6(y — yo)
[so ¢ = 0 everywhere except at (zg, yo)]. Since we can anticipate the problem
to have circular symmetry, we move into polar coordinates, with (zo, ) as
the origin (see Fig, 5.6). In polar coordinates, the Laplacian is

o, 1 8%
2 P —_— ——
Ve = r Or (1‘(%) + 72 9192

so that, if we look for symmetric solutions for which ) = 4 (r) then, every-
where except r = 0, V2 = 0 or

rdr dr |

The general solution is

Y =A+ Blnr
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Figure 5.6: Geometry of point vortex example.

where A and B are constants. The constant A is irrelevant (as only the
gradients of ¢ have physical meaning); the velocity is

_ _ (0% 18y _ (B
“__ZXW_<E’_F&9>_(T’O>'

To determine B, we note that this circulation around any contour enclosing
the point vortex is

C=/§dA=//Zgé(a:—wo)é(y—yo)dxdy=Zo.

But if we choose a circular contour at radius r, then
2
C=}{u-dl :/ u(r) rdd = 2nr u,
c 0

where u is the azimuthal velocity (see Fig 5.7), and so B = Z,/(27). So the
solution is

Zy _
P(r) = %lnr,
Zo

One important property of fluid flow—and rotating flow in particular—
that this example makes clear is that the circulation is nonlocal: even a
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Figure 5.7: Circulation around a cyclonic point vortex (northern hemi-
sphere).

localized vorticity will induce a remote circulation, just as electrical charges
induce a remote field. Amongst other things, this means that one cannot in
general think about fluid dynamics in terms of local, fluid parcel arguments,
since the flow at the location of the parcel depends on the behavior of all
other parcels.

5.4 Further reading

This material is covered in several geophysical fluid dynamics texts. The
most suitable is Chapters 1 and 4 of:

“An Introduction to Dynamic Meteorology”, J.R. Holton, Academic Press,
1979 (2nd edition).



Chapter 6

Rossby waves and planetary
scale motions

6.1 Observed planetary scale waves in the at-
mosphere

Fig. 6.1 shows (solid contour; interval 4hPa) a typical northern hemisphere
surface pressure map. It shows a rich structure, mostly of “synoptic scale”
systems, especially small low-pressure storm systems. These have a range
of sizes and intensities; there is a particularly large and vigorous storm over
Iceland.

If we look, at the same time, at upper air charts, we see the influence
of these storm systems weakening in the analysis. Fig 6.2 shows the height
of the 500hPa pressure surface (solid contours; interval 60m) at the same
time.  The intense surface features are much less obvious here. Rather,
the midlatitude jet is apparent! in the belt of tight height gradient around
the hemisphere. However, there are strong wavy perturbations of the jet,
usually of larger scale than the features that dominated the surface analy-
sis (except over N America, where “synoptic” scale features are apparent at
500hPa also.) In terms of zonal wavenumber (the number of wavelengths
around a latitude circle), the large-scale upper level disturbances have typi-
cal wavenumbers 1-4. These scales are referred to as planetary, and the wave
motions on these scales as planetary waves. These waves migrate both east-

'Through geostrophic balance, the tight height gradient implies rapid flow along the
height contours.
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Figure 6.1: Surface pressure analysis (solid contours), 26 March 1997. B
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Figure 6.2: 500hPa analysis (solid contours), 26 Mar 1997.
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ward and (sometimes) westward; they also include a substantial stationary
component. This latter fact is evident from Fig. 6.3, which shows the N

JANUARY NH 78@ MB HEIGHT

JANUARY NH 50@ MB HEIGHT JANUARY NH 30Q MB HEIGHT

Figure 6.3: Long-term January mean heights, 300 - 700hPa.

hemisphere geopotential height in the lower (700hPa), middle (500hPa), and
upper (300hPa) troposphere, averaged over 12 Januarys. The averaging has
suppressed any signal from the mobile, synoptic scale storm systems, as well
as from mobile planetary waves. What remains is the stationary component.
As can be seen from the figure, this component is substantial. Note:

1. The time-averaged flow (along the height contours) departs significantly
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from zonality;

2. in some regions, the mean flow departs greatly from being eastward,
e.g. near the east coast of N America, where storm systems will tend to
be steered by the mean wind to move up the coast, and to the west of
N America and Europe, where a southwesterly fetch in the prevailing
winds is an ameliorating influence on wither climate;

3. the wave phase is stationary, despite the mean almost-westerly flow:
why are the waves not “blown away” by the wind?

4. these waves are vertically coherent, illustrating the Taylor-Proudmann
effect, and giving us some hope that a barotropic analysis will be ade-
quate to reveal the underlying dynamics.

6.2 Theory of Rossby waves

6.2.1 The (-plane

We saw in the derivation of the barotropic vorticity equation the potential
importance of the fact that the Coriolis parameter varies with latitude, a
consequence of spherical geometry. However, dealing with spherical geometry
is (a little) more complicated than with planar geometry, so it is common
to represent a strip of the sphere—limited in latitude but going all the way
around the world in longitude—as a plane, as in Fig. 6.4. We consider a
strip centered on longitude ¢q, and define a y coordinate y = a (¢ — ¢y), and
an z coordinate x = a), where X is longitude. Since f = f(¢) = 20sin ¢,
in the (z,y) system it becomes f = f(y). Assuming that the width of the
strip is small enough, we can approximate f(¢) as a Taylor series about the
central latitude:

7(8) = (o) + (6 — o) (%) (bo) + ..

where

f(¢o) = 2Qsingyo ;
df.dgg = 2{cosgy .
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Figure 6.4: The (-plane.

Substituting for y, we get

fy) = fo+ By, (6.1)

where fo = 2{)sin ¢y and

0= 2Qcosc;ﬁo.
a

Note that, for a latitude of 7/4, 3 = 1.617 x 10" m~!s7!. Note that, though
the sign of f changes from N to S hemisphere, § is always positive (since
f always increases northward).

6.2.2 Small amplitude barotropic waves on a motion-
less basic state

Neglecting viscous effects, the barotropic vorticity equation (?7) becomes

dCa _ 9¢

— = —=4+uV{,=0;

dt ot ¢
absolute vorticity is conserved following the flow. Suppose now the motions
of interest are small amplitude disturbances to a motionless basic state on a
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B-plane, for which (, = f (relative motion is zero, hence relative vorticity is
zero) where f is given by (6.1). Since there is no perturbation to f, we have

(wv) = (W),
Ca. = f + C/>
where the primes denote the perturbations. Neglecting terms quadratic in
the primed quantities, we have (since f is a function of y only)
’ !

9 rog_ 0O r
Et—-ku-Vf— 5 +06v'=0.

Since ( = V%), ¢’ = V%), and, with v' = 0¢//8z (from the definition of

streamfunction), we can easily get a single equation for ¢

2,11 2,1,/ /
a<a¢+a¢>+ﬁaw o

ot \ 8z2 ' By o

If we look for solutions of the form
' = Re[Vexpi(kz + ly — wt)]

we get the dispersion relation for Rossby waves:
Gk
W = *m . (62)

This function is plotted in Fig. 6.5. [Note that wl/3 = —z/(z? + 1), where
z = k/l.] Note that:

1. w/k = -8/ (k* +1?) < 0: the phase speed is negative. So the phase of
Rossby waves (on a motionless state) always propagates westward;

2. since w is a nonlinear function of k, Rossby waves are dispersive.

3. From Fig. 6.5 it is clear that dw/dk > 0 for k/l > 1, and dw/0k < 0
for k/1 < 1: the group velocity of Rossby waves is eastward for zonally
short waves, westward for zonally long waves.

4. The magnitude of the group velocity (judge by the slope of Fig. 6.5)
is, typically, greater for the westward-propagating long waves than for
the eastward-propagating short waves.
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Figure 6.5: The function —z/(z? + 1).

6.2.3 Typical values
At 45 degN,

2m\/2
86400 x 6.37 x 106

A typical midlatitude disturbance might have a half-wavelength of 5000km
in both directions, so

=1.6145 x 107 'm~ts7 L.

2Q
0= 7c0545deg =

k=1~ =6.28 x 107'm™!
5x 106 o
and then 6 "
1.6145 x 10~
= - = -1 107%7t .
YT T IX6.28 % 107 291077
The period is
2m 2
- = — =487 x10°
] 1.29 x 10-5 °
4.87 x 10°
=5.6d .
86400
The westward phase speed is
2 1075
c= Y 129 x 10 20.5ms ™}
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So the typical periods and phase speeds (relative to a stationary atmosphere)
for these planetary scale Rossby waves are of order (days) and comparable
with wind velocities, and so are meteorologically significant.

6.2.4 Mechanism of Rossby wave propagation

From (6.2), it is clear that the propagation of Rossby waves (indeed, the
existence of the waves themselves) is dependent on the existence of the plan-
etary vorticity gradient, 5. In fact, had we allowed the basic state to have
relative vorticity, it would have been the gradient of the mean absolute vor-
ticity, rather than just 8, that appeared in (6.2). How does a basic state
vorticity gradient lead to waves? Consider Fig. 6.6. We assume that there

Figure 6.6:

are two regions of uniform vorticity, separated initially by a straight E-W
boundary. North of the boundary, the absolute vorticity is (3; to the south,
it is ¢;. Since the Coriolis parameter increases northward, we specify that
(1 < (3. Now let’s perturb the interface as shown on the figure, locally and
northward. There is now a perturbation in the vorticity field, which is zero
everywhere except in the bulge in the interface, where the vorticity perturba-
tion is ¢; —{» < 0: the anomaly is negative (and therefore clockwise). Just as
perturbing an array of electric charges would induce an anomalous electric
field, this vorticity perturbation will induce an anomalous circulation. In
fact, the streamfunction of the perturbed circulation is /' where V3¢ = ('
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So the problem of determining the circulation is essentially the same as that
for the circulation around a point vortex in Section ?77: hence the induced
circulation will be clockwise, decaying as 1/r from the vorticity anomaly,
much as depicted schematically in the figure.

Now, because absolute vorticity is conserved following the flow, it is sim-
ply advected by the circulation. The effect of the induced circulation on
the vorticity distribution will be to advect the interface as shown: north-
ward to the west, southward to the east. As the initial perturbation was
northward, the perturbation itself tends to move toward the west—this is
the westward phase propagation we noted from (6.2). The spreading, and
changing of shape of the perturbation—manifested, amongst other things,
by the developing southward perturbation to the east—is a manifestation of
the dispersion we also noted.

6.3 Rossby waves in westerly flow

6.3.1 Dispersion relation: stationary waves and dis-
persion

The planetary scale waves observed in the atmosphere do not always show
phase propagation westward, even though they are indeed Rossby waves.
Some propagate to the east, some to the west, and as we saw earlier, there is
substantial part of the planetary wave field that is stationary. The reason of
course is that, unlike the simple preceding theory, the midlatitude atmosphere
has mean westerly flow. In uniform flow, the preceding results for phase and
group velocity should be interpreted as applying relative to the background
flow, so the short waves (slow phase velocity relative to the flow) actually
propagate to the east; only for sufficiently long waves is the westward Rossby
wave propagation strong enough to overcome advection.
In a uniform background eastward flow U, the dispersion relation be-
comes? S
w=Uk Tl (6.3)

Just as for the “rock in the river” problem, it is possible to have stationary

?Relative to the moving flow, the phase velocity, from (6.2), is ¢ = —8/ (k* + [?); so
relative to the ground, c = ¢+ U, whence w =ck = (6 +U) k = Uk — Bk/ (k2 + 12).
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waves for which the frequency is zero, provided U > 0. This happens when
K2+ 12 = k2, (6.4)

where k;, = (/B/U is known as the stationary wavenumber. For typical
midlatitude values U = 30ms™!, 8 = 1.5 x 107 "¥m~!s71, x;! ~ 1400km, so
such waves have typical wavelength 27/k; ~ 9000km, which at 45° latitude
corresponds approximately to zonal wavenumber 3. From (6.3), the zonal
component of group velocity is

(¥ - )

ng:U+ﬁm;

given (6.4) and some manipulation, it follows that, for stationary waves with
k* 4+ 12 = k2 =(6/U,

U
Cop(w = 0) = 2k2= -
g( ) /6

the zonal group velocity is eastward.

6.3.2 Forced stationary waves

We are now equipped to understand a simple representation of atmospheric
stationary waves. The fact that these waves have a rather special value of
phase velocity—zero—tells us that there is something special about forcing
them: the forcing itself must be stationary. In fact, there are many ways
such waves could be forced: by flow over very large-scale mountain ranges
(the Himalaya, the Rockies, Antarctica, primarily), by geographically fixed
regions of heating (which affect vorticity by ways we will discuss later), and
by other, more subtle, means. The details of the waves produced by localized,
stationary forcing depend on the nature of the forcing; however, in light of
the above, there are some general things we can say, specifically:

1. The stationary wave will be located to the east of the forcing (since the
group velocity has an eastward component), and

2. the length scale of the response will be determined by the inverse of
stationary wavenumber.

These features are apparent in explicit solutions such as illustrated in Fig.
6.7.
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EASTERN WESTERN

Figure 6.7: Flow over a localized mountain. Numerical solutions for the
perturbation streamfunction ¢’ for flow over (left) mountains in the eastern
hemisphere (Tibet, mostly, with a small contribution from the Alps) and
(right) the western hemisphere (mostly the Rockies). ote the Rossby waves
propagating “downstream” (eastward) of the mountains.
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6.3.3 Vertical structure

The theory developed thus far has been based on the assumption that the
flow is barotropic. In reality, there are density variations in the atmosphere,
which allow the existence of baroclinic (i.e., non-barotropic) motions. The
vertical structure of the Rossby wave train produced by a localized mountain
is shown in Fig. 6.8. In this figure, we can see two components of

HEIGHT  (km)

-60 1 60 120 180 240 300
LONGITUDE

Figure 6.8: Perturbation streamfunction as a function of longitude and height
for a 3D calculation of the response to flow over an isolated mountain (loca-
tion marked by an arrow).

the response: a surface wave, which is trapped near the surface, just like
an ocean surface wave is trapped at the ocean surface; and a wvertically-
propagating component. The former behaves very much like the barotropic
waves we have been discussing. The latter is a wave that propagates in
all three directions, including upward [cf. internal gravity waves, Chapter
3]. (In fact, the winds must be westerly aloft for vertical propagation, which
restricts this behavior to the winter half-year.) Waves that propagate to great
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heights reach large amplitude: because the atmospheric density decreases
with height, an upward propagating wave becomes “focussed” into less and
less mass the higher it goes, and thus must increase its velocity perturbations
to compensate. These planetary Rossby waves dominate the meteorology of
the winter stratosphere.

6.4 Rossby waves in the ocean

The ocean supports Rossby waves, just as the atmosphere does, obeying the
same dispersion relation, and for the same reasons. (In fact, for barotropic
motions, the theory does not discriminate between atmosphere and ocean.)
The coastal boundaries of the ocean prevent a sustained east-west circulation
(except in the Southern Ocean) and sustained east-west propagation of the
waves themselves, so in practice there are many differences. The presence of
coasts means that ocean basins can support trapped modes, for one thing.
However, much of the large-scale variability of the ocean can be described
as Rossby waves, albeit in a less organized way than for the atmosphere.
However, there is one central aspect of ocean dynamics that may not appear
to involve Rossby waves, but in fact does: the existence of western boundary
currents.

6.4.1 Western intensification

It is evident from (6.2) and the ensuing discussion that Rossby wave behavior
is zonally asymmetric. In particular, we saw that the group propagation of
long Rossby waves is fast and westward, while that of short waves is slow
and eastward. As illustrated in Fig. 6.9, this has dramatic consequences
for ocean dynamics. Any large-scale disturbance in mid-ocean will gener-
ate Rossby waves; the larger scale of these will propagate rapidly westward.
Before long, they will reach the western boundary of the ocean where they
will be reflected. Unlike gravity (or light) waves, the reflected waves will not
simply be a mirror image of the incident waves: the reflected waves must
have an eastward component of group velocity and so must be of short zonal
wavelength. Moreover, they will propagate relatively slowly, more so than
the incoming waves. Thus, there will be a kind of “traffic jam” at the west-
ern boundary—information can get in more readily that it gets out. The
information that accumulates there will involve motions of small zonal scale.
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Figure 6.9:

This is the underlying dynamical reason for the existence of strong bound-
ary currents on the western, rather than eastern, sides of the ocean. The
underlying reason for the east-west asymmetry is §, the northward gradient
of planetary vorticity.

6.5 Vorticity and potential vorticity in a fluid
of varying depth

Now consider pseudo-barotropic motion in a fluid of varying depth. By
“pseudo”-barotropic we mean that the horizontal flow is independent of the
vertical coordinate (thus satisfying the Taylor-Proudmann theorem) but, be-
cause of depth variations, cannot be exactly nondivergent. So the system
we will consider is an inviscid shallow water system, with a base that is not
necessarily flat, as shown in Fig. 6.10. The system is assumed to be rotating
with uniform Coriolis parameter f.
Our rotating shallow water equations are

du_ o ok
dt v _gam
dv Oh

dH ou Ov
i —H<£+a—y>'
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free surface z=h(x,y,t)

N—>

Xy —»

rigid, non-flat base z=b(x,y)

Figure 6.10: Shallow water model with varying depth.

Here, H(x,y,t) = h — b is the total depth, where h(z,y,t) is the height of
the free surface and b(z,y) the height of the bottom boundary. Note that
the continuity equation involves H rather than h, because the total mass
convergence into the column is pHV - u, and the rate of change of column
mass (following the flow) is dH/dt, rather than dh/dt.

Now, let’s form our vorticity equation in the usual way, by taking 0/0z
of the 2nd eq. —3/3dy of the 1st. As before,

0 (do)_ 0 (@) _ 0 (o) 0 (ou
Ox \ dt oy\dt) — Oz \ot Oy \ dt

LD (v ) _ B[ ou o
Oz \ Oz Jy Oy \ Oz Oy

(v 0wy, by 0udv udu Ovou
dt \Ox Oy Odrxrdxr Oxdy Oydx Oyody

_ 4 (% _ou) (Ou Ouv)(dv Ou
- dt\Bz By or Oy \oxr Oy

S du  Ov
B ?E+<8x+8y>c'

d¢, ou Ov B
E+Ca<%+5§> =0,

Then we get
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where (, = f + ( is absolute vorticity, as before. So absolute vorticity is not
conserved in this system: it can change whenever the divergence is nonzero
(we'll see why). But using the 3rd equation of (6.5), the divergence is just

(au 6’1})_ 1 dH

5z oy Hdt
Substituting,
d¢e  CudH  _d ()
¢ mHa o la <H> =9,
and so

d [Ca
- (ﬁ) =0. (6.6)

What (6.6) tells us is that, although absolute vorticity is not conserved,
there is a quantity that is conserved following the flow: this quantity is

Ca
p=2
H

and is known as the potential vorticity. What it means can be seen in the
following. Suppose, as shown in Fig. 6.11, that a cylindrical column, initially
with absolute vorticity (, and length H, is stretched along its length. Mass
continuity demands that the column must contract laterally as it is stretched;
angular momentum conservation then dictates that the fluid must spin faster.
Eq. (6.6) tells us that {, increases in proportion to H: this process is known
as vortex stretching.

6.6 Rossby waves in a fluid of varying depth

Consider now perturbations to a otherwise motionless fluid (so ¢ = 0 in
the absence of perturbations) contained between sloping surfaces, as in Fig.
6.12. The column depth, H(y) is a linear function of y, and we assume the
perturbation velocities to be small, so that we can linearize. The potential
vorticity equation (6.6) is
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Figure 6.11: Illustrating vortex stretching.

z I H(y)

Figure 6.12:
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whence

1/6 & 8 G (0 0 0\,
H(&‘f—u%—{—va—l/’)Ca_ﬁj<E+uax+va_y>H_0'

Since H = H(y) and (, = f + {'(z,y,t), this linearizes to give

agl o
E +vB=0,
where faH

Thus, the vorticity equation becomes precisely equivalent to that in the ex-
actly barotropic case on a (-plane, with in this case §—a measure of the
gradient of fluid depth—replacing the gradient of f. Thus, e.g., a sloping
ocean bottom can give rise to Rossby waves, called “topographic Rossby
waves”, just as can the curvature of the Earth.

In fact, in the case of the Earth’s curvature, the two effects are just
another way of saying the same thing. Kach is illustrated in Fig. 6.13. On
the left, we take a traditional view of the atmosphere (or ocean), which is
assumed to be contained within a spherical shell of depth D. The “vertical”
is defined to be the local upward normal to the surface, and the component of
planetary vorticity in this direction is 2Q2sin¢ = f, the Coriolis parameter.
Since the thickness of the fluid in the vertical direction is D, the potential
vorticity is

f 2Qsing
P=2L =
D D
and its gradient is
1dP 20 Ldf p

adp oD " Day " D
In this view, the depth of the fluid column, D, never changes, so conservation
of potential vorticity PP implies conservation of absolute vorticity {,. If a fluid
column is moved northward to where f is greater, {, = f+( is conserved by {
decreasing as f increases—so a northward displacement induces anticyclonic
(negative) relative vorticity.

In the second view, we define the direction of the Earth’s rotation vector
to be the “vertical”. The component of planetary vorticity in this direction
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<|$Q <|$Q 9
T h=D/sin®

Figure 6.13: Illustrating the equivalence between the two forms of beta in
spherical geometry.

is just 282, which is of course constant. But the thickness of the atmospheric
shell in this is not constant, but is h = D/sin ¢. So the potential vorticity is

(. 20sing
P =22
h D

just the same! And its gradient is

1dP  2Qd 1\ 2Qd (sing 8
E%*?d(ﬁ(h)_ a d¢< D ) D’

So the PV gradient is (of course) exactly the same as in the first case, but we
see it differently. In this viewpoint, the planetary vorticity is everywhere 22,
but as fluid columns move north or south, their length changes. A northward
displacement produces a contraction of the column: in response (in order to
conserve P) the absolute vorticity 21 + ¢ must decrease, so ¢ must become
anticyclonic (negative).
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6.7 GFD experiment: topographic Rossby waves
in the lee of a ridge

Tank rotation rate Q2
<!> | id rotation rate Q +®

conical narrow A R
base ridge

Figure 6.14: Schematic of the tank experiment.

Fig 6.14 show the set-up. A cylindrical tank, on a turntable rotating at rate
Q, is fitted with a conical base; since the deepest water is at the outer rim,
that corresponds to the equator. The effective 3 in this setup is

5 2dH_205H
 Hdr R H

A lid rotates cyclonically relative to the tank at rate w. This drives flow
(of angular velocity ~ w/2) in the tank, over a small, straight ridge on the
conical base. We expect this to produce a train of stationary Rossby waves

of total wavenumber
. \/E
VU
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where U = (R/2) (w/2) is the flow at radius R/2. So we expect the magnitude
of the wavelength to be

= =5 ) = ) ()

We will have w = 0.1Q2, and §H ~ H/2, so we expect

2

T ~aRx03.

K
Since, at mid-channel, a wave of zonal wavenumber one has wavelength 7R,
this will give us something like zonal wavenumber 3. (We will update these

numbers when we do the experiment.)

6.8 Further reading

Observational and theoretical aspects of Rossby waves are covered in several
geophysical fluid dynamics texts, including

“An Introduction to Dynamic Meteorology”, J.R. Holton, Academic Press,
1979 (2nd edition).



Chapter 7

Baroclinic instability and
midlatitude storms

7.1 Three-dimensional geostrophic flow

7.1.1 In geometric coordinates (z,y, z)

In Cartesian, geometric coordinates, the equations of motion and of hydro-
static balance are

du 10p

T —fv = ”;5;4‘79: ;

dv 10p

—+ fu = —=—+F,, 7.1
Op
Ep = —4gp,

where (F,, F,) are the (z,y) components of friction. The continuity equation
is

dp
s u=0. 7.2
A (7.2)

For small Rossby number (U/fL <« 1, where U and L are magnitudes for
the flow and for spatial scales), the wind can be determined from geostrophic
balance:

1
u=—zx Vp, 7.3
7 P (7.3)

127
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or, in its components,

u —_— _i@'
fpoy’
1 0p
w = 0.
Note that
_aﬂ+@—0-
oxr Oy

the geostrophic wind is nondivergent!, which means the geostrophic flow is
quasi-2D, and has some parallels with barotropic (precisely 2D) flow.

Since u - Vp = 0, the flow is normal to the pressure gradient, along the
isobars. Thus, the isobars are streamlines of the geostrophic flow. In fact,
from (7.4) we can define a geostrophic streamfunction, ¥ = p/(fp), which
has the same properties as barotropic streamfunction.

7.1.2 In pressure coordinates (x,y,p)

In pressure coordinates (which are more useful for compressible atmospheres
than height coordinates) the equations become

du 0z

5 v = 9yt

dv 0z

= = —g— 7.5
0z 1
dp gp’

where the z— and y— derivatives should be understood as applying at con-
stant pressure. One of the great simplifications of pressure coordinates is
that the continuity equation is

ou Ov Ow B

where w = dp/dt is the pressure coordinate equivalent of vertical velocity.

IThis is strictly true only if variations in f are negligible, which means that the length
scale of the motions must be much less than the Earth’s radius.
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Now geostrophic balance (7.3) becomes, in pressure coordinates,

u:%’;xvpz, (7.7)

where Z, is the upward unit vector in pressure coordinates and V, denotes
the gradient operator in pressure coordinates. In component form,

Note that, like p contours on surfaces of constant z, z contours on constant
p are streamlines of the geostrophic flow.

7.1.3 Thermal wind balance

. Taking the p-derivative of the z-component of (7.7) gives

Ou_ 98z _ g (2 P{D _ 19 (1)
Op  foOpdy  f\Oyl|Opl/), foy\e/,

Since 1/p = RT/p, its derivative at constant pressure is

2(1) _E(a_T)
Oy \p/, pP\Oy/,’

whence

ou R [(OT
= 7.8
op fp ( Oy >p (78)
Similarly, for v we find
Ov R [0T
— = 7.9
Op fp ( Oz >p (79)

Thus, horizontal gradients of temperature must be accompanied by vertical
gradients of wind.

7.1.4 Thermodynamic equation

In eq. (3.14), we had
dTl’ 1 dp J

b
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where J is the diabatic heating rate per unit volume. Now, just as in
geometric coordinates where the natural definition of vertical velocity is w =
dz/dt, in pressure coordinates “vertical velocity” becomes? w = dp/dt. Then
(3.14) can be written

ar 1 orT or or J

= T WS == 7.10
dt pcpw ot +uc’9x +U(9y “ pCp (7.10)

where S = 0T /8p — 1/pc, < 0 for a stable atmosphere, and J is the diabatic
heating rate per unit volume. Note that J = 0 for adiabatic motions.
Equivalently, defining potential temperature 6 = T (py/p)”~, as in (3.15),

(7.10) can be written
@ _ (12) I (7.11)
dt D) pcp

For adiabatic motions (J = 0), 8 is conserved following the flow.

7.2 Structure of synoptic storm systems

The typical midlatitude synoptic storm system, such as those seen in Fig.
6.1, are mobile systems of both low and high pressure (though only the
low pressure systems are usually associated with storms) that dominate the
meteorology of the lower atmosphere, especially in winter. A typical northern
hemisphere pattern may look like that shown in Fig. 7.1. Typical length

2Since p varies most strongly in the vertical,

dp dp , Op  Op Op
e 8t+u62+v8y+w8z
w@——w
azh gpﬂ

assuming hydrostatic balance. So w and w are opposite in sign—e.g., w < 0 is upward
motion (toward lower pressure). Note also that

g - 9T _ 1
Op  pecp
oTr g

0z ¢
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scales are a few hundred km (with high pressure systems being typically larger
than low pressure systems). From (7.4), it follows that the geostrophic flow,
along the pressure contours, is cyclonic (in the same sense as the Earth’s
rotation) around the low and anticyclonic around the high pressure center.

Surface pressure is always within 10% of 1000hPa; in middle latitudes,
typical storms may have pressure anomalies of 20hPa (cyclones) or 10hPa
(anticyclones). If we regard each eddy as circular, then we may represent,
crudely, the pressure structure (departure from 1000hPa) of a cyclonic eddy
as p' ~ Pyexp(—r?/2L?), where r is the distance from the center, and L the
radius at which p’ falls off by 1//e from its central value. The azimuthal
component of wind is, from (7.4),

w — Lo
- fpor
Byr
= —?—Eﬁ exp(—r?/2L%)
The maximum wind is at » = L, where
o = e
max pre

Air has STP has density 1.293 kg m~3; at 45° latitude, f ~ 1.0 x 107%s7%.
Hence, using Py, = 2000Pa, and a size L = 500km, we find

lu|_. ~ 20ms™' .

This is a typical maximum wind in the lower free troposphere. Within the
frictional boundary layer (where, of course, we live) surface friction slows the
flow, and makes it sub-geostrophic, spiraling into low pressure cyclones and
out of high pressure anticyclones, as in Fig. 7.2. The low-level inflow into
cyclones produces, through “Ekman pumping” in the Ekman boundary layer,
upwelling within the cyclones, which are therefore associated with clouds and
rain; in anticyclones, descending air makes for clear skies. But note that most
of the “weather” associated with cyclones is associated with thermal fronts
embedded within the cyclone; we shall discuss these later.

7.3 Cyclogenesis and energetics

Where do these synoptic systems come from? They are mobile, and thus
not attached to any surface features, so it seems unlikely that they are pro-
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500km

o
- L
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Figure 7.1: Schematic of the surface isobars around synoptic systems.
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Figure 7.2: Schematic of Ekman inflow (in low pressure systems) and outflow
(in high pressure systems).
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Increasing O
0<6, 6>6,
COLD WARM
z=constant
0>0,
0<0, ‘S{\ WARM
COLD (4%
z

EQUATOR —

Figure 7.3: The “wedge of instability.”

duced by external forcing. Rather, they are produced by a process known
as baroclinic instability. The presence of horizontal temperature gradients in
the atmosphere implies the existence of available potential energy, since the
isentropes (surface of constant #) can be re-arranged to reduce the potential
energy, as shown in Fig. 7.3. Exchanging air in the direction of the ar-
row will reduce the potential energy by moving warm (light) air upward and
cold (heavy) air downward. The potential energy lost must appear as kinetic
energy of the motion.

We can formalize this by considering the development of eddies on a basic
state that is initially independent of z; for simplicity (in fact, to avoid some
unnecessary complications), we assume that the basic flow is in fact exactly
zonal, and that the flow is a function of p only. Note, of course, from thermal
wind balance (7.8), that the basic state temperature must then be a function
of y as well as p:

(uvv’w) = (Uo(p),0,0);
= To(y,p); (7.12)
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We now consider perturbations to this state. To keep things simple, we will
assume the perturbations to be small so that we can linearize in the usual way.
Of course, the real, fully developed weather systems we are interested in are
not of small amplitude. If they grow through a linear instability, they grow
from infinitesimal amplitude (when our linear assumptions are justifiable),
reaching finite amplitude only as they mature. Detailed calculations (which
are beyond the scope of what we are trying to do here) show that, for a typical
midlatitude atmospheric state, waves with wavelengths of around 1000km
will grow the fastest, with growth times (e-folding times) of typically 2-3
days.

The more limited question we are going to ask is where these systems get
their energy from in the first place, and what characteristics they must have
to allow them to extract energy from the basic state. Perturbing the state
(7.12), therefore, and taking the inviscid eqns. of motion (7.5),

ou' ou’ 0z
En +U05—+ —fv' = 9%
o' o’ , 07
8t Uo—a— + fu = -—ga—y ) (713)
o _ _RT
dp gp

Now, the kinetic energy of the perturbation motions per unit volume is
p (u'? + v'?); therefore their globally integrated K.E. is

K:/// u—i—v dxdydz
_ /// (W) ddydp.  (114)

Now, we can form an equation for dK/dt by taking v’ xthe first of (7.13)+v'x

the second:
0 o\ 1 ,02' ,07
- U__ - 12 12 — il hiall
<8t+ 8x>2(u +v) -9 ua +vay
Using the continuity equation, we can write

ugz——i— 07 = u . V,2 — 9%
Oz By - P w@p
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Using hydrostatic balance, 8z’ /0p = RT"/gp, so

1 6 8 1 o /(_R//
E<E+U8x> (W?+?) =V, (u'2!) gpr.

Integrating over the whole system,

I (Grvge) sy - ///v o
// —w'T' dz dy dp .

But

L [ff 4[5 W?+v?)] dedy dp = 4 ;

2 I 4 (3 + )] de dy dp = [f [§ @ +0)]2 dy dp, where a,
Z9, are the limits of integration. But, since the ‘system is periodic (360°
is the same as 0°), [_]7* = 0. Hence fff [3 (W? +v?)] dz dy dp = 0.

3. [[fV,-(u7z) dxdydp= [[u'z ndA, where the integral is over the
area boundmg the system (the entire atmosphere) and n is the unit
normal to the boundary. Since the only boundaries are the Earth’s
surface p = ps and the top of the atmosphere p = 0,

///V u'z') dz dydp = // W), dx dy—// (W'2'], o dz dy.

But, at the top of the atmosphere, p = 0 and v’ = 0; at the surface,
which is geometrically fixed 2/ = 0. So [[[V, - (u'Z) dz dy dp = 0.

// —'T" dz dy dp (7.15)

Hence, the disturbance kinetic energy can grow only if, on average w'T" < 0
(upward heat flux). Since upward motion (toward lower pressure) means
w < 0, this means that warm (light) air must rise and cold (dense) air sink
in a developing storm.

Therefore
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That much may seem obvious, but there is more. Consider now the
thermodynamic equation; assuming adiabatic motion®, df/dt = 0. The per-
turbed equation is therefore

o oy 00 0o
v Yvo + 1 YY0

ot UG TV, TG, 70

Multiplying by # and integrating over the atmosphere:

0 0 o /1800 //890

Now, as above, it follows that

s o] s - 11 2] i
= //B@'QJ; Un(p) dy dp

= 0,

// —0? d dy dp = /// { ’9' e %@O} dr dy dp  (7.16)

Note that, if the disturbance is to grow from infinitesimal amplitude, the
Lh.s must be positive (since 8" is positive definite).

Thus, from the two constraints (7.15) and (7.16), we have that, on aver-
age, w'0’ < 0 and u'd’ - V0, < 0: so the vertical component must be upward
BUT the vector component must be downgradient, toward lower basic state
fy. In order to achieve this—see Fig. 7.4)—we need the vector (v'¢’, ') to
lie within the “wedge of instability” between the horizontal and mean isen-
tropic surfaces, as previously depicted in Fig. 7.3. Fig. 7.4 has been drawn
on the easily defensible assumptions that the atmosphere is statically stable
against convection—so that 6y increases upward-—and that the basic state

3In fact, of course, rain—consequent on condensation and on release of latent heat—is
a feature of intense storms, and thus the motions will not be adiabatic. However, this
effect is not essential to the mechanism of storm development.



7.3. CYCLOGENESIS AND ENERGETICS 137

Increasing 6,

WARM
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p=constant
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Figure 7.4: The “wedge of instability.” The heat flux (v'¢', w'8") must be
both upward (region a) and downgradient (region b) and thus must lie within
the overlap of the two regions, as shown by the arrow.

temperature decreases toward the pole—so that 8y does the same. Hence the
gradient vector V6, is as drawn.

As depicted in Fig. 7.4, the average of the poleward heat fluz, v'#', must
be poleward. This follows from egs. (7.15) and (7.16):

1. 08q/0p < 0 (6 increases upward) in a stable atmosphere; and

2. 0 =T'(po/p)*, whence w'6' = 'T"(py/p)*, and we saw above that the
integral of the latter must be negative; so

3. the second term on the r.h.s. of (7.16) must be negative (allowing for
the minus sign).

4. So the wave can grow only if the first term on the r.h.s. is sufficiently
positive.

5. Since 06y/0y < 0 (temperature decreases poleward), growing distur-
bances must have v'8’ > 0.
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Therefore, growing disturbances must transport heat poleward in order
to extract energy from the basic state. Since the reason the basic state
has available potential energy (APE) for the disturbance to extract is the
presence of a horizontal temperature gradient, it is not surprising that the
disturbances must transport heat down this gradient. By transporting heat
poleward, the disturbances tend to warm the higher latitudes, thus reducing
the APE. The lost APE appears, of course, as KE of the disturbances.

7.4 Vertical structure of growing disturbances

The simplest growing disturbances can be represented as being wavelike in
the longitudinal direction, with height perturbation something like

#(5,p) = Re F(p) el

(remember w is now complex when the wave is growing). We have neglected
any y-variation here; this is not particularly realistic, but it suffices to illus-
trate the point.

Suppose first that there is no vertical phase tilt of the disturbance, as
depicted in Fig. 7.5. The ‘I’ and ‘H’ denote the locations of low and high

L I
- Y | -
i | H i
L H® L 9 He L
< - < fl_ - <
o1& e 8 P12
—>
X
Figure 7.5:

height (2’) perturbations, respectively. The dotted lines show where 2’ = 0 at
all heights—since we have specified no phase tilt. Then from the hydrostatic
eq., (7.5), it follows that 7" = 0 there (where 2’ = 0) also. But, geostrophic
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balance, eq. (7.7), tells us that v' = (g/f)0%'/0z is an extremum at this
location. Therefore v' and T" are out of phase (in quadrature, in fact) so
that, on average, v'T" = 0. This clearly cannot be the structure of a growing
disturbance.

Consider now a disturbance whose phase slopes westward with height;
see Fig. 7.6. The maximum northward (/southward) flow is still to the

e 5 o\
\%\9\%\9
LZ Mo LE g L
\ﬁo\‘\ﬁo\%\ p |2
—>
X
Figure 7.6:

east of the low (/high) height perturbation (northern hemisphere), but now
there is a temperature anomaly there. Where v' > 0, 2’ increases with z
(decreases with p), so the temperature perturbation is warm there; so warm
air is moving north. Similarly, 180° further east, cold air is moving south.
Hence v'T" > 0 for this configuration, showing that this wave structure will
lead to growth.

If the disturbance is tilted eastward with height, one finds v"1” < 0, so
there is no growth in this case.

An example of this is shown in Fig. 7.7. On 19 Dec 1964, a weak surface
low lies to the east of an upper level (500hPa) trough (marked ‘A’ on the
figure)—so the low tilts westward with height. This is favorable for growth,
as illustrated by the explosive development that followed over the next 12
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Image removed due to copyright considerations.
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hrs.

7.5 Fronts

Even though baroclinic systems get their energy by reducing the overall tem-
perature gradient, it is common experience that they often have fronts—
bands of strong near-surface temperature gradient—embedded within them.
These are usually marked on surface synoptic charts by thick lines barbed
with symbols: triangles for cold fronts, semicircles for warm fronts, and both
for occluded fronts (g.v.). The barbs are put on the side towards which the
front is moving. We saw some examples in Fig. 7.7; more typical structures
are evident 12 hrs later, shown in Fig. 7.8. Notice how the surface pressure

Image removed due to copyright considerations.

field is distorted by the presence of the fronts: there is usually strong cur-
vature in the surface isobars (contours of constant pressure) in conjunction
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with a pressure trough at the frontal position.

7.5.1 Frontogenesis

How do fronts form in the first place? We know that baroclinic systems must
develop where there is a temperature gradient (and therefore available poten-
tial energy), but why do tight gradients form? the answer is that gradient-
tightening is inevitable, in the presence of flow deformation. Since w =0 at
the surface, we can think about the effects of the flow on surface temperature
purely in terms of horizontal advection (neglecting non-adiabatic effects, for
now). In general, we can characterize the horizontal shear in flow by the four

terms
Su  Ou
< oz Oy >
Bv v :
or Oy

Alternatively, we can express these by the four independent linear combina-

tions
fu  ov Bu_ v
oz oy Oz Oy
< v du v ou ) :
oz dy Oz oy
We have already encountered two of these combinations: the divergence g—z +
g—z (which is zero for geostrophic flow), anFl the vorticity 2% — %;f. the other
two terms are expressions of the deformation.
Consider what the flow does to a material box of surface air, of dimension

8z x 8y. First, consider the evolution of the area of the box. The area evolves

TV(y+ oy)
5 u(x) u(x+6Xx)
Y > —>
Av(y)
OX

Figure 7.9:
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as (see Fig. 7.9)

9 5o by) = bz (v(e,y+6y) —o(z,y)) + By (ulz +62,y) — ulz,y)

dt
Ou Ov

So the area is preserved in a nondivergent flow.

We know that the vorticity does—it rotates the fluid elements. This
leaves the deformation. Consider the “pure deformation” flow described by
the streamfunction ¢ = — Kzy, where K is a constant, shown in Fig. 7.10.
Such a flow is nondivergent, and irrotational (zero vorticity). However, it

Figure 7.10:

has deformation, since

ou v _ v Bu_ 0
or Oy  Ox Oy Oxzdy
ov  Ou 0% ?itﬁ B

oz oy o2 o

2K ;

Consider (Fig. 7.10) what happens to a material element such as the solid
rectangle on the figure. With the given flow configuration, the box will be
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stretched in the z-direction (the azis of dilation), as shown; since area is
conserved, it must simultaneously contract in the y-direction (the axis of
contraction). Thus, in this flow, any temperature gradient in the y-direction
will be intensified by the flow, thus forming a temperature front.

Now consider a developing baroclinic wave. If the temperature gradient

Figure 7.11:

is initially N-S (top of Fig. 7.11), it will be deformed (by the deformation
between low and high) and twisted (by the cyclonic vorticity around the low),
much as shown in the bottom of Fig. 7.11. Thus, it will form a warm front
ahead of the low, and a trailing cold front behind.

7.5.2 Frontal evolution

The “textbook” picture of frontal evolution is as depicted in Fig. 7.12, The
fronts form a “warm sector”, usually to the south of the low pressure center
(in the northern hemisphere). The warm sector moves around the storm a
little, and contracts; sometimes the fronts merge near the storm center to
form an “occlusion.” A secondary low pressure center may from at the point
of occlusion.
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7.5.3 Frontal structure and weather

Fronts may be most intense near the ground, but they do extend vertically.
As shown in Fig. 7.13, they slope with height, with the warm air overlying

WARM
SECTOR

N

showers clearing heavy rain

cold warm
W front front E

light ta
possibly light rain moderate rain

Figure 7.13: A schematic cross-section through the warm sector of a mid-
latitude cyclone, running approximately west-east. Frontal motion is to the
east; arrows denote air movement.

the denser cold air. At the leading warm front, the warm air rides up over
the front. If the air is moist, this will produce clouds and, if the system
is energetic enough, rain (or perhaps snow); note that the precipitation at
the front, though it may be formed in the warm air, will fall through cold
air—the precipitation is formed aloft, and so will be ahead of the surface
front. Within the warm sector, there is weak upwelling, so this sector will
often be completely cloud covered and there may be extensive rain or drizzle.
At the cold front, the cold air undercuts the warm air, pushing the latter
upward. At the front itself, there may be heavy rain or snow; some time
later, there is a clearing in the subsiding air behind the front. Later still,
convection may occur, which in some systems can be intense: cold air is
moving over ground that is warm, following passage of the warm sector, and
so the temperature structure is often convectively unstable. Immediately
behind the front, convection may be suppressed by the subsidence. Once
this abates, convection may set in. (Intense thunderstorms often follow the
passage of summertime cold fronts.)

At the apex of the warm sector, the fronts may occlude. Often, this
takes the form of the cold/warm front intersection leaving the ground, as
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the warm sector gets squeezed aloft. Then air at the ground is everywhere
cold, as in Fig. 7.14. The warm air slides up the occlusion, from the warm

WARM

f AIR\

7/
7/
COLD 7/ COLD
AIR 7/ AIR
7/
7/
W E

Figure 7.14: Cross-section (nominally W-E) through an occlusion.

sector. Precipitation is frequent in such situations; in winter it is frequently
snow (in New England, this is the classic snowstorm), as the precipitation
falls through a deep layer of cold air.

7.6 Climatology of synoptic systems: storm
tracks

Synoptic-scale storm systems are not uniformly distributed over the globe;
they concentrate in middle latitudes of the winter hemisphere and, even
there, are more common in some longitudes than others. Fig. 7.15 shows
the average distribution of eddy kinetic energy density 2 (v + v’?) and r.m.s.
geopotential variance V2”2 for northern winter. There are two main “storm
tracks” where these quantities are large: across the N Pacific and N Atlantic
Oceans.

The reason for this structure is the planetary scale structure of the back-
ground state. Storms tend to be generated in the regions of strongest baro-
clinicity—temperature gradient—off the E coasts of Asia and North America.
Once formed, the storm motion is steered by the planetary scale flow which,
as we saw in Fig. 6.3, is southwesterly (northeastward) across these oceans.
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Thus, the synoptic scale systems are controlled by the planetary wave flow;
in turn, the synoptic systems influence the planetary scale flow also. Even-
tually, the storms dissipate, though Pacific storms may propagate across the
Atlantic and beyond before they die.

The situation in southern hemisphere winter is shown in Fig. 7.16; the
main southern storm track extends across the southern Atlantic and Indian
oceans.

7.7 Further Reading

Holton, J.R., “An Introduction to Dynamic Meteorology”, Academic Press,
1979.

James, I.LN., “Introduction to Circulating Atmospheres”, Cambridge Uni-
versity Press, 1994.

Wallace, J.M., and P.V. Hobbs, “Atmospheric Science: An Introductory
Survey”, Academic Press, 1977.
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Chapter 8

The equatorial atmosphere and
ocean

8.1 Tropical meteorological maps

In the extratropics, we have got used to summarizing synoptic meteorolog-
ical situations through the use of maps of pressure (at fixed height) or of
height (at fixed pressure). Such maps are useful because the geostrophic
wind relationship allows us to determine wind speed and direction from this
information alone. However, this kind of map is much less useful in the
tropics, for two reasons:

1. Pressure (or height) variations become weak in the tropics. From the
geostrophic relationship

1
u f,ok x Vp,
the typical magnitude of wind speed is U ~ ép/ (fpL), where ép is the
magnitude of pressure variations over distance L. Near the equator,
f =2Qsin¢ — 0; since (as a matter of observation, as well as physical
common sense) U does not become infinite, we must have ép — 0. So
pressure variations are weak in the tropics: so there is little to plot on
a pressure map.

2. The validity of the geostrophic relationship requires that the Rossby
number R = U/fL be small. As f — 0 in the tropics, this becomes

1
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less valid. So, even if we did plot maps of the (weak) tropical pressure
structure, we could not use these maps to deduce winds as we do in
middle latitudes.

3. A corollary of the previous point is that tropical winds are not neces-
sarily even approximately nondivergent.

The upshot of all this is that pressure (or height maps) are not as much
use in the tropics. To see winds, it is more revealing to plot the winds directly,
either (nowadays) as vector (arrow) wind plots, or as maps of:

1. Streamlines—Iines that follow the direction of the flow. Note that
these are not contours, of streamfunction or of anything else. Their
spacing is of no significance and, unlike contour plots, these lines can
converge into, or diverge out of, a point where the flow is divergent (or
convergent).

2. Isotachs——contours of wind speed.

Such maps take some getting used to; we shall see some examples in what
follows.

8.2 The Trade Wind circulation

The climatological mean upper and lower tropospheric winds in Jan and
July are shown in Figs 8.1 and 8.2. Note the presence, across the Pa-
cific and Atlantic oceans just north of the equator, and across the Indian
ocean south of the equator in January, of lines of low-level convergence in
the flow. These regions are known collectively as the intertropical conver-
gence zone (ITCZ), which is associated with frequent and extensive deep
convection. A schematic is shown in Fig. 8.3 of the low level flow over the
Pacific east of the date line. (The Atlantic region is similar, also the Indian
Ocean region in northern winter, except that the latitude is reversed). A
typical latitude-height cross-section is shown in Fig. 8.4.

The zone of deep cumulonimbus (Cb) and rainfall is located near the
maximum sea surface temperature (SST) but is significantly narrower (we’ll
see the SST distribution in Fig. 8.8, below). The subsidence near the sub-
tropical highs produces a low level inversion—the trade inversion, capping
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8.1. THE TRADE WIND CIRCULATION

Image removed due to copyright considerations.

Figure 8.3: Schematic of the trade wind/ITCZ circulation



8.2. THE TRADE WIND CIRCULATION

Figure 8.3: Schematic of the trade wind/ITCZ circulation
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Figure 8.4: Schematic N-S cross-section of the ITCZ.
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a layer of shallow “trade cumulus”, over the ocean; deserts over land.
Because these structures are long in the E-W direction, it seems sensible to
try (at first) to understand the flow in terms of an axisymmetric (no E-W
variation) theory (such as that for the tropical Hadley circulation, of which
these structures form a part). However, the presence of upper-level westerlies
over the equatorial regions in N winter and immediately south of the equator
in N summer is iconsistent with this, as we will now see.

For inviscid flow under zonal symmetry, angular momentum, whose den-
sity is

m = Qa’ cos® p + uacos ¢ ,

is conserved. Now, suppose all the ascending air within the ITCZ leaves the
boundary layer at altitude g, and that, because of boundary layer friction,
u ~ 0 within the boundary layer. Then the angular momentum density of
the air ascending within the ITCZ is

mg = Qa® cos? g .

Once the air has left the boundary layer, friction becomes negligible and
angular momentum is conserved, so that m = my all along the streamlines
of the flow until it subsides and enters the boudary layer again. In the upper
troposphere, therefore, m = my, whence

Qa? cos® ¢ + ua cos p = Qa® cos® py |

ie.,
cos? g — cos?
u:Qa[ o — 008” ¢] )
Cos
Specifically, at the equator ¢ = 0,
Ueg = —Sla sin® o .

Thus, if g = 0, ue, = 0; otherwise, uqq < 0, i.e., easterly.
Thus, while an axisymmetric model does represent many features of the
observed tropical circulation, it is clearly incomplete.
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8.3 The “Walker Circulation” of the equato-
~ rial Pacific atmosphere

8.3.1 Observations; the atmosphere

To understand the failure of axisymmetric models, we need to consider
the zonally asymmetric nature of the tropical circulation and the processes
driving it. The observed situation is summarized in the following maps of
rainfall (Fig. 8.5), and OLR ' (Fig. 8.6). Note the following:

1. Latent heat release over the Pacific (illustrated in rainfall and/or OLR
maps) is concentrated in the ITCZ, in the South Pacific convergence
(SPC), over continental tropical America and, especially, in the far
western equatorial Pacific around Indonesia and Melanesia.

2. There are upper tropospheric westerlies / lower tropospheric easterlies
over the equatorial Pacific and the opposite pattern (in N winter) over
Indian ocean.

3. The circulation in the equatorial (z-z) plane (Fig. 87) shows up-
welling over the west Pacific and S America but downwelling over
the east Pacific (and east Atlantic)—a suggestion of an overturning
circulation in the longitude-height plane, driven by localized thermal
driving over Indonesia? (cf., circulation in the latitude-height plane—
the Hadley circulation—driven by localized heating in the ITCZ.)

8.3.2 Observations; the ocean

Why is the west Pacific wet, the east Pacific dry? The distribution and
seasonal variation of sea surface temperature (SST) is shown in Fig. 8.8).

Note how the rainfall / OLR pattern mirrors (to a reasonable approximation)
the location of the warm water. Note also the narrow strip of cold water in

}Qutgoing Longwave Radiation (OLR) is measured from satellites; it is the total IR
emission from the Earth. Assuming balckbody radiation, the OLR is a measure of the
temperature of the emitting layer. For radiation from the surface or from low cloud, the
emitting layer is warm, and OLR high. For radiation from high clouds—and only the tops
of deep convective clouds are opaque enough—the emitting layer is cold. Thus, low OLR
corresponds to regions of deep convection and thus of heavy rainfall. In fact, there is a
good quantitative correspondence between rainfall and negative OLR. anomalies.
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Figure 8.6: Outgoing longwave radiation (OLR) in January and July. (Con-
tour interval: 50Wm~2.)
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the equatorial east Pacific, separating bands of warmer water to the north
and south. Note the similar pattern of SST in the Atlantic.

Why does the SST look like this? The equatorial ocean is subjected to a
primarily easterly wind stress. In response to this wind stress, the primary
balance of the mixed layer to a westward wind stress is simply geostrophic:

—fv=1/pH

where 7 is the wind stress and H the depth of the mixed layer. Thus, there is
(for 7 < 0) a northward Ekman flow north of the equator, and a southward
flow to the south. This induces upwelling along the equator, which brings
cold deep water to the surface. This is illustrated in Fig. 8.9.

Image removed due to copyright considerations.

But this is not the whole story; the westward wind stress also drives a
westward surface flow (because the upwelling raises the thermocline near the
equator, requiring a westward flow in geostrophic balance). The surfaces
waters are thus advected westward, becoming warmer because of heat input
from above and because the westward flow produces a convergence in the
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western ocean which opposes the tendency for upwelling there. So, though
the thermocline is elevated in the east and SST is cold there, it is depressed
in the west where the SST is much greater. This is shown in the temperature
cross-section of Fig. 8.10.
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Figure 8.10: Longitude-depth cross-section of temperature across the equa-
torail Pacific ocean.

Note also that, because of the EW boundaries, there is a “piling up” of
water in the west which produces an E-W pressure gradient; below the surface
(away from the direct effects of the wind stress) this pressure gradient drives
an eastward “jet”, the equatorial undercurrent. This current (and other
aspects of the circulation) is confined tightly to the equator—even though
the wind stress distribution is broad—because of the governing equatorial
dynamics.

8.3.3 Theory of the Walker circulation

In the simplest picture of the zonally symmetric Hadley circulation—such
as we depicted in Fig. 8.4—we consider the circulation driven by a latitudi-
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nally localized, but zonally symmetric, heating. As we have seen, the dom-
inant heating—latent heating, implicit in the rainfall and OLR patterns—is
far from zonally symmetric, having a strong maximum in the far western
equatorial Pacific. This suggests an analogous, simple rnodel for the Walker
circulation—the circulation driven by a longitudinally localized heating on
the equator.

Since the prevailing winds are weak near the equator, we neglect any back-
ground flow. If we assume the problem to be linear (which will be accurate
for a sufficiently small amplitude disturbance) then the problem becomes one
of wave propagation (see Fig. 8.11): the only way the circulation can extend

6/d \ & /d 'T‘
i

EQUATOR ‘ N . ‘ . ~ o~ Z

HEATING
REGION

S

Figure 8.11:

beyond the localized heating region is through propagation of information.
As the information propagates, it will be dissipated, at rate d, say. If the
fastest wave propagation (group velocity) eastward is ¢, then we expect the
information to propagate a distance c./d before being dissipated; therefore
the forced circulation should extend a distance ¢./d east of the forcing. Sim-
ilarly, the circulation will extend a distance c,,/d to the west, where c,, is the
fastest westward wave speed. Rossby wave dynamics has taught us not to
expect that ¢, = c,.

In fact, equatorial dynamics are rather special. Rossby waves still exits
there, though they are a special type that are confined to an equatorial “wave
guide”; like middle latitude Rossby waves, the long waves (which are the most
important) have westward group velocity. In addition, however, there is a
new (to us) and rather special class of waves that exist within this wave
guide, known as equatorial Kelvin waves.

Consider a shallow water sysytem of mean depth D; with the addition of
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rotation,

ot i Oz
Note that the second term vanishes under our assumption of linearity about
a motionless basic state. Now, in our midlatitude analyses we have used the
“beta-plane” approximation. We can do the same here, writing (for ¢ < 1)

[ =20sinp ~ 2Qp = Foy

where y = ay and

29}
Bp="==229x 10" m st
a

is the equatorial beta parameter. Making this substitution, and adding the
y-momentum equation and the linearized continuity equation,

Ou oo Oh
5t oyv = gam )
ov oh
B + Boyu = —Q‘a"y ; (8.1)
oh Oou Qv
E + D <% + —8—y-> = 0.

Equations (8.1) actually describe many kinds of wave motion, including
Rossby waves, but there is one special kind of solution that turns out to
be very important. Let’s look for solutions that have v = 0, i.e., flow that is
exactly E-W and vertical. The second of (8.1) immediately gives

oh
Boyu = r (8.2)

there is geostrophic balance in the NS direction, despite the fact that we are
at the equator. The first of (8.1) gives

Ou  Oh

ot~ ez
which is precisely the equation for small amplitude nonrotating motions—the
Coriolis term has dropped out of the u—equation because v = U. Now, for

solutions of the form

’LL(ZE, Y, ZL) — U(y) eilc z—ct)
<h<z,y,t>>‘Re<H<y>> o

(8.3)
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(8.3) gives
cU =gH
whence (8.2) gives
aH _ o
dy ¢

This has solutions

which is a physically reasonable solution that satisfies boundedness as y —
+oo only if ¢ > 0. So these motions are trapped near the equator, with a
characteristic length scale L = 4/c/fy, and propagate eastward. These are
equatorial Kelvin waves. For the kinds of baroclinic motions we are interested
in here?, ¢ ~ 20ms™! and L ~ 1000km (about 10° of latitude).

So, we have Rossby waves to transmit information westward and Kelvin
waves to transmit it eastward. For a dissipation rate of d = 1/(5days), the
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Figure 8.12:

Kelvin waves will reach a distance of ¢/d ~ 10000km, about 90° of longitude.
It turns out that the fastest Rossby wave group velocity is only one-third that
of the Kelvin wave so, in the context of Fig. 8.11, the circulation extends only

2Kelvin waves are nondispersive, so this value is the same for phase and group velocities.
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one-third as far to the west as it does to the east. So we expect a circulation

something like that shown in Fig. 8.12.
The horizontal structure, from a complete linear solution, is shown in the
Fig. 8.13 (u,v and p shown are for the lower level reponse; upper levels are

Image removed due to copyright considerations.

opposite in sign). Note:

e the different structures and different zonal length scales (factor of 3) of
the Kelvin and Rossby components to east and west.

e The twin low level cyclones / upper level anticyclones straddling the
equator just west of forcing.
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8.4 Monsoons

8.4.1 Seasonal variations over the tropics

We saw the characterisitcs of the tropical circulation in Figs. 8.1 and 8.2.
the correponding cloud distributions are shown in Fig. 8.14. As we noted

Image removed due to copyright considerations.

earlier, over the oceans there is a near-equatorial trough of low pressure—
the Intertropical Convergence Zone (ICTZ)—that shows very clearly in the
cloudiness (and rainfall). Over the contintents, however, the low pressure
and cloudiness (and rainfall) is displaced well into the surnmer hemisphere.
In places where there is ocean equatorward of the subtropical land, these
sumertime regions of cloudiness are associated with very heavy rain and
characteristic wind patterns—this is the monsoon circulation.
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2. In northern summer, there is strong northward flow across the equa-
tor in the Indian ocean (especially in the west), eastern Atlantic, and
eastern Pacific. In southern summer, southward cross-equatorial flow
across the Indian Ocean to the date line.

3. In northern summer, low-level westerlies in the northern tropics over
the Indian Ocean, west Africa, and (weakly) eastern Pacific. In south-
ern summer, low-level westerlies in the southern tropics across the east-
ern Indian Ocean and north of Australia.

4. In northern summer, an intense upper-level anticyclone across south
Asia at about 30degN, with an intense easterly jet on its southern
flank, extending from south-east Asia to the western Atlantic. There
are much weaker upper-level anticyclones over northern Mexico and the
eastern north tropical Pacific, though without much of an associated
easterly jet. In southern summer, upper level anticyclones over north-
ern Australia/Melanesia, with an easterly flow equatorward. There
are other anticyclones over south tropical Africa and South America,
though without much, if anything, to indicate an easterly jet (nor low-
level westerlies).

Characteristics of the JJA circulation in the Indian Ocean region are
summarized in Fig. 8.16. The cross-equatorial flow at low levels is
concentrated in the “Findlater jet” on the eastern flank of the East African
mountains®. Note also the strong upper-level anticyclone over south Asia
and easterly jet equatorward of this.

8.5 Monsoon depressions and breaks

Within any monsoon season, rainfall is very variable: on synoptic time scales
(a few days), as “monsoon depressions” propagate across th emonsoon region;
and on time scales of 1-3 weeks, the so-called “active/break” cycle.

In practice, most rain falls in association with monsoon depressions. In
the Indian monsoon, these usually propagate westward across the subcon-
tinent, producing daily variability of rainfall through the monsoon season.
They form over the Bay of Bengal, and move northwestward. In the vertical,

3This jet is actually below the level of the highlands, and has some similarites with
western boundary currents in the ocean.
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Figure 8.16:
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they show a characteristic southwestward tilt (Fig. 8.17).  This structure is

Image removed due to copyright considerations.

reminiscent of the structure of midlatitude baroclinic cyclones; we saw that
they must tilt westward in order to extract potential energy from the back-
ground flow. In fact, while there is still a range of opinions, it now seems
likely that monsoon depressions are also produced in part from baroclinic
instability (like midlatitude cyclones) but with an important contribution
from latent heat release associated with their intense rainfall (like tropical
cyclones).

There is an equally pronounced variability on time scales of 10-20 days,
as illustrated in Fig. 8.18.  The wet/dry periods are referred to as active
monsoon / monsoon breaks. This variability appears to be a manifestation of
the northward propagation of monsoon convection across the subcontinent,
with new convective regions forming to the south.
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Chapter 9

El Nino and the Southern
Oscillation

9.1 Interannual fluctuations of the Walker cir-
culation: the “Southern Oscillation”

In some years, the actual tropical circulation, especially in the Pacific region,
is quite different from the climatological picture. This phenomenon, which
was detected about 60 years ago by Walker and given the name “Southern
Oscillation”, shows up very clearly in anti-phased fluctuations of surface pres-
sure between the west and east Pacific. The extraordinary anticorrelation in
monthly mean surface pressure at Darwin (on the north central coast of Aus-
tralia) and Tahiti is shown in Fig. 9.1. The relationship actually extends
over a wide area; Fig. 9.2 shows the spatial structure of the temporal corre-
lation! of annual-mean SLP with that of Darwin. The correlation reveals a

1If the SLP at location x and time ¢ is p(x,t), the correlation coefficient, C(xo,%),
between the time series of SLP at a reference location xg and any other location x’ is

pl(xf)’ t)p/ (X7 t)

C(x07 X) = — T P
P00, 0725, 0

where the overbar denotes the time average over the entire record and p’ = p — p is the
departure from that average. Note that, if p'(x,t) = ap’(xq,t), where « is a constant,
C = sign(a). If the two time series are perfectly correlated (o > 0), C = +1; if perfectly
anti-correlated (o < 0), C = —1. If they are uncorrelated, p’(xq,)p'(x,t) = 0 and so
C=0.
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trans-Pacific dipole, with structure roughly similar to that of the Walker cell.
In fact, what we are seeing here are interannual fluctuations of the Walker
circulation: along with these pressure variations are variations in rainfall and
in the strength of the easterly Trade winds across the tropical Pacific basin
and beyond. As a measure of these fluctuations, it has become conventional
to define a “Southern Oscillation Index” (SOI) as

Paz'i'— LP arwin
SOI = 10 x 2ELranis = SLPp ,

g

where ¢ is the standard deviation of the pressure difference time series. The
time series of the index is shown in Fig. 9.3; note the existence of dramatic
and apparently isolated “events” (e.g., 1940/41, 1982/83,1997/98) but also
periods of fluctuation (e.g., 1968-77).

These fluctuations are strongest in the near-equatorial Pacific region, but
in fact have a significant influence on the climate in other regions (e.g., note
the wave-like feature over N. America in Fug. 9.2). Fig. 9.4 shows annual
rainfall at several tropical and subtropical locations. Note the tendency for
certain anomalies—drought in eastern Australia, Indonesia/Melanesia, and
as far as India and southeast Africa, and unusually strong rains in the central
Pacific and equatorial Africa-—to coincide with El Nino events.

9.2 SST variations: El Nino and La Nina

Manifestations are not, however, confined to the atmosphere. A phenomenon
known as “El Nino” has been known for centuries to the inhabitants of the
west coast of equatorial S America. Amongst other things, this comprises
unusual warmth of the (usually cold) surface waters in the far eastern equa-
torial Pacific, poor fishing and unusual rains. Fig 9.5 shows a time series
of SST in the far eastern equatorial Pacific. These show clear interannual
fluctuations, on a typical time scale of a few years, with anomalously warm
years occurring maybe twice per decade. Notice that the warm years (e.g.,
1983, 1998) tend to coincide with, or 1111111ed1ate1y follow, periods of strongly
negative SOI (cf., Fig. 9.3).

Some clues as to what is happening in the ocean are revealed by Fig.
9.6. Note the persistent W-to-E decrease of SST we noted before, the
persistence of the warm waters in the west, and the annual development of
very cold water in the east in the second half of the year, associated with
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Figure 9.6: SST (left) and SST anomaly (departure from average for the time
of year), as functions of time and longitude across the equatorial Pacific.
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upwelling of cold water from depth. But, as Fig. 9.6 shows, the extent of
this development varies from year to year. Occasionally, the development is
unusually weak and in extreme cases (e.g., 1997) hardly occurs at all. At such
times, the eastern ocean, though still no warmer than the western equatorial
Pacific waters, is very much warmer than normal for that time of year. It
is these warm events that are referred to as “El Nino”?. In most of these
cases the failure of the cold tongue in the eastern ocean is accompanied by
an eastward encroachment of warm water from the west, so that the SSTs
are anomalously high all the way from the eastern side almost to the date
line.

9.3 The coupled phenomenon

The “El Nino” phenomenon, like the SO, is irregular but has typical period-
icity of a few (2-5, usually) years. In fact, it is evident from Figs. 9.3 and
9.5 that periods of negative SOI correspond with warm periods in the east
Pacific. This is shown more clearly in Fig. 9.7. Note the extemely strong
anticorrelation.

9.4 Theory of ENSO

We have seen earlier that the ocean-atmosphere system is as depicted schemat-
ically in Fig. 9.8. The Walker circulation in the atmosphere 1s sustained by
the east-to-west gradient in SST. The ocean is driven by the wind stress as-
sociated with the easterly Trade winds. But, of course, the strength of the
Trades is determined in part by the strength of the Walker circulation: the
system is circular (Fig. 9.9), with the potential for positive feedback: change
one component, and the whole system responds in such away as to reinforce
the change.

9.4.1 What the observations suggest

The “big picture” of what happens during a warm ENSO event is illustrated
in Fig. 9.10.  In “normal” conditions, there is a strong E-W tilt of the
thermocline and a corresponding E-W gradient of SST, with cold upwelled

>The opposite, cold, phase (e.g., 1998-99) is known as “La Nina.”
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Figure 9.7: Monthly mean SOI index (red) and “Ninol-2” SST anomalies.
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Figure 9.8: Schematic of the tropical Pacific Ocean-atmosphere system.
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Figure 9.10: A schematic of the ocean-atmosphere behavior in the tropical
Pacific basin under “normal” conditions and during a warm event.
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Figure 9.11: SST, winds (and anomalies) during the warm phase (El Nifio)
in Dec 1997.

water to the east and warm water to the west. Atmospheric convection over
the warm water drives the Walker circulation, reinforcing the easterly trade
winds over the equatorial ocean. During a warm El Nino event, the warm pool
spreads eastward, associated with a relaxation of the tilt of the thermocline.
Atmospheric convection also shifts east, moving the atmospheric circulation
pattern with it. This leads to a weakening or, in a strong event, a collapse
of the easterly trade winds, at least in the western part of the ocean. These
features are illustrated by Figs. 9.11 and 9.12, during the two extreme phases
of the phenomenon. Note especially how the Trades were weak during the
warm event of 1997 and strong during the cold event of 1998.

9.4.2 The ocean forces the atmospheric behavior

Remark 1 The atmospheric fluctuations manifested as the Southern Oscil-
lation seem to be an atmospheric response to the changed lower boundary
conditions associated with El Nino 88T fluctuations
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Figure 9.12: SST, winds (and anomalies) during the cold event (La Nifa) of
December 1998.
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This has been demonstrated in a whole range of models, from the very
simplest to full, three-dimensional general circulation models (GCMs). In
simple terms we should expect (on the basis of our simple model) that the
Walker circulation would be reduced (and the Pacific Trades tend to collapse)
if the E-W contrast in SST is reduced as it is during El Nino. Specifically,
one would expect to see equatorial wind anomalies in response to a shift of
the heating region to be much as observed. There have been many studies
using sophisticated atmospheric general circulation models (GCMs). These
experiments quite successfully reproduced the Southern Oscillation, given
the SST evolution as input.

9.4.3 The atmosphere forces the oceanic behavior

Remark 2 The oceanic fluctuations manifested as FEl Nino seem to be an
oceanic response to the changed wind stress distribution associated with the

Southern Oscillation.

This was first argued by Bjerknes, who suggested that the collapse of the
trades in the west Pacific in the early stages of an El Nino would drive (see
Fig. 9.13) an oceanic Kelvin wave (of thermocline depression) eastward; this

wind stress E
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Figure 9.13:
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would deepen the thermocline in the east Pacific some two months later (the
speed of the relevant Kelvin waves in the equatorial ocean is about 2ms™').
This would raise the SST in the east (the upwelling continues but warmer
water is being upwelled to the surface). The basic postulate—that the ocean
responds to the atmosphere—has been confirmed in ocean models forced by
“observed” wind stresses.

9.4.4 ENSO is a coupled atmosphere-ocean phenom-
enon

Remark 3 The El Nino - Southern Oscillation phenomenon arises sponto-
neously as an oscillation of the coupled ocean-atrnosphere system

Bjerknes first suggested that what we now call ENSO is a single phenom-
enon and a manifestation of ocean-atmosphere coupling. The results noted
above appear to confirm that the phenomenon depends crucially on feedback
between ocean and atmosphere. This is demonstrated in coupled models, in
which ENSO-like fluctuations may arise spontaneously. Studies have been
done with coupled madels of varying complexity; such models, given the right
parameters, spontaneously produce ENSO-like oscillations.

9.5 Further reading

A good, basic discussion of all the issues presented here (and several of the
figures), as well as discussion of the impact of El Nino, can be found in:

Philander: FEl Nino, La Nina and the Southern Oscillation. Academic
Press, 1990. (The later chapters are at an advanced level.)

An intcresting series of articles on the large 1982-83 El Nino was published
in Science on 16 Dec 1983. For discussion of the ocean and atmosphere, sce
the articles by Cane and by Rasmusson and Wallace.

Information about past and current behavior can be found on many
web sites, such as http://www.elnino.noaa.gov





