
 

Lecture 9 

Trace Element Abundance Variations in Simple Melt-Solid Systems 

1) We first focus on simple models that are not realistic but a thorough 

understanding of simple models provides insight into trace element behavior in 

more complex systems.  Subsequent to defining and understanding controls on 

abundance variations of trace elements in simple systems, we will consider which 

assumptions are unrealistic and add complexities to the model. 

2) Mass Balance: Consider a block of rock with the concentration of trace element, 

i,  (superscript zero indicates the initial concentration) and D  

(i.e., “i” is a perfectly incompatible element) (Figure 28).   

i
solid / liquid = 0Ci

o = 1

Figure 28.  Mass balance for an element “i” in a solid melt system, where 

S = solid 

L = melt 

F = L/S (wt. ratio) 

Ci
o is the concentration of element “i” in initial solid C  (left box),    are 

concentrations of “i” in the residual solid and derived melt, respectively, in a partially 
melted or crystallized system (right box). 
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Now we ask if this solid mass of rock is melted to 50%, what is the concentration 

of “i” in the melt, i.e.,   = ?  Since we are forcing all of the element “i” out of the 

solid into the melt, the ratio  = 2.  Similarly, if the solid is melted only 

10%,    =10. 

C i
l

 Ci
l /Ci

o

Ci
l /Ci

o

The important result that is characteristic of simple and complex models for 

partitioning of trace elements in solid-melt systems is that the abundance of a 

highly incompatible element in the melt is an inverse function of the melt fraction 

(F in wt.%). 

The mass balance equation showing that the whole system is a sum of its parts, 

i.e., initial solid = partial melt + residual solid, is  

  Ci
o =  Ci

lF + Ci
s(1− F) 

where C  concentration of i in initial solid i
o

 = concentration of i in liquid   Ci
l

 C = concentration of i in the residual solid i
s

F = L/S, i.e. the wt. function of liquid (melt) 

Now we use the definition of partition coefficient, i.e.,  and the 

mass balance equation to derive 

 Di
s /l = Ci

s /Ci
l

  

Ci
l /Ci

o =
1

F + Di
s /l − Di

s /lF
=

1
F + Di

s /l(1− F)
 

This equation has some very important limits: 

(a) As F → 0 

  Ci
l /Ci

o =1/D 
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Consequently, if D < 1, there is a maximum limit to the concentration of “i” in the 

melt and if D > 1, there is a limit to the depletion of “i” in the melt (Figure 29a). 

(b) As D → O 

  C
l
i /Co

i =1/F 

Consequently, for an incompatible element the enrichment of “i” in the melt is 

inverse to the melt fraction (Figure 29a). 

(c) Also for two elements A and B the change in abundance ratio from the initial 

solid to that of the melt is given by: 

(CA /CB)l

  (CA /CB)o
F + Ds /l

= B (1− F)
F + Ds /l

A (1− F)
   so that for F = O the maximum change in 

(CA /CB)l

  (CA /CB)o
Ds /l

 is given by B

  D
s /l
A

(CA /CB)l

  (CA /CB)o ,  e.g., if DB = 0.5 and DA = 0.1, then  

= 5; this is the maximum change that is possible (Figure 29c). 

(d) Note that by using the mass balance equation, we are assuming that the solid 

and melt are homogeneous and in equilibrium. 

(e) Also, the mass balance equation and the equations derived from it are valid for 

partial melting and partial crystallization, i.e., the equations are equally valid 

for partial melting of an initial solid to various degrees or partial 

crystallization of a melt. 

Cs
i /Co Ds /l

i = i

 F + Ds /l
i (1− F)

(f) Also, for the solid the pertinent equation is       

(Figure 29b). 
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 Figure by MIT OpenCourseWare.

CL
i /Co

i =  
 Ds /l

i + F(1− Ds /l
i )

Figure 29.  a) Plot of the equation  showing how CL
i /Co

i  

varies as a function of F (wt. fraction of melt) and Ds /l
 i . 

 
Note that as CL /Co =1 as F → 1, and that there is a maximum limit for CL o

i i i /Ci  = 
1/  D

s /l
i  as F → 0. 

s /l
b) Plot of the equation Cs D/Co

i = i
i

  Ds
i + F(1− Ds /l

i )
 

showing how Cs
i /Co

i  varies as function of F and Ds /l
 i . 

 
c) Ratio of two incompatible elements in partial melts relative to initial ratio in unmelted 
solid, i.e.   (CA /CB)l /(C o

A /CB)   
as a function of F. Note that the maximum increase is given by the ratio of 
partition coefficients but that as F increases the ratio change is lower if the D’s are 
<<1. 
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3) Adding Realistic Complexities: 

So far we have considered the solid to be a single phase with a specific D.  In 

reality rocks consist of multiple solid phases with different D’s.  Hence we must 

define a bulk solid/melt partition coefficient, i.e., for a solid composed of phases 

α,  β, and γ the  

bulk  solid /melt=Dα / lx +Dβ / lxD i α i β +Dγ / l
i x γ

  i  

where x’s indicate wt. fractions of each phase in the solid.   

1Cl
i /Co

i =
 F + Dbulk  solid /melt (1− F)

With this definition, the equation   is valid. 

However, if one wants a  realistic description of how Cl
 i /Co

i  varies with F there 

are two additional complexities: 

(a) The mineral/melt partition coefficient (i.e., Dα /l,Dβ /l,Dγ /l
  must be known 

as a function of melt and phase composition and variations in pressure and 

temperature. 

(b) Dbulk solid/melt will vary as mineral proportions in the solid change. 

As an example consider melting of a solid initially composed of weight 

fractions xα
o ,xβ

o,xγ
o with ∑= xi

o =1.  After partial melting the weight fractions 

of each phase contributing to the melt is Yα + Yβ + Yγ = ΔY, the total amount 

of melt.   

 Therefore the initial bulk solid/melt partition coefficient 

 Dbulk solid /melt = Dα /lxα
o +  o Dβ /lxβ

o + Dγ /lxγ
o  

 becomes during the melting process 
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Dα /l β /l
bulk solid /melt (xα

o − Yα ) + D (xβ
D = o − Yβ) + Dγ /l(xγ

o − Yγ )
  1− ΔY

  . 

It is instructive to consider the effects on Dbulk solid/melt by substituting numerical 

values for xi  and Dmineral /melt
o i .   

Case 1:  For example, assume that xα
i = xβ

o = 0.5,  ΔY = 0.06 with Yα = Yβ = 0.03, 

Dα/  l  = 0.01 and Dβ/  l  = 0.1.  Substitution of these values into the equation for 

variation of Dbulk solid/melt during the melting process leads to  

Dbulk solid/melt = (0.5-0.03)(0.01) + (0.5-0.03)(0.1) = 0.0517. 

Case 2: Now consider the effects on Dbulk solid/melt if only phase  β , melts, i.e., Yβ = 

0.06.  Then Dbulk solid/melt = (0.5)(0.01) + (0.5-0.06) 0.1 = 0.049. 

These calculations illustrate an important point: The major element composition 

in Case 1 is determined by a 50:50 mixture of phases α and β whereas in case 2 

the major element composition of the melt is that of phase β .  Thus the major 

element composition of the two melts are quite different, but since the    

Dbulk

 

solid/melt   for the generic trace element (i) is quite similar, the melts will have  

very

 

similar contents of this trace element.  Hence, this example illustrates how   

major and trace element compositions can be decoupled. 

Case 3: Another point is the sensitivity of trace element abundance to small 

amounts of a residual phase that preferentially incorporates the trace element; i.e. 

the trace element is highly compatible in a residual phase.  For example, consider 

a solid with xα , xγ
o = xβ

o = 0.495 o = 0.01 and 

α
  D /l= 0.01,   Dβ / l= 0.1, Dγ /l

 = 10, Yβ = 0.06 (only phase β   melts). 

In this case: 
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Dbulk solid/melt = 0.495 (0.01) + (0.495 – 0.06)(0.1) + 0.01 (10) 

 = 0.148, i.e., the Dbulk solid/melt value for Case 3 is ~3 times that for Cases 1 

and 2! 

4) Several important Generalizations Can Be Made 

(a) Unless phases melt in their modal proportion, an unlikely situation, the 

Dbulk

 

solid/melt will vary with extent of melting even if the Dmineral/melt

 values remain constant, which is also an unlikely situation. 

(b) If a phase that is initially present completely melts, it has no effect on 

Dbulk

 

solid/melt, and it has no effect on the trace element content of the melt. 

(c) As long as the fraction of a phase entering the melt relative to the initial 

fraction of the phase in the unmelted solid is small, the trace element content 

of the melt is independent of the phases that melt.  Since the major element 

content of the melt is sensitive to the phases contributing to the melt, a 

decoupling of trace element and major element abundance is likely. 

(d) The trace element content of the melt can be controlled by small amounts of a 

phase with a large Dmineral/melt.  An example for melting of upper mantle is 

garnet controlling abundances of heavy rare-earth elements (Figure 18).  For 

melting of crustal rocks, likely examples are accessory phases such as zircon 

and apatite.  In island arc settings rutile is an accessory phase which controls 

Ti, Nb and Ta (e.g., Schmidt et al., 2004).   

(e) Shaw (1970) showed that this variation in bulk solid/melt partition coefficient 

during the melting process can be expressed as Ds /l Do
i = i − PF

 1− F
 where   D

s /l
i  is 
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the bulk solid/melt partition coefficient as partial melting progresses and Do
i  is 

the bulk solid/melt at the beginning of partial melting and

P = Dα /lpα + Dβ /l  etc. where pj
  pβ  is the proportion of phase j in the melt, 

Yjand  (or 
ΔY

∑Pj =1  in our earlier notation).   
j

Shaw further showed that if a solid melts in non-modal proportions the 

equation for modal melting Cl
i /Co 1

i =
+ − F F(1 Di)

  becomes for non-modal 

melting Cl
i /Co 1

i =
 Do

i + F(1− P)
. 

Correspondingly for the residual solid the equation for modal melting

Cs
i /Co Ds /l

i = i
s /l s /l  becomes for non-modal melting: 

  Di + F(1− Di )

Cs
i /Co Do

i = i − PF
1− F

1
Do

i + F(1− P)

⎛ ⎞ 
⎜ ⎟ ⎜ ⎟  . 
⎝ ⎠ 
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