Lecture9
Trace Element Abundance Variationsin Simple Melt-Solid Systems
1) We first focus on simple models that are not redlistic but a thorough
understanding of simple models provides insight into trace element behavior in
more complex systems. Subsequent to defining and understanding controls on
abundance variations of trace elements in simple systems, we will consider which
assumptions are unrealistic and add complexities to the model.

2) Mass Balance: Consider a block of rock with the concentration of trace element,
i, C? =1 (superscript zero indicates the initial concentration) and Diso”d/ liquid _

(i.e, “i” isaperfectly incompatible element) (Figure 28).
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Figure 28. Mass balance for an element “i” in a solid melt system, where

S=solid

L = melt

F =L/S (wt. ratio)
C? is the concentration of element “i” in initial solid CP (left box), CS and C{ are
concentrations of “i” in the residual solid and derived melt, respectively, in a partially

melted or crystallized system (right box).



Now we ask if this solid mass of rock is melted to 50%, what is the concentration

of “i” inthe melt, i.e., c/=? Since we are forcing all of the element “i” out of the
solid into the melt, the ratio Cf/CP = 2. Similarly, if the solid is melted only
10%, C/ /C? =10.
The important result that is characteristic of simple and complex models for
partitioning of trace elements in solid-melt systems is that the abundance of a
highly incompatible element in the melt is an inverse function of the melt fraction
(Finwt.%).
The mass balance equation showing that the whole system is a sum of its parts,
i.e., initial solid = partial melt + residual solid, is
CP= C{F+C{a-F)
where CP concentration of i ininitial solid

C{ = concentration of i in liquid

C?= concentration of i in the residual solid

F=L/S, i.e. thewt. function of liquid (melt)
Now we use the definition of partition coefficient, i.e, D¥'‘ =C}/C! and the

mass balance equation to derive
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cf/cP = =
U R -DY'E F+DY(1-F)

This equation has some very important limits:

@ AsF—0

C//cP=1/D



Consequently, if D <1, thereis amaximum limit to the concentration of “i” in the
melt and if D > 1, thereisalimit to the depletion of “i” in the melt (Figure 29a).
(b) AsD—> O

Cl/CP =1/F
Consequently, for an incompatible element the enrichment of “i” in the melt is
inverse to the melt fraction (Figure 29a).
(c) Also for two elements A and B the change in abundance ratio from the initial

solid to that of the melt is given by:

(CalCg)’ F+DY'(1-F)

(Ca IC )O_F DSM(l = so that for F = O the maximum change in
A'LB TUA U=

1 s/t 4
(CalCq)_ is given by DBM , €g., if Dg =0.5and Da = 0.1, then (€alCp)_
(Ca/Cg)° DA (Ca/Cg)°

= 5; thisis the maximum change that is possible (Figure 29c).

(d) Note that by using the mass balance equation, we are assuming that the solid
and melt are homogeneous and in equilibrium.

(e) Also, the mass balance equation and the equations derived from it are valid for
partial melting and partia crystallization, i.e., the equations are equally valid
for partial melting of an initial solid to various degrees or partia

crystallization of amelt.
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(f) Also, for the solid the pertinent equation is C}/CP = <7
F+D/(1-F)

(Figure 29b).
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DS + Fa-Df )
varies as a function of F (wt. fraction of melt) and DiS/ £

Figure 29. &) Plot of the equation Cl/CP = showing how Cl/c?

Note that as CH/CP =1 as F — 1, and that there is a maximum limit for CH/CP =

1D’ asF — 0.
¢
D?

b) Plot of the equation C7/C =
T DS Fa-DY)

showing how C$/C? varies as function of F and D/
¢) Ratio of two incompatible elements in partial melts relative to initia ratio in unmelted
solid, i.e. (Cp /Cg)" /(Cp /CR)°

as a function of F. Note that the maximum increase is given by the ratio of

partition coefficients but that as F increases the ratio change islower if the D’s are
<<l



3) Adding Realistic Complexities:
So far we have considered the solid to be a single phase with a specific D. In
reality rocks consist of multiple solid phases with different D’s. Hence we must
define a bulk solid/melt partition coefficient, i.e., for a solid composed of phases
o, B, and y the

phulk solid/meit=D{'x, +DP'"x+D]'"x,
|
where X’ sindicate wt. fractions of each phase in the solid.

1
= Dbulk Solid/melt(l_ F)

With this definition, the equation Cf ICP = isvalid.

However, if one wants a realistic description of how Cf ICP varies with F there

are two additional complexities:

() The mineral/melt partition coefficient (i.e., D*'*,DP/*,DY/! must be known
as a function of melt and phase composition and variations in pressure and
temperature.

(b) Dbulk solid/melt

will vary as mineral proportionsin the solid change.

As an example consider melting of a solid initially composed of weight
fractions x%,xB x¥ with Y=x| =1. After partial melting the weight fractions
of each phase contributing to the melt is Y* + YP + Y¥ = AY, the total amount
of melt.

Therefore the initial bulk solid/melt partition coefficient

pbulk solid/melt _ oty pBleyB L pyrltyy

becomes during the melting process



obuik solid/matt _ D**(x§ = Y)+ D" (< - YP) + DY* - Y7)
1-AY '

It is instructive to consider the effects on D™ 4Met by qubstituting numerical

values for x and pmineral/melt.

Case 1: For example, assumethat x{* = x% =05, AY =0.06 with Y*=Y" =0.03,

D¥’ = 0.01 and D¥ ¢ = 0.1. Substitution of these values into the equation for
variation of DPk 4™t 4ring the melting process leads to

ppulk sdlidimelt — (9 5.0.03)(0.01) + (0.5-0.03)(0.1) = 0.0517.

Case 2: Now consider the effects on D™* 1™t jf only phase B, melts, i.e., YP =
0.06. Then DPUk=lidmelt — (9 5)(0.01) + (0.5-0.06) 0.1 = 0.049.

These calculations illustrate an important point: The major element composition
in Case 1 is determined by a 50:50 mixture of phases o and 3 whereas in case 2
the major element composition of the melt is that of phasef. Thus the major
element composition of the two melts are quite different, but since the

phulk sdlidmelt for the generic trace element (i) is quite similar, the melts will have
very similar contents of this trace element. Hence, this example illustrates how
major and trace element compositions can be decoupled.

Case 3. Another point is the sensitivity of trace element abundance to small
amounts of aresidual phase that preferentially incorporates the trace element; i.e.

the trace element is highly compatible in aresidua phase. For example, consider
asolid with x% =xB =0.495, x¥ =0.01 and

D*/*=0.01, DP*= 0.1, DY/*= 10, YP = 0.06 (only phasep melts).

In this case:



ppulksolidmelt — 5 495 (0.01) + (0.495 — 0.06)(0.1) + 0.01 (10)
= 0.148, i.e., the D™ 9™ y 4l ye for Case 3 is ~3 times that for Cases 1

and 2!

4) Several important Generalizations Can Be Made

() Unless phases melt in their modal proportion, an unlikely situation, the
pbulksolidmelt il vary with extent of melting even if the D™ era/met
values remain constant, which is aso an unlikely situation.

(b) If a phase that is initialy present completely melts, it has no effect on
Dbulkolidmelt and it has no effect on the trace element content of the melt.

(c) As long as the fraction of a phase entering the melt relative to the initial
fraction of the phase in the unmelted solid is small, the trace element content
of the melt is independent of the phases that melt. Since the major element
content of the melt is sensitive to the phases contributing to the melt, a
decoupling of trace element and major element abundance is likely.

(d) The trace element content of the melt can be controlled by small amounts of a
phase with a large D™"™¥™  An example for melting of upper mantle is
garnet controlling abundances of heavy rare-earth elements (Figure 18). For
melting of crustal rocks, likely examples are accessory phases such as zircon
and apatite. Inidand arc settings rutile is an accessory phase which controls

Ti, Nb and Ta(e.g., Schmidt et a., 2004).

(e) Shaw (1970) showed that this variation in bulk solid/melt partition coefficient

ps/¢ _ DP—PF
S/6_ i T8

during the melting process can be expressed as where DiS/ “is



the bulk solid/melt partition coefficient as partial melting progresses and Di° is
the bulk solidmelt a the beginning of partia melting and
P=D%""p* + DB/’pP etc. where p' is the proportion of phase j in the melt,

and > Pj=1(or I—\J( in our earlier notation).

J

Shaw further showed that if a solid melts in non-moda proportions the

equation for modal melting Cf ICP __ becomes for non-modal
F+F@1-D;)
melting C/ /C? ___r
DP + F(1-P)

Correspondingly for the residual solid the equation for modal melting

CP/CP = il
== s/ s/
Di + F(l— Di )

DY - PF 1
cy/c =— ( 5 J
1-F (DP+F@-P)

becomes for non-modal melting:
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