Simple (Ideal) Ternary Solution
Binary:
G = Xau4 + Xpus, FaRT(Xaln X4 + Xp5InXp)
Ternary:
G = Xap + Xpuy + Xcpe +aRT(Xaln X4+ Xpln Xp + XcoIn X¢)
Notes:

1. X¢ < 1, 80 In X < 0. Therefore, adding component C' increases Seon fig., and so makes G
more negative.

2. ZZC: 4 Xipg defines a triangular plane: mechanical mixing.

Like a binary, we evaluate u’s (say, p4) by “correcting” G at the compotition of interest towards
composition A:
Binary:

G
- 1— X,
pa =G ( A)dXA
or
pre
- 1— X )2
G+ ( A)dXA



Ternary:

A<—XB <—XA—>B

oG 0G
=G+ Xp | — + X [ =
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where Xp/X¢ is a constant ratio.

(1-Xa)




Symmetrical Ternary
Assume G, is a polynomial of degree 2 in X5 and Xs.
Ger = A+ BXo + CX3+ DX5 + EXo X5+ FX3
as X1 — 1, G, - 0=A
as Xo — 1, Gep, = 0=B+ D
D=-B
as X3 — 1, G - 0=C+ F
F=-C
Gew = BXy + CX3 — BX2 + EXyX3 — CX?
Reintroducing X1
Ger = BXo X, +CX3X1+ (B+C+ E)X2 X3
Wag,, =B
Wgy,y =B+C+E
Wa,, =C
Gew = Wa,, Xo X1 + W, X3 X1 + Wg,, X2 X3

aRT Iny, = Wi X3 4+ Wi3Xa 4+ XoX3(Wig + Wiz — Wag)

Asymmetrical Ternary
Assume G, is a polynomial of degree 3 in Xs and X3.
Gex =A+ BXo+CX3+DX3+EXoX3+ FX2 +GX5+ HXo X3+ IX3X3+ JX5
as X1 — 1, Ge, - 0=A
as Xo — 1, Goy = 0=B+D+G
B=-D-G
as X3 — 1, Gy 2 0=C+F+J
C=-F-J
Gex = D(X3 — Xo) + EXo X3 + F(X3 — X3) + G(X5 — Xo) + HXo X3 + IX3 X5+ J (X5 — X3)
Gew = XiXo(—D — G) + X1 X3(—D — 2G) + X7 X3(—F — J) + X1 X3 (—F — 2J)
+X3X3(-D+E~F—-2G+1—-J)+X2X3(-D+E—~F -G+ H—2J)
+X1X2X3(—2D + E — 2F — 2G — 2.J)

Gew =W, X3 Xo + Way, Xa X1 + W, X7 X3 + Wy, XX, + Wa,, X3 X3 + Wea,, X2 X,



And setting
W12 =-D-2G

ngE—D—G
W13£7F72J
ngE—F—J

W23E—D+E—F—G+H—2J
Wso=-D+E—-F—-2G+1—-J
Wias =G 1H 1I—i—J
123 = 5 5

We obtain

1 1 1
Gew = Wi2(X1X2)(Xo + §X3) + War (X1 Xo) (X1 + §X3) + Wis(X1 X3)(Xs + §X2)

1 1 1
+W31 (X1X3) (X1 + §X2) + Waz (X0 X3) (X3 + §X1) + Wi (X2 X3) (X2 + §X1)

+Wiag (X1 X2X3)



Ternary Solutions

Ger = aRTX1Inv + aRTXsInys + aRT X31ny;3

aGem
( ax, >X3 =aRTInvy —aRT Invys

0Ges
=aRT1 — aRT1
(F%) =orrinn —arTins,

Obtain G.; as a function of the partials and ; only.

0Gey 0G ey
= TX,1 — X TX51 - X TX;51
Gex = aRTX Iny 2<6X1)X3+aR 2 lnyy 3(8X1>X2+04R 3lny
O0G ey 0G ¢y
aRTInm = Geo + X <3X1 )Xs X <3X1 >X2
0G ey 0G ey
RTIns = Guy + X X
“ s * 1<8X2>X3+ 3<8X2>X1

0Gex 0G ey
aRT1n73:G6z+X1<8X3> +X2<8X3>
X X1



Unmixing Mechanisms for Non-Ideal Solutions
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Above: Free-energy versus composition and temperature versus composition diagrams illustrating
the exsolution mechanisms of nucleation and growth and of spinodal decomposition. (A) shows free-
energy curves gppeqa and geg/. for the strain-free phases, and ¢cgg/. for the strained phases, at
temperature T'. The compositions of the two coexisting pairs of strain-free phases indicated by the
common tangents (labeled strain-free), are “Opx” and “Aug (strain-free),” and “Pig (strain-free)” and
“Aug (strain-free).” The compositions of the coexisting pair of coherent phases, indicated by the
common tangent (labeled coherent), are given by the position of “Pig” and “Aug.” (B) shows a free-
energy curve for C2/c phases strained by coherency. (C) shows the pseudobinary phase diagram.
The coherent spinodal and chemical spinodal are curves defined by the loci of the inflection points
(s), on the free-energy curves ¢co/. and gea/e, respectively, as a function of temperature. The
coherent solvus and strain-free solvus are curves defined by the loci of the common-tangent points
of free-energy curves ¢ca/. and geo/., respectively. The orthopyroxene-augite strain-free solvus
(outermost curves) is defined by the common-tangent points on free-energy curves gppcq and gez)e-



