12.520 Lecture Notes 25

The Stream Function

For continuum mechanics in general and fluid mechanics specifically, a number of
“laws” are expressed in terms of differential equations. For example,
1) Newton’s second law (F = ma) (general)
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2) Rheology (constitutive equation) (Newtonian fluid)
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3) Definition of strain rate (general)
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4) Continuity (conservation of mass) (incompressible)
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These 4 coupled first order differential equations, plus boundary conditions, can be

solved to determine fluid flow for a variety of interesting applications.
Alternatively, they can be combined to form a single fourth order differential equation.

For fluids, this fourth order equation often involves the stream function.

Consider a 2-D flow with velocities Vi, V3 in the X;, X3 plane (v, = 0)
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Incompressibility is automatically satisfied!
[In general, if v=Vx¥, V.-v=0. Here ¥ =(0,¥,0)]

Substituting into the (steady) Navier-Stokes equation
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Subtract:
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V* is called biharmonic operator.

For uniformorno f: V¥ =0

Advantages of using the biharmonic operator are
1. only one equation

2. efficient solution



Disadvantage: Loss of “physical insight”.

Physical Interpretation of Stream Function
Consider triangle APB.
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For incompressible fluid,
fluxap + fluxgp + fluxag =0
V0%, +V,0X; +flux,,; =0
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Difference in ¥ represents the flux crossing the curve.

Solution of biharmonic
. V0X32
Polynomials (e.g., for Conette flow, ¥ = _7)

Separation of variables:
Y =X(X)Z(2)
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Solution: ¥ = [(A+ Bz)exp(%)Jr (C+ DZ)exp(—%)] sin(=%)

Physical boundary conditions: T,=0 T =0
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In X', X;"coordinates, at X; = &(X,):
033 =0
Oy =03 =0

Have solution to biharmonic in terms of X,, X, -- easily applied at X3 = 0.

Need to take physical (X,', X;') boundary conditions and
1. rotate to X,, X; space

2. Taylor’s series expansion
3. subtract out hydrostatic reference state

Result (to first order in &/ 1)
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4. solve biharmonic.



Postglacial Rebound

Decay of Boundary Undulations (1/2 space, uniform )
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T = Tp cos (kxq)

e Assume uniform#

Figure 25.1
Figure by MIT OCW.

e Subtract out lithostatic pressure P = p— pgx,

e Assume pg uniform

e Use stream function ¥
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Solution: ¥ :[(A + Bk, )exp (—kx, )+ (C + Dkx, )exp (kx, ):l sin kx,

Boundary conditions:

at x3 = 0 (mathematical, not physical)
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at x3 — oo, must be bounded
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In order that o, =0 at X, =0,
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Then
v, = Ak*x, exp (—kx; )- sinkx
V3 = Ak(1+kx;)exp (—kx, )- cos kx,
at X, =0 v, =¢ = Ak cos(kx,)
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Substitute for v; and integrating = p| _ =27k*Acoskx,
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Solving forn: n=
4r

For curves shown,



71 5000 yr .
=n: 107 Pa
A 3000 km

Note: stream function ~ exp(—kx,)=-exp(- 27/71 X

Falls offto ~1/e atx;: —
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Senses to fairly great depth

= postglacial rebound doesn’t reveal the details of mantle viscosity structure,

but only the gross structure.

Note: Behavior at Hudson Bay and Boston different:

Hudson Bay Boston
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Continuous uplift Subsidence, then uplift
Is this consistent with uniform 1/2 space?
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Details depend on geometry of ice load and elastic support of load.

Suppose we require faster relaxation for short A than for long A.



elastic “lithosphere”

low viscosity “asthenosphere”

depth higher viscosity “mesosphere”

How to get solution? What are the boundary conditions?
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