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Glacial/Interglacial ‘oscillations’: WHY?
Time-series analysis

12.740 Lecture 4 Spring 2008



SPECMAP 150 ka indicators

source: Imbrie et al. (1992)

Image removed due to copyright restrictions.



We now understand how climate has changed 
over the past few 105 years.   Similar basic patterns are 
seen in most indicators (with a few loose ends). We can 
begin to ask the question: Why?

• Two approaches:

1. "The physics": derive ice ages from first principles.  Good luck! (call 
me when you get there).

2.  "Correlation (not causation)": look for similarities (coincidences?) 
between certain driving forces known from first principles and the climate 
record.  Examine the odds that such a correspondence is due to chance.  If 
the odds are good, look into the relevant mechanism in more detail. To be 
successful, this approach needs: (1) reliable climate record not excessively 
modified by bioturbation; (2) but the record also needs to be reasonably 
long so that many cycles are available for statistical tests.  Must 
compromise here! Eventually need to come to an accommodation with 
“the physics”.



History:
• ~1840: Agassiz proposed massive continental glaciation; debate ensued which 

eventually was decided in his favor          

• ~1860: Croll proposed that changes in the earth's orbital parameters were responsible 
for glaciation.  Theory received a mixed reception.

• ~1920 Milankovitch undertook detailed calculations which quantified the expected 
variations in the earth's orbital parameter and proposed that summer insolation at 
65°N was the key [more or less summer insolation => more or less glacial melting]. 
Theory encountered a mixed reception.

• 1950's:  Emiliani found stronger evidence for cyclic oscillations; tried to revive 
Milankovitch.  Problem: time scale.

• 1960's, 70's: Barbados data (and hence correct time scale) revived interest in 
Milankovitch hypothesis.  Theory was being taken seriously, but it was considered 
far from proven.

• 1976: Hays, Imbrie, Shackleton paper.  Overcame most of the resistance to some 
degree of orbital influence over climate (at least as a "pacemaker" of ice ages).



At present, relatively few people doubt that insolation changes play a role in 
climate change, but there are reasonable questions as to their importance relative 
to other factors. Even: to what extent is climate actually predictable? Are there 
significant internal resonances that interact with orbital forcing? What is the origin 
of large amplitude sub-orbital climate variability? Can we parlay our 
understanding of past climate change into better predictions of future climate 
change?

Climate models incorporate a lot of first principle physics (e.g. laws of motion, radiation 
physics, and thermodynamics), but because of the enormous complexity of the system and 
limited computer capabilities, these models contain less definitive representations of sub-
grid scale processes and of poorly understood processes (e.g. convective precipitation and 
clouds; sea ice formation and melting; relation between soil, vegetation, evaporation, 
precipitation and river runoff).  In the aggregate, these factors are extremely important, so 
they cannot be left out. Instead they are handled by empirical parameterizations containing 
"fudge factors" which are "tuned" to give a reasonable representation of modern climate. 
This approach is OK for weather forecasting, because many of these factors can't change
fast enough to effect tomorrow's weather. But for climate change, these uncertainties are a 
serious problem. The sensitivity of the models to various forcing factors might be seriously 
misestimated by these parameterizations. One way to test the sensitivity of these models is 
to see how they behave when driven by well-known forcing functions (e.g. a recent 
volcanic eruption). One of the best known forcing functions linked to large climate change 
is the effect of the earth's orbital parameters on incoming radiation.



Changes in the earth's orbital parameters and their 
influence on radiation receipt at the top of the atmosphere I

Root cause: gravitational interaction between the earth with the sun and other 
planets. Precession changes are caused by angular momentum and the 
gravitational field of the Sun; tilt/eccentricity variations due (mainly) to Sun-
Jupiter tug-of-war for the earth.

The seasons result from the tilt of the earth's axis relative to the plane of 
the orbit (view from plane of orbit:

Edge plane view (circular orbit):

 

 
 

northern  
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northern  
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Oblique view, with exaggerated eccentricity



Eccentricity of Present Earth 
Orbit Around Sun (to Scale)

Present eccentricity = 0.017
Range:  0 - 0.06

100 & 400 kyr periods

F1 F2
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e = c / a = (a2-b2)1/2 / a



Precession of elliptical orbit
(with respect to fixed stars)



Precession

Eccentricity amplitude-modulates precession parameter

P = 25,700 years

southern 
summer



Elements of the Earth’s Orbit 
(Berger, 1981)



Precession influence on climate:
why 23,000 years not 25,800?



Obliquity (tilt)

Higher obliquity leads to higher 
summer insolation at high latitudes  
(and slightly less at low latitudes).

ε

Obliquity varies between 
~21.8° and 24.4°; at 
present the obliquity is 
23.44°. Affects the latitude 
of the tropics and the arctic 
circle.  Period is ~41,000 
years, and is relatively 
regular. Think of this as 
part of a solar system 
angular momentum 
oscillator (angular 
momentum conserved in 
solar system, but with 
transfers between objects)



Obliquity change re-apportions radiation between polar regions and tropics



Periodic 
changes in 

orbital 
geometry 

modulate solar 
radiation 
receipts 

(insolation)



Insolation at 65°N, “June 21”

Note: integrated over a full summer-
centered half year, effect of 
obliquity is stronger at high latitudes



Integrated over a half-year 
centered on summer, 
obliquity dominates high 
latitude insolation and 
precession dominates 
lower latitude insolation
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Summary: orbital influence on insolation at the top of the atmosphere
• These changes in the earth's orbital elements affect radiation received at the top of the atmosphere 

("insolation") as a function of hemisphere, latitude, and time of year.

Effect of precession/eccentricity: 

Inter-hemispheric radiation receipt: the hemisphere whose summer occurs during 
perihelion receives more insolation than the other hemisphere). The higher the 
eccentricity, the stronger the contrast.

Seasonal contrast within a hemisphere: as a hemisphere alternates between 
periods of summer perihelion and winter perihelion, the seasonal contrast in 
insolation is modified. The two hemispheres are out of phase with respect to this
effect.

Effect of obliquity: high-latitude summer insolation: high tilt leads to more radiation received at 
high latitudes during summer  (that comes at the expense of the mid- and low-latitudes; high-
latitude winters not affected by changes in tilt).

• These orbital characteristics can all be calculated accurately via Newtonian mechanics into the 
distant past (many millions of years). Accumulation of uncertainties (e.g. in relative masses of 
planets; shape and density distribution of planets) causes absolute values (i.e., which side of the 
sun is the earth on at some exact point in time in the future?) to be uncertain beyond several 
million years, although the frequencies are probably known reasonably well beyond that time.  
For the last million years, we may regard these calculations as virtually unquestionable.



How do we make the comparison between 
these precisely calculable orbital changes and 
the record of climate change?

• Curve-matching is always popular.  But given 
subjectivity, the possibility of phase lags, and a 
rubber time scale, this approach has drawbacks.

• Objective methods: many are possible, but for 
cyclic processes, Fourier analysis is a natural. It is 
nonetheless possible to be fool oneself with it's 
mathematical elegance, however; the statistics 
assume certain characteristics that might not apply 
to the data at hand.



Oxygen isotopes compared to 
summer insolation at 65°N



Fourier time-series analysis
• Prism analogy: look at component frequencies of a time-variant process. Fourier 

showed that any reasonable function of time can be represented as a sum of 
sines & cosines.

• Theorem: Let G(t) be any well-behaved (continuous; differentiable; continuous 
derivatives) function.  If we sample this function discretely in uniform time 
intervals (creating a series G(t1), G(t2), ...G(tn), then there is one (and only one) 
complex function S(f) = A(f) + iB(f) [where s is frequency, tn is the record 
length and i is the square root of -1] such that

• G(t) = Σ (aj sin fj + bj cos fj) 

• where fj =  j/tn for j = 1 ... n

• These harmonics fj are orthogonal (i.e. one cannot reconstruct fj wave as 
Σfk≠j waves and the harmonics fj are complete (i.e. any "reasonable" signal in t 
can be fit perfectly & uniquely).
– This is the discrete Fourier Transform



Formal definition of the Fourier Transform

where ω = 2πf

Complex short-hand: eiy = cos y + i sin y

S( f ) = G(t)e−iωtdt
−∞

+∞

∫
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The Fourier Transform is reversible:

The Fourier Transform of a single sine wave is a spike at a 
single frequency. Similarly, the Inverse Fourier Transform of 
a single spike frequency is a sine wave.

G( t) = S( f )eiωf df
−∞

+∞

∫



Computation of the Fourier Transform
Accepting the truth of the theorem, the discrete Fourier Transform is just an application of simultaneous equations. For 
discrete uniformly-sampled data, we are taking N observations of G(t) from t1 to tN [whose record length (period) is P=tN-
t1)and the spacing between samples is Δt=P/(N-1)] and converting to N/2 pairs of sine and cosine coefficients. The number of 
coefficients is equal to the number of observations, so this is an exercise in solving a system of N simultaneous equations. 
Let A = an N x N square array of the sine and cosine time series for each of the harmonics, where each row n of the array (for 
j= 0 to N-1) is:

sin(2π jΔt)  cos(2π jΔt)  sin(4π jΔt)  cos(4π jΔt) sin(6π jΔt)  cos(6π jΔt) … sin(2π(N/2) jΔt)  cos(2π(N/2) 
jΔt)

e.g.:
sin(2π/N 0*Δt)       cos(2π/N 0*Δt)       sin(4π/N 0*Δt)      cos(4π/N 0*Δt) … sin(2π(N/2) 0*Δt)     cos(2π(N/2) 

0*Δt)
sin(2π/N 1*Δt)       cos(2π/N 1*Δt)       sin(4π/N 1*Δt)      cos(4π/N 1*Δt) … sin(2π(N/2) 1*Δt)     cos(2π(N/2) 

1*Δt)
A = …

sin(2π/N (N-1)Δt)  cos(2π/N (N-1)Δt)  sin(4π/N (N-1)Δt)  cos(4π/N (N-1)Δt  … sin(2π(N/2) (N-1)Δt)  cos(2π(N/2) (N-1)Δt)
…

and let x = an N x 1 vector of the Fourier coefficients (a, b) arranged vertically:

and let g = an N x 1 vector of the discrete observations of G(t):

a1 g(t1)
b1 g(t2) So:  Ax = G

x = a2 g = g(t3)
b2 g(t4)
… …
aN/2 g(tN-1)
b g(t )



Visual representation of FT as 
simultaneous equations



Solution to the simultaneous equations
Because the Fourier Transform theorem says:

(a) g = A x

then the Fourier coefficients are given by the simultaneous equations matrix solution:

(b) x = A-1 g

(You might wonder if the rows must be linearly independent, ensuring that the inverse of A exists. In effect, the 
Fourier theorem is a statement that they must be, for "reasonable" time series functions)

The above method is one way to calculate the Fourier transform. However, the fastest, most efficient 
route is the Fast Fourier Transform (FFT). This is a simple routine which calculates the solution to 
the series of simultaneous equations in a highly efficient way. It occupies about 64 lines of a BASIC 
program; see "The Visible FFT" spreadsheet to understand the algorithm). Typically, you either 
interpolate your data to give a series with a power of two of evenly spaced (in time) data points 
(which usually makes sense because paleoclimatic data sets are usually unevenly spaced in time), or 
add "trailing zeroes" to your data set until you reach a power of two.

Older papers use the method of "Blackman and Tukey" which was developed before the FFT. It was 
commonly used throughout the SPECMAP project. It is based on the "autocorrelation" technique, 
which involves calculating the correlation coefficient of a time series relative to itself 
(autocorrelation) after sliding the series by a variable number of "lags". The methods are 
mathematically equivalent, however, and the results should not depend strongly on the technique 
used.



Alternative methods
Expressing the method as in the equation above points the way to alternative ways of calculating the spectra in situations 
involving unevenly spaced data and/or time series with gaps. In those cases, one can convert the original time series to a 
time series with sin, cos (x) values corresponding to "times" (t) of the individual measurements, regardless of their 
spacing. So the N rows in matrix A become

sin(2π(t1- t1)/P)    cos(2π(t1- t1)/P)    sin(2*2π(t1- t1)/P)    cos(2*2π(t1- t1)/P)    … sin(N*2π(t1- t1)/P)    cos(N*2π(t1- t1)/P)
sin(2π(t2- t1)/P)   cos(2π(t2- t1)/P)  sin(2*2π(t2- t1)/P)    cos(2*2π(t2- t1)/P)    … sin(N*2π(t2- t1)/P)     cos(N*2π(tt2- t1)/P)

……

sin(2π(tN- t1)/P)  cos(2π(tN- t1)/P)  sin(2*2π(tN- t1)/P)  cos(2*2π(tN- t1)/P)   … sin(N*2π(tN- t1)/P)   cos(N*2π(tN- t1)/P)

where ti is the time corresponding to each observation (t1 is the first observation) and P is the time length of the series of 
observations (tN-t1).

This format can result in a situation where there are more Fourier coefficients (which must remain as the harmonics of 
the time series record length) than observations. This situation can be dealt with by ignoring the highest harmonics (i.e., 
chopping off the right hand side of the equation as necessary). In fact, it is possible to ignore most of the higher 
harmonics entirely [which often makes sense in paleoclimatic time series, where the error on the time scale renders the 
highest Fourier coefficients meaningless), resulting in a situation where there are more observations than Fourier 
coefficients. In this case, the equation can be solved using a least squares approach:

x = (ATA)-1 AT g

These methods aren't as computationally efficient as the FFT, but given the power of modern computers, the 
drain on computing power is trivial when relatively few spectra are being calculated.



FT needs “infinite data”; gets it by stacking record end-to-end repeatedly

The finite discretely sampled time series Fourier transform treats 
the data as though it were periodic, i.e. the measured time series 
repeats itself over and over again.  This leads to some problems: if 
first and last data points are quite different, the FT must use many 
high-frequency harmonics of the fundamental frequency in order to 
create the sharp break. This problem is handled by windowing (see 
later)



Nyquist Folding Frequency and Aliasing

With a fixedx discrete sampling frequency, it is not possible to observe 
frequencies that are higher than half that sampling frequency. Even worse, 
the higher frequencies come back at you as if they were signals of lower 
frequency (aliasing):

(Aliasing is the reason that the wagon wheels in old western movies 
look like they are moving backwards.) 

This problem can be avoided by using a filter to eliminate frequencies 
that are higher than the Nyquist frequency (such as sampling at a very 
high rate and integrating the signal for the duration of the sampling 
interval). Bioturbation is actually helpful here - you won't find daily 
cycles in oxic marine sediment cores.



Harmonics

The spectrum of a sawtooth (repeated linear trend) includes 
harmonics of the fundamental period P:
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Detrending and Tapering
Detrending: removing the long-term trend from the data (by a linear regression (or any 
other appropriate trend, which need not be linear).

time

Tapering: in order to ensure that there are no abrupt mismatches between first and last data points (e.g. 
a glacial connecting to an interglacial with no transition), the time series can be tapered to zero at the 
beginning and end. For example, a "cosine bell" can be used for this purpose (a cosine maximum to 
minimum multiplier) for the first and last 10% of the data series. The subject of tapering is 
complicated, and at present it is generally agreed that the "optimal" method is David Thompson's 
"multitaper method", which blends the result from a family of tapers.

time



Power Spectrum

Electrical analogy:   Power =  i2R 
(where i = electrical current and R = resistance)

Amplitude of cycle at frequency j is (aj
2 + bj

2)1/2

(i.e., the length of the vector in (sin,cos) space, 
the complex conjugate (a+bi)(a-bi)
[where i is the imaginary number, square root of -1]

By analogy, then, aj
2 + bj

2 = power at frequency fj (i.e., the (amplitude squared) of cycle j).

The measurement units of power are amplitude2/ (cycles per time unit).



What does “power” mean for a climate time series?

The logic behind using power spectra for climate processes is debatable.  Power 
spectra arose in the field of electrical engineering, so the choice is obvious in that 
context. It is not so obvious in the case of sea level; even if you would want to 
know the change in gravitational potential energy due to changing sea level, it is 
not proportional to the square of the amplitude. Perhaps the best justification for 
“power” is that it is closely related to variance; many of the same mathematical 
concepts we use for variance statistics apply to power. 

Sometimes, it might often be more useful to present amplitude spectra, which can 
simply be related to the wiggles one sees in the data (e.g. meters change of sea 
level). Typically, this is not done, solely because of the electrical origin of spectral 
analysis; statistical packages usually derive spectral estimates using programs 
written for electrical analysis. In any event, it is straightforward to take the square 
root of the power to get the amplitude.

2 Σ (ai
2 + bi

2) Δf =   Σ Xi
2

frequency data
bandwidth



Periodogram

Power

Frequency (cycles per time unit)

95%CI

log(power)

Frequency (cycles per time unit)

95%CI

The periodogram is a plot of 
power or log10(power) vs/ 
frequency, which is evenly 
spaced for the Fourier 
Transform



Statistical significance of the periodogram 1
White noise: equal energy (power) per frequency band Δf (almost equivalent to random number series in 
time).

Just as tossing a small number of coins is unlikely to give precisely 50% heads and tails, a finite random 
time series is unlikely to have precisely equal energy per Δf; in effect, "counting statistics" play a role; 
the longer the time series, the less the fluctuations within Δf.

Hence, a finite time series of a non-periodic function will show peaks and valleys in the periodogram.  
We would like to define criteria so that we can assess the likelihood that a peak observed in a real time 
series is due purely to chance.

There are a number of "rules" around which purport to tell you "how many cycles" you need to prove a 
periodic process; typically these rules specify 5 or 10 cycles. While there is a grain of truth within these 
rules, they can be misleading. Is a record with only 9 cycles unconvincing yet one with 11 cycles totally 
convincing? The statistics follow a continuum, so there is little statistical difference in the reliability of 
records with 9 or 11 cycles. Perhaps a more fundamentally misleading characteristic of these "rules" is 
that they ignore the relationship between the cycle you are trying to see and the characteristics of the rest 
of the variability. A very weak cycle (which nonetheless exists) can be hidden in the "noise" of the data 
in the physical system; it can take many more than 10 cycles to verify the existence of a weak cycle.  On 
the other hand, the characteristics of a very strong cycle can be estimated reliably with just a few cycles 
(although it is another thing to prove that those cycles couldn't have originated from chance). Basically, 
these "rules" (and even the more objective statistical tests) are oversimplifications; they do not excuse 
YOU from understanding what is required to prove the point that you are trying to make.



Statistical significance of the periodogram II

e. For the periodogram, the following statistics apply to assess whether a peak of 
power density Pi is higher than expected from a white noise spectrum:

90% CI 95% CI

Upper Bound 19 Pi 39 Pi

Lower Bound 0.33 Pi 0.21 Pi

Obviously these limits are not very good! If we are to see more subtle characteristics 
of the spectrum, it is necessary to improve these statistics.



Daniell Estimator
Estimating a spectrum using a smoothing window (Daniell Estimator)

As with most collections of numbers, we can improve error bounds by averaging (at the 
expense of detail).  In a power spectrum, we can average adjacent frequency bands at the 
expense of frequency resolution.  

Several methods have been proposed to accomplish this averaging; for most geophysical 
time series, the simplest is adequate: the Daniell Estimator:

(Note: in order to keep the spectrum frequency bands the same as the periodogram bands when 
averaging even numbers of bands, it is common to add the n-1 bands on either side of the central 
band, and add 1/2 of the bands on either side of these n-1 bands).

Pj =
Pj+ k

2n +1k=−n

k=+n
∑



Statistical significance of Daniell Estimator
"Equivalent Degrees of Freedom" (EDF)  r = 2n where n = # of periodogram bands 
included in average.

Chi-square table

γ

r 0.025 0.05 0.95 0.975
2 0.051 0.103 5.991 7.378
4 0.484 0.711 9.488 11.143
6 1.237 1.635 12.592 14.449
8 1.690 2.733 15.507 17.535

__
Bound = (r/γ) Pj



Example
Example: suppose 2 periodogram bands are averaged (r=4) and we want to know the upper and lower 
bounds that must be exceeded to define a spectral peak at the 95% confidence interval:

_            _
The upper bound is :  4/.484 Pj = 8.3  Pj

_         _
The lower bound is :  4/11.143 Pj = 0.36 Pj

The statistics of these bounds roughly goes as the square root of n, i.e. similar to counting statistics

(2) Since the bounds are multiplicative, error bars are fixed on a log-scale diagram:

n=2                     n=4                  n=9
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The problem of frequency resolution
From the definition of the Fourier bands, it is obvious that resolution 

is poor for periods that are only a few multiples of the record length.  What 
are you to do if you want a higher resolution spectrum?  The safe answer is: 
Don't try to cheat mathematics: get a longer record!  There is a more 
dangerous alternative, however.  Suppose you then add a string of trailing 
zeros equal in number to the number of measurements.  In effect, you have 
doubled the length of your time series without having added any data!  While 
this may worry you, it doesn't bother the Fourier Transform at all, which will 
still happily compute the spectra.  And it doesn't work too badly: in a test case 
where two sine waves corresponding to adjacent frequency bands in an 
original time series had the resolution doubled this way, the new FFT in fact 
was able to resolve the two sine frequencies.  However, in doing so, it also 
generated "side bands" with significant amplitudes.  So the extra resolution of 
these two bands was obtained at the expense of "contaminating" the rest of the 
spectrum.  So in a real time series with a few strong frequency peaks, this 
method will compromise your ability to look at the rest of the spectrum.  
Caveat FFTer!



Optimal Spectral Estimation I

Tapering results in some loss of spectral power (most severe at low frequencies) and 
(in some cases) loss of resolution between frequency bands. But it also minimizes 
"leakage", the tendency for spectral power to "leak" from one frequency into the 
estimate for adjacent frequencies.

Example: a pure 41 kyr sine wave sampled 256 times during 510 kyr :
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Note that the detrended (nearly raw) time series shows spectral power at either side 
of the actual frequency which "isn't really there". Tapering improves this situation, 
but does not eliminate all of the side-bands.



Optimal Spectral Estimation II

This observation leads to a concern over "optimal spectral estimation"

The simple Fourier transform/periodogram method described below works 
reasonably well for simple situations where a small number of well-separated dominant 
frequencies are present, and where you are only interested in dominant power at the 
dominant frequencies and not at the true weak power in the gaps between the dominant 
frequencies.

In other situations, where you really care about extracting the best possible 
estimate of the true spectrum, you must move on to other techniques. Arguments have 
raged over optimal spectral estimation, but it seems that the winner is David Thompson, 
who has shown that the best approach is to use a "multi-taper" strategy in which the 
averaged Fourier transforms (from independent spectra computed using a set of 
"eigentapers") are used to retain as much information as possible. [Actually what he says 
is :"...spectral estimates based on the simple periodogram or unwindowed FFT (or 
equivalently, on sample autocorrelations) including indirect estimates (also known as 
Blackman-Tukey (1958) estimates) or worse, adding misfit to bias, the autoregressive or 
'maximum-entropy' estimates, must be considered both obsolete and extremely 
dangerous." (Thompson, 1990)]. This approach is beyond the limits of this course, but it 
is the right thing to do if you must have the best spectra.



Coherence and Phase
• How well do two time series resemble each other (as a function of frequency)?

Coherence = “Correlation coefficient in frequency space” - a number varying between 0 and 1

• What are the phase relationships of the two time series?

time -->

Phase Lag

time-->

highly coherent (with a phase lag)



Calculating the cross-spectrum, coherence, and phase I
Given two 'records' (X,Y) each has a power spectrum

a2 + b2 = (a + ib)(a - ib) 

(i.e., the power spectrum is the complex conjugate of the Fourier coefficents)

ΦX(S) = Σ X(S) X*(S)

ΦY(S) = Σ Y(S) Y*(S)

(where * denotes complex conjugate; both ΦX(S) and ΦY(S) are real and  > 0)

3. The cross-spectrum  ΦXY is similarly defined:

ΦXY = Σ X(S) Y*(S)

(aj+ibj)(cj-idj) = ajcj + bjdj - (ajdj-cjbj)i

=  C + iQ (a complex number)



Calculating the cross-spectrum, coherence, and phase II
Coherence is the normalized cross-spectrum (the cross-spectral power normalized to the 
power of the two series)

Φxy
coh =  _________          =  C + iQ (a complex number)

(ΦxΦy)1/2

0 ≤ coh(x,y)  ≤ 1

a. Band-averaging must be done (same definition as Daniell estimator), except that when 
computing phase, you must band-average the complex numbers before computing phase 
(think of the beating of nearby frequencies...).  This is done as complex addition of vectors in 
the phase plane

_      _
C2 + Q2

coh =  _______
_   _ 
P1 P2

_    _   
coherence magnitude = (C2+Q2)1/2

phase 
_ _

φ = tan-1 (Q/C)



Coherence and Phase on the complex plane:
Q

C

Q

C

Φ



Example:
X:    aj + ibj

Y:    cj + idj

XY = (a+ib)(c-id)

ajcj + bjdj = Cj

bjcj - ajdj = Qj

Then band-average Cj + iQj (Daniell estimator) on the complex plane

Coherence                              Phase

1. cross-spectrum 1. cross-spectrum
2. compute coherence 2. band-average
3. Avg -> coherence         3. Compute phases



Statistical significance of coherence and phase
Coherence: critical values for the test of hypothesis q=0

n                  95% CI           90% CI

2                  0.975               0.948
3                  0.881               0.827
4                  0.795
5                  0.726               0.662
6                  0.671
7                  0.627

10                  0.533               0.475

However, these statistics only apply to time series where the time scales are precisely accurate. 
Paleoclimatic time series are often "tuned" to match orbital variability - in this case the coherence 
between orbital parameters and the coherence of the tuned time series is falsely elevated and isn't a 
particularly useful statistic.

b. Phase

error = arcsin [ [(1-coh2)/(coh2(2n-2))]1/2 t2n-2 (α/2)]

where t is the t-statistic and α is the desired confidence level, i.e. for 95% CI, α = 1-.05.



Frequency Filtering of Time Series
Suppose you would like to “filter out” the signal within a band of 
frequencies. There are several ways this can be done; the 
simplest is: Fourier Transform the data, multiply the coefficients 
by multipliers (ranging from 0 to 1), and then perform the 
Inverse Fourier Transform.

(warning: multipliers should change slowly in adjacent 
bands; i.e. don't go from 0 to 1 in adjacent bands)



Elements of the Earth’s Orbit 
(Berger, 1981)



Summary: orbital influence on insolation at the top of the atmosphere
• These changes in the earth's orbital elements affect radiation received at the top of the atmosphere ("insolation") 

as a function of hemisphere, latitude, and time of year.

Effect of precession/eccentricity: 

Inter-hemispheric radiation receipt: the hemisphere whose summer occurs during 
perihelion receives more insolation than the other hemisphere). The higher the 
eccentricity, the stronger the contrast.

Seasonal contrast within a hemisphere: as a hemisphere alternates between 
periods of summer perihelion and winter perihelion, the seasonal contrast in 
insolation is modified. The two hemispheres are out of phase with respect to this
effect.

Effect of obliquity: high-latitude summer insolation: high tilt leads to more radiation received at high latitudes 
during summer  (that comes at the expense of the mid- and low-latitudes; high-latitude winters not affected by 
changes in tilt).

• These orbital characteristics can all be calculated accurately via Newtonian mechanics into the distant past 
(many millions of years). Accumulation of uncertainties (e.g. in relative masses of planets; shape and density 
distribution of planets) causes absolute values (i.e., which side of the sun is the earth on at some exact point in 
time in the future?) to be uncertain beyond several million years, although the frequencies are probably known 
reasonably well beyond that time.  For the last million years, we may regard these calculations as virtually 
unquestionable.



Integrated over a half-year 
centered on summer, 
obliquity dominates high 
latitude insolation and 
precession dominates 
lower latitude insolation
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Oxygen isotopes compared to 
summer insolation at 65°N



Computation of the Fourier Transform
Accepting the truth of the theorem, the discrete Fourier Transform is just an application of simultaneous equations. For 
discrete uniformly-sampled data, we are taking N observations of G(t) from t1 to tN [whose record length (period) is P=tN-
t1)and the spacing between samples is Δt=P/(N-1)] and converting to N/2 pairs of sine and cosine coefficients. The number of 
coefficients is equal to the number of observations, so this is an exercise in solving a system of N simultaneous equations. 
Let A = an N x N square array of the sine and cosine time series for each of the harmonics, where each row n of the array (for 
j= 0 to N-1) is:

sin(2π jΔt)  cos(2π jΔt)  sin(4π jΔt)  cos(4π jΔt) sin(6π jΔt)  cos(6π jΔt) … sin(2π(N/2) jΔt)  cos(2π(N/2) 
jΔt)

e.g.:
sin(2π/N 0*Δt)       cos(2π/N 0*Δt)       sin(4π/N 0*Δt)      cos(4π/N 0*Δt) … sin(2π(N/2) 0*Δt)     cos(2π(N/2) 

0*Δt)
sin(2π/N 1*Δt)       cos(2π/N 1*Δt)       sin(4π/N 1*Δt)      cos(4π/N 1*Δt) … sin(2π(N/2) 1*Δt)     cos(2π(N/2) 

1*Δt)
A = …

sin(2π/N (N-1)Δt)  cos(2π/N (N-1)Δt)  sin(4π/N (N-1)Δt)  cos(4π/N (N-1)Δt  … sin(2π(N/2) (N-1)Δt)  cos(2π(N/2) (N-1)Δt)
…

and let x = an N x 1 vector of the Fourier coefficients (a, b) arranged vertically:

and let g = an N x 1 vector of the discrete observations of G(t):

a1 g(t1)
b1 g(t2) So:  Ax = G

x = a2 g = g(t3)
b2 g(t4)
… …
aN/2 g(tN-1)
b g(t )



Visual representation of FT as 
simultaneous equations



Periodogram

Power

Frequency (cycles per time unit)

95%CI

log(power)

Frequency (cycles per time unit)

95%CI

The periodogram is a plot of 
power or log10(power) vs/ 
frequency, which is evenly 
spaced for the Fourier 
Transform



Coherence and Phase
• How well do two time series resemble each other (as a function of frequency)?

Coherence = “Correlation coefficient in frequency space” - a number varying between 0 and 1

• What are the phase relationships of the two time series?

time -->

Phase Lag

time-->

highly coherent (with a phase lag)



Correlation does not require CausationCorrelation does not require Causation



Hays, Imbrie, & Shackleton (1976) data

Hays, Imbrie, & Shackleton (1976)
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Hays, Imbrie and Shackleton (1976) outline:

• Start with time scale derived from V28-238 linear 
depth interpolation from B-M magnetic reversal (730 
ka) (supported by radiometric dates from Barbados 
terraces).

• Spectral analyses of δ18O, radiolaria seem to indicate 
peaks at orbital frequencies (precession, obliquity, 
eccentricity)

• Use frequency filtering to examine phase 
relationships; note that phases are consistent for the 
radiometrically-dated interval but diverge for the 
preceding period.

• ASSUME that the phase divergence is due to errors 
in the time scale, TUNE the time scale to get 
consistent phases.



Evans and Freeland (1977)
Science 198:528-530

Image removed due to 
copyright restrictions.



Molfino (1980)
tropical Atlantic



Bassinot et al. (1994)
EPSL 126:91-108

Imbrie and Imbrie
orbit->ice volume model
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Specmap stack compared to ODP 607 vs depth



SPECMAP phase wheel



Imbrie et al. (1992) Last 150 ka

Imbrie et al. (1992)
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Climate black box



Reading

Baksi A. K., Hsu V., McWilliams M. O., and Farrer E. (1992) 40Ar/39Ar dating 
of the Brunhes-Matuyami boundary and the Pleistocene geomagnetic polarity 
timescale. Science 256, 356-357.

Bassinot, F. C., L. D. Labeyrie, et al. (1994). “The astronomical theory of 
climate and the age of the Brunhes-Matuyama magnetic reversal.” Earth Planet. 
Sci. Lett. 126: 91-108.

Berger A. L. (1981) The astronomical theory of paleoclimates. In Climatic 
Variations and Variability: Facts and Theories  (ed. A. Berger) pp. 501-538.  
Reidel

Koopmans, L.H., The Spectral Analysis of Time Series, Academic Press, New 
York, 1974. [This book is somewhat difficult reading in parts, but it contains all 
of the relevant formulae and statistical tables, as well as examples].

*Hays, J.D., J. Imbrie, and N. Shackleton (1976) Variations in the earth's orbit: 
pacemaker of the ice ages, Science 194:1121-1132.

*Imbrie, J. et al. (1984) The orbital theory of Pleistocene climate: support from 
a revised chronology of the late marine δ18O record, in Milankovitch and 
Climate, (ed. A. Berger et al.), D. Reidel ~Press, Hingham, Mass.

Imbrie, J., et al. (1992). “On the structure and origin of major glaciation cycles 
1. Linear responses to Milankovitch forcing.” Paleoceanogr. 7: 701-738.

Imbrie, J., et al. (1993). “On the structure and origin of major glaciation cycles 
2: the 100,000-year cycle.” Paleoceanogr. 8: 699-736.

Imbrie, J., A. McIntyre, et al. (1989). Oceanic response to orbital forcing in the 
late Quaternary: observational and experimental strategies. Climate and 
Geosciences. A. Berger and e. al. Netherlands, Kluwer: 121-164.

Martinson, D. G., N. G. Pisias, et al. (1987). “Age dating and the orbital theory 
of the ice ages: development of a high-resolution 0 to 300,000 years 
chronostratigraphy.” Quat. Res. 27: 1-29.

Raymo M. E., Ruddiman W. F., Martinson D. G., Clement B. M., and Backman
J. (1989) Late Pliocene variation in Northern Hemisphere ice sheets and North 
Atlantic Deep Water circulation. Paleoceanogr. 4, 413-446.

Ruddiman, W. and A. McIntyre (1981) Oceanic mechanisms for amplification
of the 23,000 year ice volume cycle, Science 212: 617-627.

Shackleton, N.J. and N.G. Pisias (1985) Atmospheric carbon dioxide, orbital 
forcing, and climate, in The Carbon Cycle and Atmospheric CO2: Natural 
Variations Archean to Present (eds. E.T. Sundquist and W.S. Broecker), Am. 
Geophys. Union, pp.303-318.

Shackleton, N. J., A. Berger, et al. (1990). “An alternative astronomical 
calibration of the lower Pleistocene timescale based on ODP site 677.” Trans. 
Royal Soc. Edinburgh: Earth Sci. 81: 251-261.

Spell, T.L. and I. McDougall (1992) Revisions to the age of the Brunhes-
Matuyama boundary and the pleistocene geomagnetic polarity timescale

Tauxe L., Herbert T., Shackleton N. J., and Kok Y. S. (1996) Astronomical 
calibration of the Matuyama-Brunhes boundary:  Consequences for magnetic 
remanence acquisition in marine  carbonates and the Asian loess sequences. 
Earth Planet. Sci. Lett. 140, 133-146.

Thompson, D. (1990) Quadratic-inverse spectrum estimates: applications to 
paleoclimatology, Phi. Trans. R. Soc. Lond. A 332:539-537.

Tiedemann R., Sarnthein M., and Shackleton N. J. (1994) Astronomic timescale 
for the Pliocene Atlantic δ180 and dust flux records of Ocean Drilling Program 
site 659. Paleoceanogr. 9, 619-638.



Did 
increasing 
Northern 

Hemispher
e summer 
insolation
cause the 
end of the 

last ice 
age?


	Glacial/Interglacial ‘oscillations’: WHY?�Time-series analysis�
	SPECMAP 150 ka indicators
	We now understand how climate has changed over the past few 105 years.   Similar basic patterns are seen in most indicators (
	History:
	At present, relatively few people doubt that insolation changes play a role in climate change, but there are reasonable questi
	Changes in the earth's orbital parameters and their influence on radiation receipt at the top of the atmosphere I
	Eccentricity of Present Earth Orbit Around Sun (to Scale)
	Precession of elliptical orbit� (with respect to fixed stars)
	Precession
	Elements of the Earth’s Orbit (Berger, 1981)
	Precession influence on climate:� why 23,000 years not 25,800?
	Obliquity (tilt)
	Obliquity change re-apportions radiation between polar regions and tropics
	Periodic changes in orbital geometry modulate solar radiation receipts (insolation)
	Insolation at 65°N, “June 21”
	Integrated over a half-year centered on summer, obliquity dominates high latitude insolation and precession dominates lower la
	Summary: orbital influence on insolation at the top of the atmosphere
	How do we make the comparison between these precisely calculable orbital changes and the record of climate change?
	Oxygen isotopes compared to summer insolation at 65°N
	Fourier time-series analysis
	Formal definition of the Fourier Transform
	The Fourier Transform is reversible:
	Computation of the Fourier Transform
	Visual representation of FT as simultaneous equations
	Solution to the simultaneous equations
	Alternative methods
	FT needs “infinite data”; gets it by stacking record end-to-end repeatedly
	Nyquist Folding Frequency and Aliasing
	Harmonics
	Detrending and Tapering
	Power Spectrum
	What does “power” mean for a climate time series?
	Periodogram
	Statistical significance of the periodogram 1
	Statistical significance of the periodogram II
	Daniell Estimator
	Statistical significance of Daniell Estimator
	Example
	The problem of frequency resolution
	Optimal Spectral Estimation I
	Optimal Spectral Estimation II
	Coherence and Phase
	Calculating the cross-spectrum, coherence, and phase I
	Calculating the cross-spectrum, coherence, and phase II
	Coherence and Phase on the complex plane:
	Example:
	Statistical significance of coherence and phase
	Frequency Filtering of Time Series
	Elements of the Earth’s Orbit (Berger, 1981)
	Summary: orbital influence on insolation at the top of the atmosphere
	Integrated over a half-year centered on summer, obliquity dominates high latitude insolation and precession dominates lower la
	Oxygen isotopes compared to summer insolation at 65°N
	Computation of the Fourier Transform
	Visual representation of FT as simultaneous equations
	Periodogram
	Coherence and Phase
	Correlation does not require Causation
	Hays, Imbrie, & Shackleton (1976) data
	Hays, Imbrie and Shackleton (1976) outline:
	Evans and Freeland (1977)�Science 198:528-530
	Molfino (1980)�tropical Atlantic
	Bassinot et al. (1994)� EPSL 126:91-108
	Specmap stack compared to ODP 607 vs depth
	SPECMAP phase wheel
	Imbrie et al. (1992) Last 150 ka
	Climate black box
	Reading
	Did increasing Northern Hemisphere summer insolation cause the end of the last ice age?

