
Figure of rare earth elemental 
abundances removed due to copyright 
restrictions. 
 
See figure 3.1 on page 26 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Given that the r-process nucleosynthetic production ratio for 

235U/238U is roughly 1.35 ± 0.3, use the present-day terrestrial 

isotope ratio to estimate the “age of the elements” assuming 

a one-time production event for these isotopes.  
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Figures of recession velocity vs. distance 
removed due to copyright restrictions. 
 
See figure 4.4 on page 50 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Image by MIT OpenCourseWare. After How to Build a Habitable Planet.
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Figure of uranium and thorium ratios vs. 
time and age removed due to copyright 
restrictions. 
 
See figure 7.1 on page 81 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Figure of 87Sr/86Sr vs.  87Rb/86Sr (atomic) 
removed due to copyright restrictions. 
 
See figure 12.7 on page 179 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 

8



© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.
Source: Amelin, Yuri, Alexander N. Krot, et al. "Lead Isotopic Ages of Chondrules and
Calcium-Aluminum-Rich Inclusions." Science 297, no. 5587 (2002): 1678-83.
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Figure of 207Pb/204Pb vs. 206Pb/204Pb with 
4567 million year reference evolution 
line removed due to copyright 
restrictions. 
 
See figure 10.3 on page 121 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Figure of (26Al/27Al)INI x10-5 and time 
relative to CAI formation (x106 years) vs. 
various meteorites removed due to 
copyright restrictions. 
 
See figure 11.7 on page 153 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Figure of ages of various meteorites with 
respect to solar system formation 
removed due to copyright restrictions. 
 
See figure 13.1 on page 193 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Figure of 107Ag/109Ag vs. 108Pd/109Ag, x105 
of Gibeon Metal and Normal Silver 
removed due to copyright restrictions. 
 
See figure 12.9 on page 182 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Figure of ε182 of Early Archaean samples 
and 3.8 billion year igneous mix with 
inset of ε182 vs. Cr/Ti for Early Archaean 
samples, Enstatite chondrites, Allende 
(C1), and Iron meteorites removed due 
to copyright restrictions. 
 
See figure 19.1 on page 247 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Figure of ε182 of carbonaceous 
chondrites, ordinary chondrites, and iron 
meteorites removed due to copyright 
restrictions. 
 
See figure 11.8 on page 154 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Solar nebula contracts and flattens 
into a single spinning disk. The Sun 
will form in the center of the disk 
containing all the elements, but 
mostly h and He.

Rock and metal condense in 
the hot inner solar system.

Rock, metal and ices 
condense in the outer 
solar system.

Solid particles stick togeather. 
Once larger objects have 
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to their volatility.
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Figure of ε182(Earth) - ε182(initial)  vs. time 
(millions of years) and 
Concentration/concentration in C1 vs. 
time (millions of years) removed due to 
copyright restrictions. 
 
See figure 18.3 on page 241 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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Figure of Depletion relative to C1 and 
refractory element vs. Increasing 
siderophile behavior of refractory and 
transitional elements and volatile 
elements and low-pressure metal-silicate 
partition coefficients removed due to 
copyright restrictions. 
 
See figure 18.1 on page 232 of Tolstikhin, 
Igor and Jan Kramers. “The Evolution of 
Matter: From the Big Bang to the Present 
Day.” Cambridge University Press, 2008. 
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 Image by MIT OpenCourseWare. After figure 98 in Heide & Wlotzka, Meteorites.
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© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.
Source: Blundy, Jon, and Bernard Wood. "Partitioning of Trace Elements between Crystals
and Melts." Earth and Planetary Science Letters 210, no. 3 (2003): 383-97.
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Courtesy of Mineralogical Society of America. Used with permission. 29
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