
Lecture 3: Radiometric Dating – Simple Decay 
The oldest known rocks on Earth: 4.28 billion years - Nuvvuagittuq belt region, N’ 
Quebec on the shores of Hudson Bay.  O’Neil et al., Science 321 (2008) 1828-1831. 

Courtesy of Jonathan O'Neil. Used with permission.
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Terminology 

Radioactive:  unstable nuclide, decays to a daughter nuclide (stable or unstable) 

Radiogenic:  a nuclide that is the product of decay 

Cosmogenic:  produced by interaction of cosmic rays with matter 

Anthropogenic:  produced artificially 

Primordial:  existed at the beginning of the Solar System 

Activity (A):  A = the activity of a nuclide is shown in round brackets (A) 

Secular equilibrium:  (A)1 = (A)2 = (A)3     or    112233 

Closed system:  system with walls impermeable to matter 
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Simple Radioactive Decay 
 

Radioactive decay is a stochastic process linked to the stability of nuclei.  The rate of change in the number of 
radioactive nuclei is a function of the total number of nuclei present and the decay constant . 
   

- dN / dt =  N 
 

The sign on the left hand is negative because the number of nuclei is decreasing.  Rearranging this equation yields 
 

- dN / N =  dt 
 

and integrating yields 
- ln N =  t + C 

 
C is the integration constant.  We solve for C by setting N = N0 and t = t0.  Then 
 

C = - ln N0 
Substituting for C gives 

- ln N =  t – ln N0 
We rearrange 

ln N – ln N0 = –  t 
Rearrange again 

ln N/N0 = –  t 
Eliminate the natural log 

N/N0 = e - t 
And rearrange 

N = N0 e - t 
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Simple Decay: Radioactive Parent  Stable Daughter 
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Simple Decay: Radioactive Parent  Stable Daughter 
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Simple Decay: Radioactive Parent  Stable Daughter 

decay of parent 

ingrowth of daughter 

Half-lives 

N = N0 e
-t 

D* = N0 (1 - e-t) 

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10

D0 

Peucker-Ehrenbrink, 2012 
6



…continue… 
 
Unfortunately, we don’t know N0 a priori, but decayed N have produced radiogenic daughters D*.   
 
Therefore                      D* = N0 – N 
 
Replacing N0 with N e  t yields                     D* = N e  t – N 
 
Rearranged          D* = N (e  t – 1)     or, for small  t,          D* = N  t ,  
 
The number of daughter isotopes is the sum of those initially present plus those radiogenically produced. 

 
      D = D0 + D* 

Therefore,   D = D0 + N (e  t – 1)     or, for small  t,          D = D0 + N  t ,  
This is the basic radioactive decay equation used for determining ages of rocks, minerals and the isotopes 

themselves.  D and N can be measured and  has been experimentally determined for nearly all known 
unstable nuclides.  The value D0 can be either assumed or determined by the isochron method. 

 
For small t we can simplify with a Taylor series expansion 
 
  et = 1+ t + (t)2/2! + (t)3/3! + … ,  simplifies to et = 1+ t  , for small t  
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…continue… 
 

The half-life, that is the time after which half of the initially present radioactive atoms have decayed (N = 1/2 
N0 at t = T1/2) is 

 
T1/2 = ln 2 /  

 
Sometimes you will also find reference to the mean life t, that is the average live expectancy of a radioactive 

isotope 


t = 1 /  
 
The mean life is longer than the half-life by a factor of 1/ln 2 (1.443).  For the derivation of t see page 39 of 

Gunter Faure’s book Principles of Isotope Geology (2nd edition). 
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The Isochron Method 

Consider the decay of 87Rb to 87Sr 

 

87
37Rb    87

38Sr  + +       +  
 
 
 

Neutrons  

Conservation rules 
 
Reaction: 
 
Charge 
Baryon # 
Lepton # 
 

 85Rb          87Rb 

84Sr           86Sr   87Sr  88Sr 

Courtesy Brookhaven National Lab. 9

http://www.nndc.bnl.gov/chart


The Isochron Method 

Consider the decay of 87Rb to 87Sr 

 

87
37Rb    87

38Sr  + +        +  
 
 
 

Conservation rules 
 
Reaction: n   p      +     e-    +    ve  
 
Charge  0  +1           -1         0 
Baryon #      +1  +1      0         0 
Lepton # 0   0    +1        -1 
 

Neutrons  

 85Rb          87Rb 

84Sr           86Sr   87Sr  88Sr 

Courtesy Brookhaven National Lab. 10
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The Isochron Method 
Consider the decay of 87Rb to 87Sr 

 

87
37Rb  87

38Sr + e-+  ne +  E 
 
 
Substituting into the decay equation 

87Sr = 87Sr0 + 87Rb (et - 1) 
 
Dividing by a stable Sr isotope, 86Sr 

 

87Sr/86Sr = (87Sr/86Sr)0 + 87Rb/86Sr (e t - 1) 
 
In a diagram with axes  x = 87Rb/86Sr and  y = 87Sr/86Sr this equation defines a line,  y = mx + b 
With the slope 
   m = (e t - 1) 
 
and constant b, the initial ratio 
 
   b = (87Sr/86Sr)0 
 

Prerequisites: 

1. Isotopic homogeneity at start (identical 87Sr/86Sr) 

2. Chemical variability at start (variable Rb/Sr) 

3. Closed system for parent/daughter isotopes from t=0 to t=T 

84Sr             86Sr    87Sr   88Sr  

 85Rb            87Rb  

Neutrons  

http://www.nndc.bnl.gov/chart/

87Rb/86Sr 

87Sr 
86Sr 

m = (et - 1) 

b  
 

 slope -1 

Peucker-Ehrenbrink, 2012 

Courtesy Brookhaven National Lab.
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Mixing 
The mass balance of any element is determined by input (usually from a number of sources) and removal (usually 
a number a sinks).  Mixing is thus a fundamental process in quantifying the elemental and isotopic composition of 
a reservoir.  If we mix two components (A and B) in different proportions, a mixing parameter (f) can be defined 
as 
 

(1)  f = A / (A + B) 
 
The concentration (C) of any element in the mixture (M) is then 
 

(2)  CM = CA f + CB (1 - f) 
 
If A and B are mixed in various proportions (f), the concentration in the mixture (CM) is a linear function of f. 
 

(3)  CM = f (CA - CB) + CB 
 
The mixing parameter f can be calculated from the concentration of an element in the mixture if the end-member 
concentrations are known.  It is important to understand that mixing is considered an instantaneous process in 
these models.  It therefore does not matter whether the input is spatially homogenous along the ocean shores or 
concentrated in one spot.  This is, obviously, a simplification - in reality the distribution of sources does matter 
and point sources can lead to local deviations from "average" values. 
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Two components with two elements 
 

In the next step we consider mixing two components (A and B) with two elements (1 and 2).  The concentrations 
of element 1 and 2 in A and B are then CA1, CA2, CB1 and CB2, respectively.  The concentration of element 2 in a 
mixture (CM2) of A and B is related to the concentration of element 1 in the mixture (CM1) according to 

 
(4) CM2 = CM1 [(CA2 - CB2)/(CA1 - CB1)] + [(CB2 CA1 - CA2 CB1)/(CA1 - CB1)] 
 
This equation represents a straight line in coordinates CM1 and CM2. 
All mixtures of component A and B, including the end-member compositions, lie on this line.  Therefore, an array 
of data points representing mixing of two components can be fitted with a mixing line.  If the concentration of one 
of the two elements in the end-members is known, above equation can be used to calculate the concentration of the 
other element.  In addition, the mixing parameter f can be calculated. 
 
For the number of atoms of an element (N, units of numbers of atoms, n), the accounting involves the 
concentration of the element (C, units of g/g), the weight of the sample that is being processed (wt, units of gram), 
the atomic weight of the element with a specific isotope composition (AW, g/mole), the abundance of the isotope 
(Ab, unitless, expressed as fraction) of the element, and Avogadro’s number (#, 6.022 1023 atoms per mole): 
 

N = (C  wt  # Ab) / AW            dimensional analysis: (g/g  g  n/mole) / (g/mol) = n 
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Two components with different isotopic composition 
(e.g., Isotope Dilution) 

 
We can expand the above equation even further and include mixing of two components with different isotopic 
compositions.  The most convenient way of setting up mass balances for isotopes is to start with only one isotope.  
The number of atoms of isotope 1 of element E in a weight unit of the mixture is given by 
 
(5) I1EM = (CEA AbI1EA N f / AWEA) + [CEB AbI1EB N (1 - f) / AWEB] 
 
with I1EM      = number of atoms of isotope 1 of element E per unit weight in the mixture 
 CEA       = concentration of element E containing isotope 1 in component A 
 CEB       = concentration of element E containing isotope 1 in component B 
 AbI1E A  = atomic abundance of isotope 1 of element E in component A 
 AbI1E B  = atomic abundance of isotope 1 of element E in component B 
 N          = number of atoms per mole (Avogadro number 6.022045 x 1023) 
 AWEA   = atomic weight of element E in component A 
 f            = mixing parameter (see above) 
 
A similar equation can be set up for the number of atoms of isotope 2 of element E and the two equations can be 
combined.  This manipulation eliminates the Avogadro number and allows us to deal with isotope ratios 
 
(6)  I1E  CEA AbI1EA f AWEB + CEB AbI1EB (1 - f) AWEA 

 ------ M        = ------------------------------------------------------------------------------------- 
 I2E  CEA AbI2EA f AWEB + CEB AbI2EB (1 - f) AWEA 
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To make life (and math) easier it is generally assumed that the atomic weights (and thus the isotopic 
abundance) of element E are identical in the two components A and B.  This approximation simplifies the 
above equation.  WARNING: This approximation is justified only if the isotopic composition of element E is 
very similar in A and B.  For many isotope systems this approximation introduces only small errors (e.g., if the 
Sr-isotopic composition of component A = 0.700 and that of component B = 0.800, the corresponding atomic 
weights vary by less than 1%).  For some isotope systems with large dynamic range in isotope compositions 
this assumption is not valid and the full mixing equation has to be used. 
 
Assuming that AWEA =  AWEB (i.e., AbI1EA = AbI1EB and AbI2EA = AbI2EB) 
the mixing equation becomes 
 
(7)  I1E              CEA AbI1E A f + CEB AbI1EB (1 - f) 

 ------ M     =    ------------------------------------------------------------- 
 I2E               AbI2E A [CEA f + CEB (1 - f)] 

 
This equation can be rearranged using equation (2) and substituting 
 
 (I1E / I2E)M                  RM 
 (AbI1EA / AbI2EA)A         RA 
 (AbI1EB / AbI2EB)B          RB, 
 
Then 
 
(8)  R M  =  RA (CEA f / C EM) + RB [CEB (1 - f) / CEM] 
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After eliminating (f) from the equation and rearranging again, the equation becomes 
 
(9)       R M = { [CEA CEB (RB - RA)] / [CEM (CEA - CEB)] + [CEA RA - CEB RA] / [CEA - CEB]} 
 
and can be further simplified to 
 
(10)    RM = x / CEM + y 
 
where the constants x and y replace the appropriate portions of the above equation. 
This is the equation of a hyperbola in coordinates of RM and CEM that can be linearized by plotting RM versus  
1/CEM, i.e., the isotope ratio of the mixture versus its inverse concentration. 
  
It is important to understand that this line will only be a straight line in a plot RM versus 1/CEM if the 
assumption AWEA = AWEB is justified.  In all other cases, differences in the isotope abundance of each 
component cannot be neglected and RM has to be plotted against the concentration of an isotope of element E 
rather than the concentration of element E itself.  One example is a plot of 87Sr/86Sr versus 87Rb/86Sr, also 
known as an isochron diagram.  In such a diagram a linear array of data points either  

represent mixture of two components, or 
has age significance (slope being equal to [et - 1]). 

 
The ambiguity in the interpretation of mixing lines and isochrons in such diagrams haunts isotope 
geochemists. 
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Mixing of two components with two elements (1 and 2) of different isotopic composition (R) in coordinates R1 
and R2 are generally hyperbolic.  This is shown in the next figure, using Sr and Nd as an example (from Dickin, 
1995, in this example: c = crust, m = mantle, xc = fraction crust). 
 
Only in the special case when the ratios of the concentration of the two elements in the two components are 
equal (e.g., [CNd / CSr]A = [CNd / CSr]B), mixing lines will be straight lines.  A more detailed treatment of this 
problem can be found in chapter 9 in Faure (1986) and chapter 1 in Albarede (1995). 
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Mixing hyperbola 
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22.3 y 19.9 m 

Peucker-Ehrenbrink, 2012 
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The Pb-Pb method of dating 
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The Pb-Pb method of dating 
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The Pb-Pb method of dating 
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The Pb-Pb method of dating 
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