Energy equation

The Lagrangian form of the energy equation is

dE S
- = -W 1
i = 9 (1)
E = total energy
Q = rateof heat transfer; + when added to system
W = rateof work; + when done by system

Here, E is our extensive property. The associated intensive property will be made up of two terms:

e = internal energy per unit mass

1 1, o .
gu-u=gu = kinetic energy per unit mass

Thus, the intensive property is p(e + $u?) = energy/volume, where de = ¢,dT, ¢, = specific heat
at constant volume. ¢, is the ratio of the amount of heat, @), it takes to raise a mass, m, by an
amount AT. ¢, = Q/mAT. RTT says that

[ <e+%u>dV:Q—W (2)
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Recall this? When an intensive property is a product of p, the constant equation wipes out the
p(e + 3u?)V - u term.

Now consider @, the heat transfer bit. We want it in integral form, and it’s the heat transfer
across the boundaries of our blob, so it will be a surface integral.

Q@ = —[[a-da (3)
A

What’s up with the sign? Q is positive when work is added to the system, but something fluxing
into a control volume has a negative sign since dA is positive outward.

Now for the W term. Work is force times distance, W = F - Ax. So the work rate will be force
times distance divided by time, W = F - ﬁ—’t‘, or force times velocity

W = F-u (4)

Recall from our derivation of the momentum equations, that the forces acting on our blob of fluid
are body and surface forces:

F = Fp+Fs ()
This ignores the line force, which is surface tension. Thus

W = Fp-u+Fg-u (6)



From our work on the momentum equations, the only body force that we are considering so
far, is gravity. It acts on all the mass in the blob, so we have the volume integral

Fp-u = —ijpg-udV (7)

Note that W > 0 when work is done by the system, and since g is on the system, Fg - u < 0.
Hence the minus sign.

Again, from our work on momentum, we went through a lot of pain to convince ourselves that
the surface force was given by the stress tensor. It’s force on the surface of the blob, so it will be
an area integral

Fs-u = —H(T-u)-dA (8)
A

W > 0 when work is done by the system, but here we have work being done on the system, so we
need the minus sign.
We now have all the terms for the energy equation (1):
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Now we need to convert the two area integrals on the RHS into volume integrals using the divergence
theorem:
H(T-u) -dA ﬂjv- (1 -u)dV (10)
A v
~{[a-aa — [ v-aav (11)
A 4
Inserting these results in the energy equation (9) yields
fﬂpD% (e + %u) dv {[f rg-uav+ [[[v-(r-wav - [[[v-qav
4 v 14 v

fjjpl%(e%—%u)dv fjj[pg-u—}-v-(T-u)—V-q]dV (12)
v %

Since this integral must hold for all volumes

I

D 1
pD—t(e+§u> = pg-u+V-(r-u)—V-q (13)

This is the energy equation. Note rising motion leads to an increase in potential energy as g-u < 0,
as it should since it is on the RHS. The terms:

pg-u = changesin potential energy
—V-q = changesdue to heat flux
V- (r-u) = hasakineticenergy part and an internal heating part



Let’s look into the term containing stress a bit more deeply as it is clearly the most painful of the
terms:

Vi(r-u) = u-(V-1)+7:Vu (14)

The first term, u - (V - 7), is the rate of work done by the surface forces. Imbalances in stress
accelerate the fluid blob and change its kinetic energy. The second term, 7 : Vu, is the work done
by deformation. Not all stress moves the blob — some of it deforms and causes heat change. Note
the double contraction, A : B = scalar.

The u- (V - 7) terms is the easiest of the two since we came up with an expression for V - 7
when we looked at momentum conservation.

2
V-1 = V-(Zue—p—guV-U)
= —Vp+uV2u+%V(V‘u)
= u-(V-r) = u-(—Vp+;N2u+§V(V-u)) (15)

We're advecting 7 through our fixed blob of fluid. It is bringing in kinetic energy associated with
the stress on the blob.
Now the second term,

7:Vu double contraction

Notice, there is no - between the V and the u. Vu is the gradient of the velocity... The velocity
gradient tensor!

Vu=G (16)
Thus, this term looks like
7:G (17
But G =e + ir,
r (e + %r) (18)

Recall that r is an antisymmetric tensor, and 7 is a symmetric tensor. The double dot product of
asymmetric and antisymmetric matrix is zero

A:B = ZZA”B” (19)
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In 2D
m T2 || 0 —iw _ (¥ _v .
|:T21 ng]'[%w 0 :| - T11(0)+T12(2)+T21( 2)+T22(0)
w W
= T12§—7'21§
= 0 (20)

This last line is due to the fact that since 7 is symmetric, 712 = 72;. Thus, you can get rid of the
%r term and end up with

T:e (21)



Substitute in our expression for 7,
2
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2ue:e—pI:e—§uV-uI:e (22)

Let’s see what (if anything) we can learn by performing these double contractions. We’ll start
with an easy one

R Y
pr:e = Py, p@y P5.
= pV-u (23)

That is, change in energy due to compression or expansion. The last term is also pretty easy
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2 .
= gh(Vou’ (24)

Finally, the first term 2ue : e
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Consider just the ejje1; term. Remember,
ou\? ou Ou
2ue : 2 — = 2 — ] = 2
peie = “(au) (“au) By (28)

The ug—;‘ bit is associated with normal stress, and g—“ with the velocity gradient. Thus, this term

has something to do with the work it takes to pull apart molecules in a blob of fluid. The other



terms, such as (g—“)2 and ‘g—’;g—;, say something similar about shear and twisting. Clearly this is a

bit of a mess. Thankfully, what is typically done is to sweep it all under the rug and define

¢

(2ue e ;u(v - u)2) (29)

viscous component of the deformation work rate

This allows us to write
T:Vu = —p(V-u)+é (30)

Tracking this all the way back to the energy equation gives:

D 1
pD—t(e+§u> = pg-u+u-[—Vp+uV2u+§V(V-u)]—p(V-u)+¢>—V-q (31)

0.1 Thermal energy (or heat) equation

What a mess. What games can we play to make this more comprehensible? Let’s go back to a
version of the momentum equation:

Du
Ppi = pg+u-(V-7) (32)
Multiply (dot) through by u
D (1,

This looks a little familiar. It is the mechanical energy equation. Subtract this from the total
energy equation

D 1
po (e+3u) = pEutu (Vo) -pV-w+6-Veq
Dt 2
D (1.,\ _
- pD_t(§u> = pu-g+u-(V-1)
and we get the thermal energy (or heat) equation:
De
= Pp; = -p(V-u)+¢-V-q (34)
DT
OR Pcvﬁ = —p(V-u)+¢-V-q (35)

The second equation is obtained using de = C,dT". Here

—p(V-u) = changein thermal energy due to compression

¢

—V -q = changein thermal energy due to heat transfer

change in thermal energy due to viscosity

0.2 Approximations

Almost always it is safe to say that ¢ < 1, and it is ignored (this broad statement should make
you grumpy, but I’'m not going to do the scaling here):

DT
PCUD—t +p(V-u) = -V-q (36)



Here, pcv%f is temperature changes at constant volume, and p(V - u) is temperature changes due
to changing volume.
Remember the Boussinesq approximation? I stated it as

p = po+p(z,y,2,1) (37)
And it allowed us to simplify the continuity equation to
Vou = 0 (38)
It would be tempting to simply remove the —p(V - u) term, leaving

DT
pCvD—t = —-V-q (39)

But this isn’t correct, because here V - u is similar in scale to pC, %f, so we'll keep it. If we can’t
say V -u = 0, let’s substitute in the continuity equation instead

Dp

g TPV-u=0 = V-u 5Dt (40)
Substitution yields
DT pDp
- _FZr _ _y. 41
v Dy p Dt V-a (41)
Rewrite as
1 Dp
- =F = _ 42
pCth+pp< p2Dt) V-q (42)
Using the fact that —2; Do = %%
DT Da
il - = V. 4
PCopy + PP, V-q (43)
where a = L = specific volume.

To go the next step we need to bring in an equation of state. Traditional, linear equations of
state (eg for the ocean) will work, but in the interest of familiarity and clarity I'll go with the
equation of state for a perfect gas.

p=pRT or pa=RT (44)
Differentiate and rearrange:
Da Dp DT
"o D T or
Da DT Dp
¢ _ — _a=2£ 4
= P Bt~ (45)
(46)

Substitute:
DT DT %

POy HPR G —rap = ~V-a
DT Dp
PO+ R =5y = ~Vea
DT Dp
et —— == —_ . 4
PCr i T Dt V-a (47)
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Where C, + R = C),. Here, pCp%f is temperature change from heating at constant pressure, and
Dt

is the correction term for constant pressure. Thus the approximations made are ¢ small and
an ideal gas (though structurally similar to case with any equation of state).

The Boussinesq approximation says that %’; is small. Hence

DT
= - _v. 48
pCp Di V-q (48)
Further, using Fourier’s Law of conduction
q = —kVT (49)
which comes from measuring the heat flow through a block with different temperatures on each
side, we get the following result
DT
Cp—— = - (VT 50
POy = V- (VD) (50)
Here k = thermal conductivity, and if constant we have
DT
Cp—— kV2T
P p Dt



